Non-boundedness of the number of nodal domains of a sum of eigenfunctions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Non-boundedness of the number of nodal domains of a sum of eigenfunctions

Pierre Bérard
Philippe Charron
  • Fonction : Auteur
  • PersonId : 1050460
Bernard Helffer
  • Fonction : Auteur
  • PersonId : 829286

Résumé

Generalizing Courant's nodal domain theorem, the ``Extended Courant property'' is the statement that a linear combination of the first $n$ eigenfunctions has at most $n$ nodal domains. In the first part of the paper, we prove that the Extended Courant property is false for the subequilateral triangle and for regular $N$-gons ($N$ large), with the Neumann boundary condition. More precisely, we prove that there exists a Neumann eigenfunction $u_k$ of the $N$-gon, with index $4 \le k \le 6$, such that the set $\{u_k \not = 1\}$ has $(N+1)$ connected components. In the second part, we prove that there exist metrics $g$ on $\mathbb{T}^2$ (resp. on $\mathbb{S}^2$) which are arbitrarily close to the flat metric (resp. round metric), and an eigenfunction $f$ of the associated Laplace-Beltrami operator such that the set $\{ f \not = 1 \}$ has infinitely many connected components. In particular the Extended Courant property is false for these closed surfaces. These results are strongly motivated by a recent paper by Buhovsky, Logunov and Sodin (arXiv:1811.03835). As for the positive direction, in Appendix B, we prove that the Extended Courant property is true for the isotropic quantum harmonic oscillator in $\mathbb{R}^2$.
Fichier principal
Vignette du fichier
berard-charron-helffer-2019-ecp-unbded-190620.pdf (537.02 Ko) Télécharger le fichier
poly-no-ecp-neu-09-12.png (24.78 Ko) Télécharger le fichier
subteq-1.png (5.2 Ko) Télécharger le fichier
subteq-WZ-VZ.png (13.3 Ko) Télécharger le fichier
subteq-ef2-ef1-bifurc.png (6.53 Ko) Télécharger le fichier
torus-ex1.png (18.69 Ko) Télécharger le fichier
torus-ex2.png (16.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02176094 , version 1 (07-07-2019)
hal-02176094 , version 2 (11-03-2020)

Identifiants

Citer

Pierre Bérard, Philippe Charron, Bernard Helffer. Non-boundedness of the number of nodal domains of a sum of eigenfunctions. 2019. ⟨hal-02176094v1⟩

Collections

LM-ORSAY
95 Consultations
123 Téléchargements

Altmetric

Partager

More