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Large-scale coherent structures emerging in two-dimensional flows can be predicted from statistical physics
inspired methods consisting in minimizing the global enstrophy while conserving the total energy and circulation
in the Euler equations. In many situations, solid obstacles inside the domain may also constrain the flow and
have to be accounted for via a minimum enstrophy principle. In this work, we detail this extended variational
formulation and its numerical resolution. It is shown from applications to complex geometries containing
multiple circular obstacles that the number of solutions is enhanced, allowing many possibilities of bifurcations
for the large-scale structures. These phase change phenomena can explain the downstream recombinations of the
flow in rod-bundle experiments and simulations.
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I. INTRODUCTION

In nearly two-dimensional turbulent flows, the inverse
cascade process, transferring energy from smaller scales to
larger ones, is responsible for the formation and the growth
of large-scale coherent structures. Predicting their stability
and dynamics is fundamental in a wide array of fields, from
oceanic and atmospheric thin layers to astrophysical phenom-
ena. The Great Red Spot in the Jupiter atmosphere [1], or the
intermittent behavior of the Kuroshio current in the Pacific
ocean [2] are well-known examples among many others.

In this context, statistical fluid mechanics have proved a
valuable tool for analyzing these phenomena. A crucial part
of the study of two-dimensional (2D) flows is the prediction
of the steady stable structures emerging from given initial
characteristics and depending on the domain geometry. In-
stead of an exhaustive application of a dynamical stability
criterion to the infinite set of steady solutions to the Euler
equations, an equivalence is used between such a dynamical
stability criterion and a constrained optimization problem,
usually on a measure of the entropy with conservation of a
varying set of Euler invariants. This allows for the use of
several tools coming from mathematical optimization theory,
and to directly calculate the expected steady state in a given
2D physical configuration.

From the work of Onsager [3] on a point vortices model
followed by the Joyce-Montgomery theory [4] to the energy-
enstrophy Kraichnan theory [5,6] as well as the Miller-Robert-
Sommeria theory [7,8], various methods have been proposed
in order to construct a variational problem allowing the
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determination of steady stable states. Among this variety, the
minimum-enstrophy-principle (MEP) has been very popular
partly due to its simplicity. This principle was initially pro-
posed through phenomenological considerations based on a
so-called selective decay process by Bretherton and Haidvogel
[9], Matthaeus and Montgomery [10], and Leith [11]. Under
this justification, the MEP assumes that, while the total energy
and circulation of the flow are relatively well conserved, the
enstrophy (the second moment of the vorticity) is dissipated
down to a hypothetical minimum value associated with the
steady stable state, leading to a doubly-constrained minimiza-
tion problem on the enstrophy. The MEP is particularly useful
for the explicit determination of steady stable states as it leads
to a linear relationship between vorticity and stream function,
which greatly simplifies the underlying calculations. It was
notably used to identify stable steady states and geometry-
induced bifurcations by Naso et al. [12,13].

The more general theory developed by Miller, Robert, and
Sommeria [7,8] (MRS) uses the maximization of the entropy
under the conservation of all Euler invariants to determine sta-
ble states. The MEP can be related to a low-energy limit case
of the MRS theory as discussed by Chavanis and Sommeria
[14]. Beyond its initial phenomenological justification, it was
also shown by Naso et al. [12] that the MEP (minimization
of the enstrophy at fixed energy and circulation) is equivalent
to a maximization of the entropy at fixed energy, circulation,
and microscopic enstrophy. This equivalence constitutes a
justification of the MEP from statistical mechanics, which
substantiates its validity further than sole phenomenologi-
cal considerations. Other possible variational problems have
been proposed [12,15] and relationships between the various
approaches were discussed by Chavanis [16] and Bouchet
[17]. Existing studies are most of the time performed through
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FIG. 1. Sketch of the tranvserse flow fields observed in cross sections of an experimental 5 × 5 rod-bundle flow after the passage of the
coolant flow in the interstices between a mixing grid and the cylinder array. The flow is injected with a mostly axial velocity field as depicted
by the bottom-left arrow. The cross sections of the flow shown here are respectively found at axial positions z = 3.4dh (left) and 34dh (right)
away from the grid. While cropped here for visibility, the cylinders extend from far upstream of the mixing grid until its far wake downstream.

an analytical approach, with a direct derivation of the solu-
tions from the variational maximization of the entropy. The
typically considered domain geometries, namely, the square,
rectangle, and disk, are devoid of internal obstacles.

In this work, we propose to apply statistical fluid mechan-
ics methods to flows constrained by more complex geometries
such as fuel rod bundles in a pressurized-water reactor (PWR).
A rod bundle basically consists of an array of parallel cylin-
ders, placed within a container of usually square section, and
maintained together by regularly spaced grids as represented
in Fig. 1. A coolant flow is injected at one extremity of
the bundle, and its velocity field is mostly aligned with the
cylinder axes. Mixing vanes are added to the spacer grids
in the interstices between the cylinders in order to increase
interchannel velocities in transverse planes orthogonal to the
rod axes and thus enhance the thermal mixing of the flow. Just
as in the case of 2D inviscid flows, steady coherent structures
appearing in these transverse flows (as seen in Fig. 1) experi-
ence reorganization phenomena which we wish to interpret as
phase transitions in the sense of statistical physics. Examples

of such reorganizations are the large-scale rotation of the flow
described in Bieder et al. [18] or the intercylinder velocity
inversion described in Shen et al. [19].

A better understanding of this secondary transverse flow is
paramount in the process of PWR safety analyses. However,
it has proved difficult to study it using purely computational
fluid dynamics (CFD) -based approaches, as indeed the high
Reynolds number (Re ≃ 105) and the large spatial size of
the system drive the computational costs of a well-resolved
simulation to quite prohibitive values. As such, we aim to
advance a methodology for the study of this type of flow,
namely, the usage of tools from inviscid two-dimensional
statistical fluid mechanics, in addition to three-dimensional
CFD simulations.

At first glance, statistical fluid dynamics do not apply to
this three-dimensional flow. However, one can observe that the
streamwise mean velocity Uz (i) is usually much larger than its
crosswise part ux,y ≪ Uz and (ii) weakly depends on spatial
coordinates. As a consequence and as a first approximation,
the crosswise mean velocity field is simply advected by the
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streamwise mean part. This corresponds to the Taylor frozen
turbulence hypothesis which is thus applied to the secondary
flow field ux,y in order to correlate the axial coordinate of
a three-dimensional (3D) flow section to the time variable
and the bulk axial velocity. The total velocity field can be
decomposed as

U(x, y, z, t ) = Uzez + ux,y(x, y, Uzt ) + u′(x, y, z, t ) (1)

with Uz the axial velocity nearly uniform in the bulk of
the flow, ux,y(x, y, Uzt ) the transverse flow field to which
is applied the Taylor “frozen turbulence” hypothesis leading
to a correlation z = Uzt , and u′(x, y, z, t ) the 3D turbulent
fluctuations. Notably, the boundary layers in the physical
setup of PWR rod-bundle flows were observed to be quite
thin due to the high Reynolds number and were free of
detachments, which we use as a justification to place our study
exclusively in the bulk of the flow. Therefore, we can apply
inviscid 2D statistical fluid mechanics to the “transported”
two-dimensional transverse mean bulk flow field.

