Minimum enstrophy principle for two-dimensional inviscid flows around obstacles - Archive ouverte HAL
Article Dans Une Revue Physical Review E Année : 2019

Minimum enstrophy principle for two-dimensional inviscid flows around obstacles

Résumé

Large-scale coherent structures emerging in two-dimensional flows can be predicted from statistical physics inspired methods consisting in minimizing the global enstrophy while conserving the total energy and circulation in the Euler equations. In many situations, solid obstacles inside the domain may also constrain the flow and have to be accounted for via a minimum enstrophy principle. In this work, we detail this extended variational formulation and its numerical resolution. It is shown from applications to complex geometries containing multiple circular obstacles that the number of solutions is enhanced, allowing many possibilities of bifurcations for the large-scale structures. These phase change phenomena can explain the downstream recombinations of the flow in rod-bundle experiments and simulations.
Fichier principal
Vignette du fichier
Muller2019.pdf (1.35 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02176949 , version 1 (05-09-2022)

Identifiants

Citer

F. Muller, A. Burbeau, B.-J. Gréa, Pierre Sagaut. Minimum enstrophy principle for two-dimensional inviscid flows around obstacles. Physical Review E , 2019, 99 (2), ⟨10.1103/PhysRevE.99.023105⟩. ⟨hal-02176949⟩
60 Consultations
69 Téléchargements

Altmetric

Partager

More