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Abstract. A long-standing conjecture of Stanley states that every Cohen–Macaulay simplicial complex is partition-
able. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and
Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least
its depth.

Résumé. Une conjecture de longue date de Stanley affirme que chaque complexe simplicial Cohen–Macaulay est
partitionnable. Nous réfutons la conjecture en construisant un contre-exemple explicite. En raison d’un résultat
de Herzog, Jahan et Yassemi, nos construction réfute également la conjecture que la profondeur Stanley d’un idéal
monôme est toujours supérieure ou égale à sa profondeur.
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1 Introduction
Cohen–Macaulay simplicial complexes are ubiquitous in algebraic and topological combinatorics. They
were introduced in 1975 by Stanley in his celebrated proof of the Upper Bound Conjecture for spheres
[Sta75b]. (See [Sta14] for his engaging and personal account of how the proof came to be.) The theory
of Cohen–Macaulay rings has long been of great importance in algebra and algebraic geometry; see,
e.g., [Ree57, ZS60, Gro64, Hoc72, Hoc80, BH93]. The connection to combinatorics via what is known
as Stanley–Reisner theory was established by Hochster [Hoc72], Reisner [Rei76], and Stanley [Sta75a];
standard references for this subject are [Sta96] and [BH93].

The focus of this article is the following conjecture, described by Stanley as “a central combinatorial
conjecture on Cohen–Macaulay complexes” [Sta96, p. 85]. It was originally proposed by Stanley [Sta79,
p. 149] in 1979 and independently by Garsia [Gar80, Remark 5.2] in 1980 for order complexes of Cohen–
Macaulay posets.
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Conjecture 1.1 (Partitionability Conjecture). Every Cohen–Macaulay simplicial complex is partition-
able.

We explicitly construct a Cohen–Macaulay complex that is not partitionable, thus disproving the Parti-
tionability Conjecture. In fact, we give a general method for constructing counterexamples and an explicit
infinite family of non-partitionable Cohen–Macaulay complexes. We begin by giving some background
for the conjecture, which will also be directly relevant in our construction.

Two basic invariants of a simplicial complex ∆ are its f - and h-vectors. The number fi = fi(∆)
is the number of i-dimensional faces (simplices) in ∆. The h-vector is more subtle. It carries the same
information as the f -vector (the two are related by an invertible linear transformation), and arises naturally
in algebra: the Hilbert series of the Stanley–Reisner ring of ∆ is (1−t)−d

∑
j hj(∆)tj , where d = dim ∆.

(See Section 2 for precise definitions.) It is not at all apparent if the numbers hj(∆) have a combinatorial
interpretation; for instance, they need not be positive in general.

A partitioning of a pure simplicial complex ∆ is a decomposition into pairwise-disjoint Boolean inter-
vals whose maximal elements are exactly the facets (maximal faces) of ∆. Partitionability was introduced
by Provan [Pro77] and Ball [Bal77] in the context of reliability analysis. For a partitionable complex, the
h-numbers enumerate the minimum elements of the intervals by size. In particular, shellable complexes
are easily seen to be partitionable, and hence their h-vectors have this interpretation. The strict inclusions

{shellable complexes} ( {constructible complexes} ( {Cohen–Macaulay complexes}

are also well known. For example, the nonshellable balls constructed by Rudin [Rud58] and Ziegler [Zie98]
are constructible, and any triangulation of the dunce hat is Cohen–Macaulay but not constructible [Hac08,
§2]. On the other hand, the h-vectors of Cohen–Macaulay, constructible, and shellable complexes are all
the same [Sta77, Theorem 6], suggesting that their entries ought to count something explicit. The Par-
titionability Conjecture would have provided a combinatorial interpretation of the h-vectors of Cohen–
Macaulay complexes.

The idea of our construction is to work with relative simplicial complexes. Suppose Q = (X,A) is
a relative simplicial complex that is not partitionable, but with X and A Cohen–Macaulay. Theorem 3.1
gives a general method of gluing together sufficiently many copies ofX alongA to obtain a counterexam-
ple to the Partitionability Conjecture, provided that A is an induced subcomplex of X . This reduces the
problem to finding an appropriate pair (X,A). Our starting point is the nonshellable simplicial 3-ball Z
constructed by Ziegler [Zie98], in which we find a suitable subcomplex A and in turn the desired relative
complex Q (Theorem 3.3). By refining the construction, we are able to obtain, in Theorem 3.5, a Cohen–
Macaulay non-partitionable complex that is much smaller than predicted by Theorem 3.1, with f -vector
(1, 16, 71, 98, 42) and h-vector (1, 12, 29).

The existence of a Cohen–Macaulay nonpartitionable complex has an important consequence in com-
mutative algebra. For a polynomial ring S = k[x1, . . . , xn] and a Zn-graded S-module M , many funda-
mental algebraic invariants of M , such as its dimension and multigraded Hilbert series, can be profitably
studied using combinatorics. On the other hand, the combinatorial properties of the depth of M are less
well understood. In [Sta82], Stanley proposed a purely combinatorial analogue of depth, defined in terms
of certain vector space decompositions of M . This invariant, now known as the Stanley depth and writ-
ten sdepthM , has attracted considerable recent attention (see [PSFTY09] for an accessible introduction
to the subject, and [Her13] for a comprehensive survey), centering around the following conjecture of
Stanley [Sta82, Conjecture 5.1]:
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Conjecture 1.2 (Depth Conjecture). For all Zn-graded S-modules M ,

sdepthM ≥ depthM.

Herzog, Jahan, and Yassemi proved [HJY08, Corollary 4.5] that when I is the Stanley–Reisner ideal
of a Cohen–Macaulay complex ∆, the inequality sdepthS/I ≥ depthS/I is equivalent to the parti-
tionability of ∆. Therefore, our counterexample to the Partitionability Conjecture disproves the Depth
Conjecture as well. We exhibit a smaller relative counterexample to the Depth Conjecture in Remark 3.6;
see Section 3.2.