Accordingly, these tools must be adapted as a first step to
more complex geometries, notably through the consideration
of one and possibly multiple obstacles. Nonconnex bound-
aries bring forth an additional complexity to the problem
through a larger set of possible Dirichlet boundary condi-
tions for the optimization problem, which has been sparsely
explored in the existing literature. An annular geometry was
considered by Corvellec [20] and Chen and Cross [21], but
using a resolution method specifically tailored for a ring-
shaped domain geometry. In this study, we aim at presenting
an adaptation of the MEP to domains containing obstacles.
This will be achieved through the inclusion of an additional
equation in the standard optimization problem, the discretiza-
tion of the usually analytical method, and a parametric explo-
ration method of the parameter space, in order to allow the
identification of stable steady states thanks to the minimum
enstrophy principle. Eventually our goal is to pave the way
for a concrete utilization of this type of resolution methods in
the field of rod-bundle flow thermohydraulics.

The governing theory and equations of our study are dis-
played in Sec. II, and our method for explicitly obtaining so-
lutions and exploring the parameter space is given in Sev. III.
Validation results for the method are presented in Appendix C,
and results obtained in the simple case of a ring are shown in
Sec. IV. At last, the capability of the method to handle domain
geometries with a higher number of obstacles is assessed in
Sec. V.

II. THEORETICAL FRAMEWORK:

MINIMUM-ENSTROPHY STATES

Considering the case of a two-dimensional inviscid fluid
system, we first address the two-dimensional vorticity equa-
tions (derived from the incompressible Euler equations) writ-
ten as

∂ω

∂t
+ u · ∇ω = 0,

(2)
ωz = ∇ × u,

where ω is the vorticity, u the velocity field, and z a unit vector
normal to the flow. Let ψ be the stream function defined as

−�ψ = ω. (3)

The 2D Euler equations admit an infinite number of steady
states of the form ω = f (ψ ) where f is an arbitrary function.
These solutions are obtained by solving

−�ψ = f (ψ ) = ω,

ψ = a ∈ R, on the domain boundary. (4)

Among the infinite set of steady solution states to problem
(4), it must be noted that a vast majority are unstable. and are
unlikely to be observed.

In the case of the two-dimensional transverse flow fields
studied in PWR rod bundles using a Taylor “frozen turbu-
lence” hypothesis, we hope to be able to draw interesting
comparisons between 2D-predicted steady stable states in a
rod-bundle cross-section geometry and coherent structures
identified in transverse planes from actual 3D experiments or
numerical simulations.

A classical stability criterion for the Euler equations is
the sufficient Kelvin-Arnol’d energy principle [22,23], under
which a flow that is an extremum of the energy under isovor-
tical turbulent fluctuations (i.e., that amounts to a pure advec-
tion of vorticity) is dynamically stable. Various other stability
criteria have been devised over the years, often through the
optimization of a certain functional of the flow under a given
set of constraints. As a rule of thumb, highly constrained
approaches entail a relatively high degree of confidence in the
thermodynamical stability of their solutions but are complex
to use, while optimization criteria with a limited number of
constraints are easier to enforce but cannot provide definite
information on the flow stability. The mutual relationships
within the set of optimization principles available is discussed
in the literature, notably by Chavanis [16].

As mentioned in the Introduction and following Naso et al.

[12], we choose to rely on the MEP in our study. We justify
this choice of variational problem through the phenomenolog-
ical argument of a small viscosity in real flows, leading to a
relative conservation of both total energy and circulation but
a strong decay of the macroscopic enstrophy until the latter
eventually reaches a minimum value. This process was coined
as a selective decay, where the system is supposed to sponta-
neously “pick” a state minimizing the macroscopic enstrophy
for its long-time decay. Although such a justification is quite
limited (see Brands et al. [24]), we deem it to render the
MEP an interesting compromise between relevant steady-state
solutions, relatively simple implementation, and relevance in
real flow cases where a small but non-negligible viscosity
is present, which is bound to be the case in our industry-
aimed study. As it will appear in the analytic developments
thereafter, the MEP approach has also the advantage of imply-
ing a linear relationship ω − ψ , which greatly simplifies the
numerical usage of this theory and the exploration of domain
geometries with obstacles.

The selective decay principle, leading to the minimization
of the enstrophy under conservation of the energy and circu-
lation, can also be derived as a result of a coarse-graining

process. Indeed, only the large-scale part of high-Reynolds
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FIG. 2. Sketch of the two domain geometries explored in this study: a circular annulus domain (left) with R0 = 0.45 and R1 = 0.1, and a
square with two obstacles (right) of side length L = 1 and obstacle radii R1 = R2 = 0.1.

turbulent flows are considered in practice. A coarse-graining
process enables the separation between a macroscopic local
average (ω in the case of the vorticity) and small scales that are
out of reach in a numerical approach. These two quantities are
linked by a density probability function ρ containing the prob-
ability ρ(r, σ ) to observe a vorticity level ω = σ at the spatial
point r. A consequence of this restriction to the large scales
of an inviscid flow is the emergence of a hierarchy between
the invariants. The total energy and circulation can be directly
expressed as functions of the coarse-grained vorticity through
ρ, implying their relative conservation. On the contrary, the
second moment of the macroscopic vorticity, which is the
macroscopic enstrophy Ŵ

mac
2 =

∫

ω2r, is inferior by Schwartz

inequality to the microscopic enstrophy Ŵ
mic
2 =

∫

ω2r and is
poorly conserved (which can be interpreted as small-scale
fluctuations dissipating enstrophy much more efficiently than
energy or circulation). The further higher-order Euler invari-
ants can be treated with the same reasoning, leading to an even
poorer conservation in the coarse-graining process; they are
not considered invariants at all in this method. The variational
principle stemming from the coarse-graining process is thus
the MEP minimization of the macroscopic enstrophy with
constraints on the total energy and circulation. This principle
being applied after the coarse-graining process, it uses the
macroscopic vorticity ω as a variable, which greatly simplifies
the implementation of the method, as in practice the explicit
filter from the flow characteristics to their coarse-grained part
does not need to be determined.

