A non-partitionable Cohen–Macaulay simplicial complex - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

A non-partitionable Cohen–Macaulay simplicial complex

Résumé

A long-standing conjecture of Stanley states that every Cohen–Macaulay simplicial complex is partition- able. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.
Fichier principal
Vignette du fichier
final_24.pdf (244.71 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02173381 , version 1 (04-07-2019)

Identifiants

Citer

Art M. Duval, Bennet Goeckner, Caroline J. Klivans, Jeremy Martin. A non-partitionable Cohen–Macaulay simplicial complex. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6325⟩. ⟨hal-02173381⟩
19 Consultations
708 Téléchargements

Altmetric

Partager

More