Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes

Résumé

In this note, we build upon the asymptotic theory for GARCH processes, considering the general class of augmented GARCH(p, q) processes. Our contribution is to complement the well-known univariate asymptotics by providing a bivariate functional central limit theorem between the sample quantile and the r-th absolute centred sample moment. This extends existing results in the case of identically and independently distributed random variables. We show that the conditions for the convergence of the estimators in the univariate case suffice even for the joint bivariate asymptotics. We illustrate the general results with various specific examples from the class of augmented GARCH(p, q) processes and show explicitly under which conditions on the moments and parameters of the process the joint asymptotics hold.
Fichier principal
Vignette du fichier
WP_1909_KRATZ.pdf (752.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02176276 , version 1 (08-07-2019)

Identifiants

  • HAL Id : hal-02176276 , version 1

Citer

Marcel Bräutigam, Marie Kratz. Bivariate FCLT for the Sample Quantile and Measures of Dispersion for Augmented GARCH(p, q) processes. 2019. ⟨hal-02176276⟩
132 Consultations
140 Téléchargements

Partager

More