The more general MRS theory [7,8] transferred the prob-
lematic from steady states dynamical stability to the max-
imization of a mixing entropy under conservation of all
quantities invariant under the Euler equations. It uses the
density probability function ρ as the variable. The resulting
multiply-constrained optimization problem is exhaustive but
difficult to justify for real flows and to use in practice. As
already mentioned, the MEP variational problem can be re-
covered as a limit case of the MRS theory for low-energy
systems (see Chavanis et al. [14]); it leads to a sufficient MRS

stability condition, which would allow us to find a certain
ensemble of MRS-stable steady states but not all of them.
Indeed, due to ensemble inequivalence, some MRS-stable
states could only be “saddle” points in the MEP approach.
We consider this restriction acceptable in our case, the aim
being in a first step to identify possible stable steady states
and draw comparisons between them and states observed in
simple freely decaying 2D turbulent simulations.

It can be mentioned that the MEP is also equivalent to the
Ellis-Haven-Turkington approach in the case of a Gaussian
prior vorticity distribution as described by Ellis et al. [15],
Chavanis [25], and Chavanis et al. [26].

In the following, solutions to problem (4) are searched after
applying the coarse-graining process, although without ex-
plicitly considering the characteristics of the coarse-graining
filter. We set the resolution in an abstract � domain with
internal obstacles meant to be representative of the geometry
of a fuel assembly cross section.

As illustrated in Fig. 2 for both Q = 1 and Q = 2, let �

be a bounded polygon of R
2 with a boundary named ∂�. We

place Q obstacles within the domain, Q � 0. Let ∂�0 be the
exterior boundary of � and let ∂�q with q ∈ [1,Q] be an
interior boundary of �, so that ∂� = ∂�0 ∪q∈[1,Q] ∂�q .

The solution ψ satisfies (to simplify the notation the · is
omitted)

−�ψ = ω, �

ψ = aq, ∂�q, q ∈ [0,Q]. (5)

Excluding boundary layers in our study, slip boundaries are
used in the following resolution. This translates to a simple
impermeability condition for the fluid at a boundary ∂�,
which in turn imposes that u · n = 0, with n a normalized
vector normal to the boundary ∂�. This leads to ∇ψ × n = 0,
meaning that ψ must have a constant value on each piece
of boundary ∂�q . Since ψ is determined up to an arbi-
trary constant, we can assume without loss of generality that
a0 = 0.
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Let us introduce the averaging operator 〈·〉 on �:

〈X〉 =

∫

�

X dr. (6)

The enstrophy, the circulation, and the energy are respectively
defined as functions of the variable ψ as

Ŵ2[ψ] =
1

2
〈�ψ�ψ〉, (7)

Ŵ[ψ] = −〈�ψ〉 = −

∫

∂�

∇ψ · n dσ, (8)

E[ψ] =
1

2
〈∇ψ∇ψ〉. (9)

Note that the factor 1/2 in the definition of Ŵ2 is arbitrary;
we choose to use it in order to follow the framework set by
Naso et al. [12]. However, the quantity S = −1/2〈�ψ�ψ〉 is
studied therein but we choose to omit the minus sign in order
to remain on a minimization problem (following the MEP)
rather than a maximization one.

The total circulation can be developed as

Ŵ =

Q
∑

q=0

Ŵq =

Q
∑

q=0

∮

∂�q

∇ψ · n dσ. (10)

As explained by Naso et al. [12], a dynamically stable
solution in the sense of the MEP is a solution of the variational
problem

min
ψ

{Ŵ2[ψ]|E[ψ] = E,Ŵ[ψ] = Ŵ}, (11)

which amounts to the enstrophy minimization while con-
serving the total energy E and the total circulation Ŵ. The
Lagrange multipliers β and α are introduced in order to find
the minimum of the enstrophy under these constraints. Let the
Lagrange functional be defined in our problem as

J [ψ] = Ŵ2[ψ] − β
(

1
2 〈∇ψ · ∇ψ〉 − E

)

− α(−〈�ψ〉−Ŵ).

(12)

A perturbation ψ + θφ with φ|∂� = 0 is introduced in
order to obtain a variational form for J :

J [ψ + θφ] = J [ψ] − θ〈�ψ�φ〉 − 1
2θ2〈�φ�φ〉

− βθ〈∇ψ · ∇φ〉− 1
2βθ2〈∇φ · ∇φ〉+αθ〈�φ〉.

(13)

An extremum of J is obtained for a solution ψ verifying ∀φ

at the first order in θ ,

−〈�ψ�φ〉 − β〈∇ψ · ∇φ〉 + α〈�φ〉 = 0. (14)

Using an integration by parts on 〈∇ψ · ∇φ〉, the boundary
conditions ψ = aq on ∂�q, q ∈ [0,Q], Eq. (14) translates
∀φ to

〈(−�ψ + βψ + α)�φ〉 −

Q
∑

q=0

βaq

∮

∂�q

∇φ · n dσ = 0.

(15)

If we restrict the range of the φ perturbations to those verify-
ing ∇φ · n = 0 on ∂�, we obtain the local problem satisfied
by the solution ψ (11):

�ψ = βψ + α = −ω. (16)

It should be noted in relation (16) that, as mentioned in
Sec. I, the optimization problem (11) has indeed led to a linear
ω − ψ relationship. We can take the space integral of (16) on
� giving

∫

�

�ψ dr − β

∫

�

ψ dr = α

∫

�

1 dr, (17)

which when using the averaging operator defined in (6) leads
to

α = 〈�ψ〉 − β〈ψ〉 = −Ŵ − β〈ψ〉. (18)

Finally, expression (16) is used to isolate α, which leads to
the fundamental equation to be solved:

−�ψ + βψ = Ŵ + β〈ψ〉. (19)

From (15), it appears that in order to obtain a dynamically
stable state under the MEP, the following condition must also
be fulfilled by the Lagrange multiplier β and the boundary
conditions aq for q ∈ [0,Q]:

βaq = 0, q ∈ [0,Q]. (20)

The overall system to be solved by a solution ψ is (19),(20).
It should be noted that the criterion (20) is compatible

with previous research on the subject, in particular [12,14].
Indeed, the common assumption of a0 = 0 in cases with a
single piece of boundary ensures the validity of (20). In cases
with multiple pieces of boundary, (20) can be verified both
through aq = 0 or β = 0. Contrary to the single-boundary
case, β = 0 does not necessarily lead to a zero-energy state
thanks to the boundary terms as shown in the expression of
the energy in (A7). This pair of possible solutions to (20)
constitutes an expansion on the previously available ensemble
of stable solutions ψ . As will be shown in the results in Sec. V,
this expansion allows for notable bifurcations between stable
solution patterns.

In Eq. (19), the constraints set on the optimization problem
(11) are transferred as follows:

(1) the value of the circulation is explicitly present in
Eq. (19);

(2) the energy constraint is transferred to the Lagrange
multiplier β, which will be an essential variable in the fol-
lowing phase diagrams;

(3) the boundary condition aq on ψ for each piece of
boundary �q is also impacted by the energy condition, since
the expression of the energy now depends on aq as detailed in
Appendix A.

