Noncrossing partitions, toggles, and homomesy - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Noncrossing partitions, toggles, and homomesy

Résumé

We introduce n(n − 1)/2 natural involutions (“toggles”) on the set S of noncrossing partitions π of size n, along with certain composite operations obtained by composing these involutions. We show that for many operations T of this kind, a surprisingly large family of functions f on S (including the function that sends π to the number of blocks of π) exhibits the homomesy phenomenon: the average of f over the elements of a T -orbit is the same for all T -orbits. Our methods apply more broadly to toggle operations on independent sets of certain graphs.
Fichier principal
Vignette du fichier
final_127.pdf (318.44 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02173395 , version 1 (04-07-2019)

Identifiants

Citer

David Einstein, Miriam Farber, Emily Gunawan, Michael Joseph, Matthew Macauley, et al.. Noncrossing partitions, toggles, and homomesy. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6378⟩. ⟨hal-02173395⟩
37 Consultations
652 Téléchargements

Altmetric

Partager

More