A solution ψ obtained through the resolution of Eqs. (19)
and (20) with appropriate values for the constraints on the
total energy and circulation will be by construction an ex-
tremum of the function J [ψ]. A further comparison of the
enstrophy of the various possible extrema will deliver the
minimum-enstrophy state, which under the MEP is a steady
dynamically stable solution of the Euler equations. We will
show that multiple stable states with equal values for the Euler
invariants but for different boundary conditions and thus with
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different circulations around the obstacles Ŵq can be obtained.
Our interest being in the resolution of this problem in any
given geometry with internal obstacles for a wide range of
energy and total circulation values, we opted for a numerical
resolution.

III. RESOLUTION METHOD

A. Direct expression of the solutions

The resolution method in the case of homogeneous bound-
ary conditions follows the method developed by Chavanis
et al. [14] and Naso et al. [12]. In this part, we extend the
method to the case of nonhomogeneous boundary conditions
but it is implemented first in a calculation tool and validated
on simple geometries without internal obstacles, recovering
the results presented in [12,14].

Following these studies, we regroup energy and circulation
into a single parameter �:

�
2 =

Ŵ
2

2E
. (21)

The stream function ψ is decomposed as

ψ = ψ∂� + �, (22)

with ψ∂� an arbitrary function abiding by similar boundary
conditions as the unknown ψ :

ψ∂� = aq on �q, q ∈ [0,Q] (23)

and � a new unknown which abides by homogeneous Dirich-
let boundary conditions: � = 0 on the entire boundary ∂� =
⋃

q∈[0,Q] �q . In practice, various simple but regular forms
are picked for ψ∂� but we verify that the final results do
not depend on this choice. Without loss of generality, we set
a0 = 0 in the following.

More precisely, in the case of a ring domain of respective
interior and exterior radii R1 and R0, with ψ∂� = a1 at R1

and ψ∂� = 0 at R0, ψ∂� can be chosen as a function of the
distance r from the ring center as

ψ∂�(r ) = a1
R0 − r

R0 − R1
. (24)

�ψ∂� is then directly computed regardless of the shape
chosen for ψ∂�.

Replacing this decomposition (22) into the fundamental
equation of the problem (19) leads to a new version of (19)
for the problem on the unknown �:

−�� + β� = �ψ∂� − βψ∂� + Ŵ + β(〈ψ∂�〉 + 〈�〉).

(25)

The system to be solved is now (25),(20). We will in a first
step obtain the various solutions of the local problem (25),
and these will be sorted according to the criterion (20) in a
second step in order to obtain the minimum-enstrophy states.

1. The continuous branch

As � satisfies homogeneous Dirichlet boundary condi-
tions, it can be decomposed on the eigenbasis (βj , ej ) of the
Laplacian operator, while enforcing the conditions

�ei = βiei, 〈eiej 〉 = δij , ei |∂� = 0. (26)

The solution ψ and its Laplacian �ψ are decomposed into

ψ =

N
∑

j=1

bjej + ψ∂�, �ψ =

N
∑

j=1

bjβjej + �ψ∂� (27)

with ej = 0 on �0 and �q, q ∈ [1,Q] and ψ∂� = aq on
�q, q ∈ [1,Q]. Let R(β,ψ∂�) be defined as

R(β,ψ∂�) = �ψ∂� + β(〈ψ∂�〉 − ψ∂�). (28)

By injecting (27) into (25) and using the definition (28) for
R(β,ψ∂�), we obtain

∑

i

bi (β − βi )ei = Ŵ + R(β,ψ∂�) + β〈�〉. (29)

In order to get a direct expression for the coefficient bj ,
the scalar product of relation (29) by the eigenvector ej is
calculated, and the averaging operator 〈·〉 is applied to the
result. Since 〈eiej 〉 = δij , we have ∀j ∈ [1, N ] and for β 
= βj

bj =
{〈R(β,ψ∂�)ej 〉 + Ŵ〈ej 〉 + β〈ej 〉〈�〉}

(β − βj )
, (30)

with the case β → βj being tackled a bit further in the
resolution. In a final step, 〈�〉 is isolated by multiplying
relation (30) by 〈ej 〉, ∀j ∈ [1, N ] and by adding all relations
over j ∈ [1, N]. With 〈�〉 =

∑

j bj 〈ej 〉, we get

〈�〉 =

∑

j

〈ej 〉

(β−βj ) {〈R(β,ψ∂�)ej 〉 + Ŵ〈ej 〉}

1 − β
∑

j
1

(β−βj ) 〈ej 〉2
. (31)

Replacing (31) into (30) leads to a direct expression for each
coefficient bj required to compute � and then ψ based on the
circulation Ŵ, the parameter β, the eigenbasis (βi, ei )i∈[1,N],
and the boundary conditions through the function ψ∂�.

This expression referred to as a continuous solution works
for any value of β, but a few limit cases can be considered:

(1) If β → βi with 〈ei〉 = 0, the relations (30) and (31)
hold.

(2) If β → βi with 〈ei〉 
= 0, both relations (30) and (31)
converge to a finite value, but an equivalent expression must
be used in the numerical implementation in order to prevent
any divergent quantity. The equivalent expression used was

bi ∼
β→βi

〈R(β,ψ∂�)ei〉 + Ŵ〈ei〉

β − βi − β〈ei〉2
. (32)

(3) If β → β∗, with β∗ verifying

1 − β∗

∑

j

1

(β∗ − βj )
〈ej 〉

2 = 0, (33)

this is a root of relation (31) leading to a diverging 〈�〉 and
further to a diverging energy. This limit case allows the contin-
uous solution to have � → 0 despite Ŵ 
= 0, and corresponds
to a high-energy solution. As detailed by Naso et al. [12],
it also marks the limit between a “positive” (β > β∗) and
“negative” (β < β∗) monopolar state in simple geometries,
and it is accompanied by a discontinuity of the chemical
potential α.
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In summary, the continuous solution is expressed as

ψcont(Ŵ, β, ψ∂�) =

N
∑

j=1

bj (Ŵ, β, ψ∂�)ej + ψ∂�, (34)

with bj (Ŵ, β, ψ∂�) defined by (30). Note that ψcont does not
formally depend on ψ∂� but only on the boundary values aq

on ∂�q .

2. The mixed branches

It can be shown that when β = βi with βi an eigenvalue
associated with an eigenvector ei of zero mean 〈ei〉 = 0, a
certain class of solutions coined as mixed solutions ψmix can
be linearly constructed as

ψmix(Ŵ, βi, ψ∂�) = ψcont(Ŵ, βi, ψ∂�) + γ ei, ∀γ ∈ R.

(35)

These mixed solutions are connected to the family of contin-
uous solutions through the case γ = 0, and lead to the pure
eigenvector ei when γ → ±∞. For these solutions, the degree
of freedom β is replaced by the parameter γ in (35). As this
replacement is quite straightforward in the exploitation of the
following phase diagrams, no further distinction will be made
between these two parameters.

B. Exploration of the parameter space

1. Calculation of the (β,�2 ) phase diagram

The point of this resolution being to determine which one
of the steady solutions has a lower enstrophy under each pos-
sible physical configuration, an exploration of the constraints
space (E,Ŵ) is devised, so as to be able to condense the
obtained results in so-called phase diagrams. The aim is to
transfer the variations of the constraints on the degrees of
freedom in the resolution method, namely, (β,Ŵ, ψ∂�) and
(γ,Ŵ, ψ∂�), respectively, for continuous and mixed solutions.
The nonzero boundary condition ψ∂� represents an additional
unknown which can be varied to explore the now larger variety
of possible stable states.

While the energy E = 1
2 〈∇ψ · ∇ψ〉 is expressed as a

function of the unknown stream function ψ , we also have to
account for the boundary terms in our case. As detailed in
Appendix A, the proper expression including the circulation
around the obstacles Ŵq as well as the aq boundary conditions
on ψ is

E = −
1

2
β(〈�2〉 − 〈�〉2) +

1

2
Ŵ〈�〉 −

1

2

Q
∑

q=1

aqŴq . (36)

In a first step, the case of constant boundary conditions ψ∂�

is explored for a given value of Ŵ, and the resulting (β,�2)Ŵ
phase diagram is plotted. The enstrophy evolves as Ŵ2 ∝ −β

(see [14,16]), which allows one to compare the enstrophy of
the different solutions through their respective position in the
diagram: for equal external constraints, the solution associated
with the highest value of β has a lower enstrophy. However,
different solutions for equal values of the Euler invariants can
be stable due to the additional unknown aq .

The boundary conditions aq are therefore varied along a
certain range, with a computation of the (β,�2)Ŵ phase di-
agram for each boundary conditions combination (aq )q∈[1,Q].
The resulting phase diagrams are then ordered by circulation
around the obstacles Ŵq . In the case of a single obstacle,
this amounts to plotting β = f (�2) with Ŵ1 as an additional
dimension. The resulting database is then interpolated into a
hypersurface β = f (�2,Ŵq , q ∈ [1,Q])Ŵ , in which the least-
enstrophy stable solutions verifying (25),(20) can be found.

Sections of this hypersurface can also be taken for given
values of each circulation around an obstacle Ŵq , leading
to fixed-circulation (β,�2)Ŵ,Ŵq ,q∈[1,Q] phase diagrams. In
these diagrams, comparing solutions for a fixed value of �

2

amounts to setting the constraint on the energy. This allows
one to determine the least-enstrophy solution in the chosen
set of external constraints (Ŵ, E) and for given values of
Ŵq, q ∈ [1,Q]).

2. Search of the least-enstrophy solution in the (β,�2) diagram

An interpretation of the (β,�2) diagram helps identify-
ing which solution type has the lowest enstrophy under a
given set of Euler invariants values and for given values of
Ŵq, q ∈ [1,Q]). It mostly amounts to a comparison between
(1) β∗, the largest root of the continuous solution leading to
�cont(β∗) = 0 and (2) β1, the largest eigenvalue associated
with a zero-mean eigenvector, on which the potentially least-
enstrophy solution can be built.

Indeed, the continuous solution has a lower enstrophy in
the entire parameter range if β∗ > β1 as in the case of the
square shown in Appendix C, but a bifurcation can exist
between mixed and continuous solutions if β1 > β∗ as shown
in the results for a ring-shaped domain in Sec. IV. In both
cases, however, a steady state with β < β1 is unstable; as
demonstrated by Naso et al. [12], a perturbation δω = ψ1

does conserve the constraints of the optimization problem
(11) while leading to a negative value for the second-order
variations of the functional J [ψ].

We therefore use the aforementioned resolution method to
plot the (β,�2) diagram at constant Ŵq, q ∈ [1,Q]. It will
display (1) whether β∗ is < or >β1, indicating the possibility
of two stable regimes and (2) if two stable states can exist,
what the critical bifurcation point �

2 between them is.
The numerical discretizations used along the resolution are

described in Appendix B, and a validation of the resolution
method is presented in Appendix C. The results obtained
through this procedure for the particular case of a domain with
one obstacle (Q > 1) are presented next in Sec. IV. Indeed,
such a simple annular domain already displays interesting bi-
furcations between stable states, and the complete (β,�2,Ŵ1)
3D surface is still displayable.

IV. CIRCULAR ANNULUS CONFIGURATION

The case of an annular domain geometry is explored in this
section; this geometry consists of a circular domain of radius
R0 = 0.45 in the center of which a circular obstacle of radius
R1 is placed. Different values of R1 have been investigated
giving similar results. Without loss of generality, we present
the case R1 = 0.1.
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FIG. 3. Representation of MEP solutions in the case of a ring with outer radius R0 = 0.45 and inner radius of R1 = 0.1 at different a1. The
total circulation is set at Ŵ = 1. (Left) (β,Ŵ1/Ŵ) plane. (Right) (β,�2) plane.

The full exploitation of the numerical resolution method
described in Sec. III allows one, in the case of a one-obstacle
annular domain, to respectively draw the ensemble of curves
[β = f (Ŵ1/Ŵ)]a1∈R

and [β = f (�2)]a1∈R
for different values

of a1. In Fig. 3 the continuous solutions are shown as well
as the mixed solutions associated to the first (higher β) and
second (lower β) zero-mean eigenvectors.

Several findings can be observed in these two plots:
(1) The circulation around the obstacle Ŵ1/Ŵ of a continu-

ous solution with constant a1 varies with the energy (through
the parameter �).

(2) The circulation around the obstacle of a mixed solution
is constant with varying γ , which is notably because zero-
mean eigenvectors themselves have a zero circulation around
the obstacle, and results in the mixed solutions not being
visible in the (β,Ŵ1/Ŵ) view in Fig. 3.

(3) The β → β∗ case, which could be treated continu-
ously in the (β,�2) phase diagrams, now induces a strong
divergence in the (β,Ŵ1/Ŵ,�2) case. Indeed, as β → β∗,
the continuous solution diverges to a high-energy positive or
negative monopolar state, which conveniently leads to � → 0
in the convex domain case, but here leads to Ŵ1/Ŵ → ±∞

and thus the horizontal lines visible in the (β,Ŵ1/Ŵ) view in
Fig. 3.

(4) In the case of inhomogeneous Dirichlet boundary con-
ditions, without taking the circulation Ŵ1/Ŵ into account, sev-
eral mixed solutions can seem more stable than the continuous
solution. However, taking all parameters into account in the
following will show that only the mixed solution based on
the first zero-mean eigenvector has a lower enstrophy than the
continuous solution for given values of Ŵ1, and further that
the global mininum-enstrophy solution over the entire range
of possible Ŵ1 is the continuous solution.

(5) A point of interest seems to appear in Fig. 3 around
β = −107 with the convergence of all phase diagrams to a
single point, but it must be noted that the continuous solutions
observed there do not have equal values of the parameter �

2

and thus would not actually converge in a 3D representation
of the results.

It is possible to represent (β,�2)Ŵ1/Ŵ 2D phase diagrams
as shown in Fig. 4 for the example of Ŵ1/Ŵ = −0.1. They
amount to a comparison of the solutions for a given value

of the circulation around the obstacle. This phase diagram
confirms that a bifurcation is possible in the case of an annular
domain between mixed and continuous solutions for different
values of �

2. The first mixed solution and the continuous solu-
tions have, respectively, a lower enstrophy in the ranges �

2 <

�
2
bif and �

2 > �
2
bif. Significantly, this observation holds for

any value of the circulation around the obstacle; regardless
of the value picked in the interpolation for Ŵ1/Ŵ, a lower-
enstrophy zone persists for the mixed solution. This means
that in our set of hypotheses and for given values of the
circulation Ŵ1 around the obstacle, the system should always
select a two-vortices state over a monopolar one, provided
it contains enough kinetic energy at fixed total circulation.
However, the criterion (20) needs to be taken into account to
obtain the global least-enstrophy stable states.

Therefore, the results are ordered into a “stability map,”
showing the stability zones of each category of solution in
the parameter space. This representation is shown in Fig. 5,

FIG. 4. Interpolated (β, �2)Ŵ1/Ŵ phase diagram in the case of
an annular domain with a central obstacle, for Ŵ1/Ŵ = −0.1. The
curved solid line corresponds to the continuous solution and the
horizontal dashed line to the mixed solution associated with the first
zero-mean eigenvector.
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FIG. 5. Bifurcation diagram showing the domination zones of
the “mixed” (dark gray) and “continuous” (light gray) solutions in
parameter space, in the case of the annular domain. It was obtained
by scanning E and Ŵ1/Ŵ values while keeping Ŵ constant. The global
minimum of the enstrophy is obtained through βa1 = 0 and is shown
as a thick black curve.

and it amounts to viewing the combination of the line plots
shown in Fig. 3 from “above,” and only observing the highest-
β solution for each point in the (�2,Ŵ1/Ŵ) plane. The zone
of prevalence for the mixed solutions is displayed in dark gray
in Fig. 5 while the zone for the continuous solutions is shown
in light gray. Additionally, the overall minimum value for the
enstrophy is displayed as a thick black curve.

For inhomogeneous boundary conditions, the overall mini-
mum is reached with β = 0. In this case, we obtain −〈�ψ〉 =

Ŵ from (19) and thus Ŵ2 = 1
2 〈Ŵ2〉 from (7). Notably, both the

stable branches observed in Fig. 5 for β = 0 have the same
enstrophy.

When restricting a1 = 0, the stable solution is found for
β > 0 along the curve in Fig. 5 with �

2 � 100. The point β =

0, a1 = 0 joining the two regimes is a continuous bifurcation
point between a single stable state (�2 > 100) and a pair of
possible stable states (�2 < 100) that differ by the sign of a1.

Furthermore, this plotting method particularly highlights
the fact that the stability zone of the mixed solution is of
maximal amplitude for a particular value of Ŵ1/Ŵ ≃ 0.2 in
the case of Ŵ = 1. This result can be interpreted as the best
repartition of the total circulation Ŵ between the internal and
external boundaries so as to foster a dipolar fluid state.

Several key findings can be drawn from this numerical
study of the minimal enstrophy states in a domain with an
obstacle based on the MEP.

(1) As in the case of an empty disk, lower-enstrophy
zones have been identified for both the mixed and continuous
solutions in the geometries of a square and a circle with a
central obstacle for given values of the circulation Ŵ1 around
the obstacle.

(2) Either β = 0 or a1 = 0, β > 0 lead to the overall
minimal enstrophy states corresponding to the continuous
solution, but these can only be found when exploring the range
of possible circulations Ŵ1 using inhomogeneous Dirichlet
boundary conditions.

(3) A bifurcation point exists at β = 0, a1 = 0; it separates
a single, low-energy branch (high �) from two high-energy
branches (small �) with opposed a1 leading to opposite
circulations around obstacle Ŵ1/Ŵ.

It can also be noted that the two solution types identified
in Fig. 5 can be related to the two flow regimes identified in a
2D rotating-ring flow experiment (for instance, [27]). Indeed,
the flow regimes identified therein consist of

(1) A “zonal” flow regime with a dominant central vortex
around the obstacle, reminiscent of the single vortex continu-
ous solution.

(2) A “blocked” flow regime characterized by a loss of
rotational symmetry and the emergence of opposed counter-
rotating vortices on each side of the obstacle, which could
correspond to a mixed solution from our results.

Although only a limited qualitative comparison can be
drawn at this point between the mixed or continuous solu-
tions and the zonal or blocked flow regime in a ring-shaped
domain geometry, it is noteworthy that the resolution method
described here can prove of interest in a numerical study of
this phenomenon based on MEP-based statistical physics.

It is notable that this layout of the stable states in the
parameter space for a ring domain geometry, namely, the sole
existence of one- or two-vortices solutions, holds for any size
of the central obstacle in our numerical results. Although this
result is counter-intuitive, as one could expect a progressive
split of the stable states into multiple-vortices solutions as
the domain is increasingly thin, it is a consequence of the
hypotheses chosen in this approach, which favor the largest-
scale states as a consequence of the inverse cascade process.
The analytical results mentioned in Appendix C 2 confirm this
analysis, as the eigenvalues respectively associated to four-,
six-, and eight-vortices zero-mean eigenvectors are inferior to
that associated to the two-vortices one for any value of the
central obstacle radius.

V. MULTIPLE OBSTACLES CONFIGURATION

In this section, we apply the resolution method for the MEP
applied to a multiple obstacle configuration relevant to PWR
rod-bundle flows.

A. Description of the case

As already mentioned, a supplementary variable is added
to the problem for each obstacle inside the computational do-
main through the different circulations Ŵq . Here we consider
the case of a square domain with two obstacles placed in
opposite corners mimicking basic features of rod-bundle flow
configurations, as depicted in Fig. 2. The following example
not only aims at being a proof of concept of our method
in a domain with multiple obstacles but also to understand
possible bifurcations occurring in PWR experiments.

B. Results

We reduce the degree of freedom of the problem by
using the mirror symmetry along the diagonal existing also
in rod-bundle flow experiments. Thus, we impose a1 = a2

leading to equal circulations around the two obstacles Ŵ1 =

Ŵ2 regardless of the total energy and circulation. This allows

023105-9



F. MULLER, A. BURBEAU, B.-J. GRÉA, AND P. SAGAUT PHYSICAL REVIEW E 99, 023105 (2019)

FIG. 6. Interpolated (β,�2)Ŵ1 phase diagram in the case of a
square domain with two opposed obstacles and identical circulations.
Here Ŵ1 = Ŵ2 = 0.1. The curved and horizontal lines respectively
correspond to the continuous solution and the mixed solution associ-
ated with the first zero-mean eigenvector.

a simplified exploration of the parameter space despite the
additional complexity of the geometry.

The (β,�2)Ŵ1 interpolated diagram is shown for Ŵ1 =

Ŵ2 = 0.1 in Fig. 6. A bifurcation is visible therein between the
continuous and mixed solutions. Interestingly, the continuous
solution features a single vortex distorted along the diagonal
without obstacles, while the first mixed solution displays two
opposed vortices with a separation line along the diagonal
with the obstacles.

The interpolated stability map for Ŵ1 = Ŵ2 = 0.1 with
Ŵ = 1 is shown in Fig. 7. For a fixed value of Ŵ1, a bifurcation

FIG. 7. Bifurcation diagram showing the domination zones of
the “mixed” (dark gray) and “continuous” (light gray) solutions in
parameter space, in the case of a square domain with two obstacles
of equal circulation. It was obtained by scanning E and Ŵ1 values
while keeping Ŵ constant. The global minimum of the enstrophy is
obtained through βa1 = 0 and is shown as a thick black curve.

is observable between a monopolar continuous solution and
a dipolar mixed solution (respectively, light- and dark-gray
zones in Fig. 7). Similarly to the case of the annular do-
main, relaxing the conservation of Ŵ1 through either β = 0 or
a1 = 0, β > 0 leads to the overall minimal enstrophy states
displayed as a thick black curve in Fig. 7.

C. Discussion

The results shown in Figs. 6 and 7, namely, the exis-
tence of bifurcations between mixed and continuous solu-
tions and between the single and double minimum-enstrophy
branches, can actually be of particular interest to the field
of PWR rod-bundle flows. As mentioned previously, these
three-dimensional flows tend to develop coherent structures in
their 2D cross section which we aim to study using a Taylor
“frozen turbulence” hypothesis. The shape of these structures
is initially determined by arrays of small vanes placed be-
tween rods in so-called mixing grids. However, spontaneous
reorganizations of the cross-section flow were observed in
some rod-bundle experiments and numerical simulations [18].
Such a reorganization, only observed in experiments but not
reproduced in simulations nor fully understood at this point,
amounts to a 90◦ rotation of the cross-section flow from a
mostly 45◦ angle to a 135◦ alignment, as illustrated in Fig. 2
from Bieder et al. [18].

The stable solutions shown in Fig. 7 in a simplified domain
geometry can be related to this phenomenon. Indeed, both the
single solution for �

2 > �
2
bif ≃ 55 and the lower branch for

�
2 < �

2
bif display an alignment with the 45◦ diagonal of the

square domain. On the other hand, the upper branch (Ŵ1/Ŵ >

−0.2) features a vortex around the two obstacles and aligned
with the 135◦ diagonal. To a lesser extent due to their higher
enstrophy, the bifurcation between continuous and mixed
solutions in Fig. 6 display a 90◦ rotation as well.

In a real flow with imperfect conservation of the invariants
considered in our resolution, one could envision an evolution
of � in the (β,�2) diagram shown in Fig. 7 so that the stable
steady solution shifts from one solution type to the other,
effectively leading to a rotation of the flow. These results
hint at a possibly similar situation in the case of the 5 × 5
cylinder array described in [18]; the initial diagonal flow could
be imposed by alternating rotations around each obstacle.
Further along the 3D axial distance from the mixing grid, and
further in time within the Taylor hypothesis, declining integral
quantities due to dissipation could modify the � parameter,
leading to a phase transition from a solution type to another
and effectively inducing a 90◦ rotation of the flow. Naturally,
these considerations are only qualitative at this point, but they
should prove a first step in the effective use of such statistical
resolution methods in the study of flows around obstacles such
as PWR rod-bundle flows.

VI. CONCLUSION

In this study, we present and apply the MEP to domain ge-
ometries containing inner obstacles relevant for pressurized-
water reactors rod-bundle flows. The resolution of the varia-
tional problem is adapted so as to enable different values of
the stream function around each separate piece of boundary.
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An explicit expression for the solutions based on a given set
of parameters is derived, and the methodology developed to
recover the stable steady solution for each given set of Euler
constraints is detailed. This sheds light on new bifurcation
mechanisms occurring in such flows.

We first apply this resolution method to the case of an
annulus domain, and then identify the parameters in a phase
diagram allowing one or two vortices corresponding to the
continuous or mixed solution branches as in the classical
MEP problem without obstacles. However, it is shown that
the circulation Ŵ1 around the inner boundary is fully deter-
mined above a critical value for �, the circulation divided by
square root of kinetic energy. Below this threshold, solutions
with various circulations Ŵ1 are allowed and surprisingly
with different signs. Interestingly, this suggests that flows in
annular geometries and starting from close initial conditions
can evolve very differently with opposite circulations around
the central boundary.

Then we turn our attention to the case of a square geometry
with two diagonally opposed obstacles, as a paradigm of
flow phenomenologies around multiple obstacles. Within this
framework, we propose to reduce the degrees of freedom of
this problem by considering a symmetrical configuration with
equal circulations around the different inner boundaries. This
case appears particularly striking as it involves qualitatively a
90◦ rotation of the flow. The solutions can indeed experience
a transition from a single vortex, distorted along the diagonal
without obstacles, to a dipolar state symmetrical about the
diagonal with obstacles. This phenomenology clearly recalls
the observations in PWR rod-bundle flow experiments.

Accordingly, the feasibility of an algorithmic solver re-
turning the most probable steady solutions within complex
geometries for a given set of Euler invariants is demonstrated.
One could also foresee the adaptation of this method to con-
sider other dynamical stability criteria than the MEP, typically
in order to consider the conservation of higher moments of the
vorticity in cases of truly inviscid flows.

Further work is currently under way to use the resolution
method described here in domain geometries closer to cross
sections of rod-bundle flows, and to further this study through
3D and 2D computational fluid dynamics simulations.

APPENDIX A: EXPRESSION OF THE ENERGY

The expression of the kinetic energy has to be modified,
so as to take into account the new boundary conditions on the
stream function ψ . Starting from the general expression for
the energy based on the flow velocity u = (ux, uy ):

E =

∫

�

u2

2
dr =

1

2

∫

�

[

(

∂ψ

∂y

)2

+

(

∂ψ

∂x

)2
]

dr, (A1)

which gives

E =
1

2

∫

�

(∇ψ )2 dr. (A2)

Using the decomposition ψ = ψ∂� + � in (A7), with
� = 0 a ∂� zero Dirichlet boundary condition and ψ∂� an

arbitrary function linearly evolving between the aq boundary
conditions set on ψ on each piece of boundary �q :

E =
1

2

∫

�

[∇(ψ∂� + �) · ∇(ψ∂� + �)] dr. (A3)

An integration by parts is used, producing the following
expression for the energy:

E =
1

2

∫

�

[�(ψ∂� + �)(ψ∂� + �)] dr

−
1

2

∫

∂�

[∇(ψ∂� + �)(ψ∂� + �)] · n dl. (A4)

Since 〈·〉 ≡
∫

�
· dr and using the fundamental equation (25)

to express �(ψ∂� + �) in terms of Ŵ, β and 〈ψ∂� + �〉:

1

2

∫

�

[�(ψ∂� + �)(ψ∂� + �)] dr

= −
1

2
β(〈(ψ∂�+�)2〉−〈ψ∂� + �〉2)+

1

2
Ŵ〈ψ∂� + �〉.

(A5)

Knowing that � = 0 on ∂� while ψ∂� = 0 on �0 and
ψ∂� = aq on �q for q 
= 0:

1

2

∫

∂�

[∇(ψ∂� + �)(ψ∂� + �)] · n dl

=
1

2

∑

q

aq

∫

∂�q

[∇(ψ∂� + �)] · n dl

=
1

2

∑

q

aqŴq (A6)

with Ŵq the circulation of the flow along each piece of
boundary �q .

The final expression of the energy is thus

E = −
1

2
β(〈ψ2〉 − 〈ψ〉2) +

1

2
Ŵ〈ψ〉 −

1

2

∑

q

aqŴq . (A7)

APPENDIX B: NUMERICAL DISCRETIZATIONS

The following results were obtained through a discretized
calculation tool based on a finite differences method. Compu-
tations were performed on a 2D Cartesian mesh with adequate
normalizations based on the domain surface area. Expressions
(25), (30), and (31) were projected on all interior nodes of
the domain, with the value of the unknown ψ being set
by the boundary conditions through ψ∂� on the boundary
nodes.

A five-point stencil discretization was used for the Laplace
operator, namely, if ψi,j is the value of ψ at coordinates (i, j )
in the mesh and h is the mesh spatial step,

�ψi,j =
ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j

h2
. (B1)

As a consequence, the zero Dirichlet boundary condition
set on the Laplace operator was enforced through a modi-
fication of expression (B1) on nodes in the vicinity of the
boundary. On such a node (i, j ) next to a boundary node
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FIG. 8. Mesh convergence of the phase diagram of the continuous and mixed solution in the case of a square domain geometry (left)
and annular domain geometry (right). The dashed, dotted, and solid lines, respectively, correspond to lowest, intermediary, and highest mesh
resolutions.

(i + 1, j ), �ψi,j would be implemented as

�ψi,j =
ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j

h2
. (B2)

A first-order central difference was used for the gradient
operator ∇ along each direction

∇iψi,j =
ψi+1,j − ψi−1,j

2h
. (B3)

The spatial resolutions required to ensure sufficient conver-
gence of the results are discussed in Appendix C 1.

APPENDIX C: METHOD VALIDATION

1. Mesh convergence and robustness of the results

Several tests were performed on the validity of the numer-
ical resolution, namely, convergence of the phase diagrams
and computed quantities such as the circulation around each
obstacle Ŵq with mesh refinement, as well as robustness of the
results with respect to small fluctuations in the input data.

The mesh convergence of the phase diagram in the case of
a square domain geometry is shown in Fig. 8, for resolutions
from 10 ∗ 10 to 130 ∗ 130 points. A mesh resolution of 100 ∗

100 points was required for the results to be within 1% of
their converged value. Similarly, the mesh convergence of the
interpolated phase diagram in an annular domain geometry is
also shown in Fig. 8, for resolutions from 20 ∗ 20 to 120 ∗ 120
points. A resolution of 100 ∗ 100 points was required here as
well for the results to be within 1% of their converged value.

Small variations of the domain shape (aspect ratio, obstacle
position, and size) and of the input parameters (total circula-
tion and boundary conditions aq) were found to have limited
to no impact on the results, showing the robustness of the
method.

2. Comparison to analytical results

In the case of a ring domain geometry, a validation is pos-
sible through an analytical approach by obtaining the eigen-
values βi of the Laplace operator. An eigenvector ψi (R, θ )
associated to the eigenvalue βi and expressed here in polar

coordinates verifies the equation

�ψi = ∂RRψi +
1

R
∂Rψi +

1

R2
∂θθψi = βiψi, (C1)

with ψi (R0, θ ) = ψi (R1, θ ) = 0. The unknown is decom-
posed as

ψi (R, θ ) = eimθfm(r, θ ), (C2)

with r = R/R0 and m ∈ N, which translates to the equation
on fm

∂rrfm +
1

r
∂rfm +

(

λ2 −
m2

r2

)

fm = 0, (C3)

with fm(1, θ ) = fm(R1/R0, θ ) = 0 and λ2 = −βiR
2
0 . The

general solution of this equation is a combination of Bessel
functions of first and second kinds (see Abramowitz and
Segun [28]). We impose the Dirichlet boundary condition on
the outer radius R1 to obtain

fm(r ) = A

(

Jm(λr ) −
Jm(λ)

Ym(λ)
Ym(λr )

)

, (C4)

with A ∈ R. The possible values of λ and subsequently of the
possible eigenvalues βi are obtained through the imposition of
the inner boundary condition. For a given value of ri , we seek
to find the zeros of the function

hri ,m(λ) = Jm(λri )Ym(λ) − Jm(λ)Ym(λri ). (C5)

In a test example for an annular domain geometry with outer
radius R0 = 0.45 and inner radius R1 = 0.1, the largest eigen-
values of the Laplace operator were found at β0 ≃ −72, β1 ≃

−88, and β2 ≃ −132. The root of function hri=0.1,m=1, which
corresponds to β1 as the first eigenvalue associated to a zero-
mean eigenvector, was evaluated at λ ≃ −80. A difference of
around 9% is noted between these two values for the annular
domain. A much better agreement was obtained between
numerical and theoretical eigenvalues in the square domain:
β1 ≃ −47.8 from our numerical resolution, β1 ≃ −49.3 from
Naso et al. [12]. The larger difference in the annular domain is
attributed to the rough treatment of the boundary, which could
be improved by replacing the Cartesian grid by a curvilinear
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FIG. 9. Phase diagram obtained in a square geometry using our
numerical resolution method.

one, for example. We nevertheless considered the numerical
results sufficiently close to the analytical ones for a discussion
of the results in Secs. IV and V.

3. Recovery of literature results

As a first step, the resolution method previously explained
is applied to that of a square geometry with homogeneous
Dirichlet boundary conditions. Taking ψ∂� = 0 in this reso-
lution amounts to following the same procedure as detailed
by Chavanis et al. [14], which allows one to test the validity
of the numerical part of the resolution.

The (β,�2) phase diagram we obtained using our numeri-
cal resolution method in the case of a square domain is shown
in Fig. 9. These results are to be compared with those obtained
through an analytical method by Chavanis et al. [14] and
shown in Fig. 3 therein; the analytical results are correctly
recovered.
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