It was also previously not known whether all constructible complexes were partitionable; see, e.g.,
[Hac00, §4]. The counterexample we obtain is not only Cohen–Macaulay, but in fact constructible. There-
fore, even constructibility does not imply partitionability. The counterexample also disproves a conjecture
due to Kalai relating partitions and algebraic shifting [Kal02, Conjecture 22]. We discuss these ramifica-
tions and related open questions in the final section of the paper.

2 Preliminaries

2.1 Simplicial and relative simplicial complexes

Throughout the paper, all complexes will be finite. Let V be a finite set. A simplicial complex on V is
a collection ∆ of subsets of V such that whenever σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. Equivalently, ∆
is an order ideal in the Boolean poset 2V . The symbol |∆| denotes the standard geometric realization
of ∆. The elements of ∆ are called the faces of ∆, and the elements of V are vertices. Maximal faces
are called facets. The dimension of a face σ is dimσ = |σ| − 1, and the dimension of ∆ is dim ∆ =
max{dimσ | σ ∈ ∆}. We often write ∆d to indicate that dim ∆ = d. A complex is pure if all maximal
faces have the same dimension. A subcomplex of ∆ is a simplicial complex Γ with Γ ⊆ ∆. A subcomplex
is an induced subcomplex if it is of the form ∆|W := {σ ∈ ∆ | σ ⊆W} for some W ⊆ V .

In the construction of our counterexample, we will work with the more general class of relative simpli-
cial complexes. A relative complex Φ on V is a subset of 2V that is convex: if ρ, τ ∈ Φ and ρ ⊆ σ ⊆ τ ,
then σ ∈ Φ. We sometimes refer to simplicial complexes as “absolute” to distinguish them from relative
complexes.

Every relative complex can be expressed as a pair Φ = (∆,Γ) := ∆ \ Γ, where ∆ is a simplicial
complex and Γ ⊆ ∆ is a subcomplex. Topologically, Φ corresponds to the quotient space |∆|/|Γ|. Note
that there are infinitely many possibilities for the pair ∆,Γ. The unique minimal expression is obtained
by letting ∆ = Φ̄ be the combinatorial closure of Φ, i.e., the smallest simplicial complex containing Φ as
a subset, and setting Γ = ∆ \ Φ. Note that in this case dim Γ < dim ∆, because the maximal faces of ∆
are precisely those of Φ.

The notation H̃i(∆) denotes the ith reduced simplicial homology group with coefficients in Z. (The
underlying ring does not matter for our purposes.) The simplicial homology groups H̃i(Φ) of a relative
complex Φ = (∆,Γ) are just the relative homology groups H̃i(∆,Γ) in the usual topological sense (see,
e.g., [Hat02]); in particular, the homology groups of ∆, Γ, and Φ fit into a long exact sequence.

The f -vector of an (absolute or relative) complex ∆d is f(∆) = (f−1, f0, . . . , fd), where fi = fi(∆)
is the number of i-dimensional faces of ∆. Note that f−1(∆) = 1 for every absolute complex other than
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the void complex ∆ = ∅. The h-vector h(∆) = (h0, h1, . . . , hd+1) is defined by

hk =

k∑
i=0

(−1)k−i
(
d+ 1− i
k − i

)
fi−1, 0 ≤ k ≤ d+ 1.

In particular, the f - and h-vectors determine each other.
The link of a face σ ∈ ∆ is defined as link∆(σ) := {τ ∈ ∆ | τ ∩ σ = ∅, τ ∪ σ ∈ ∆}. Observe that if

∆d is pure and dimσ = k, then dim link∆(σ) = d − k − 1. If σ is a facet of ∆ then link∆(σ) = {∅},
the trivial complex with only the empty face, and if σ 6∈ ∆ then we set link∆(σ) to be the void complex
with no faces. If Φ = (∆,Γ) is a relative complex and σ ∈ ∆, we can define the relative link by
linkΦ(σ) = (link∆(σ), linkΓ(σ)). It is easy to check that this construction is intrinsic to Φ, i.e., it does
not depend on the choice of the pair ∆,Γ. Note that linkΦ(σ) is not necessarily a subset of Φ.

2.2 Cohen–Macaulay simplicial complexes
A ring is Cohen–Macaulay if its depth equals its (Krull) dimension. Reisner’s criterion [Rei76, Theo-
rem 1] states that Cohen–Macaulayness of the Stanley–Reisner ring [Sta96, §II.1] of a simplicial complex
can be expressed in terms of simplicial homology, and we will take this criterion as our definition. The
relative version of Reisner’s criterion is Theorem 5.3 of [Sta87].

Theorem 2.1. [Rei76, Sta87] A simplicial complex ∆ is Cohen–Macaulay if for every face σ ∈ ∆,

H̃i(link∆(σ)) = 0 for i < dim link∆(σ).

Similarly, a relative complex Φ = (∆,Γ) is Cohen–Macaulay if for every σ ∈ ∆,

H̃i(link∆(σ), linkΓ(σ)) = 0 for i < dim link∆(σ).

In fact, Cohen–Macaulayness is a topological invariant: it depends only on the homeomorphism type
of the geometric realization |∆|. This was proved by Munkres [Mun84]. Topological invariance holds
for relative complexes as well [Sta96, Corollary III.7.3]. Importantly, if |∆| is homeomorphic to a ball or
to a sphere, then ∆ is Cohen–Macaulay [Mun84, §2]. The following technical fact will be central to our
construction; the proof has been omitted in this extended abstract.

Proposition 2.2. Let ∆1, . . . ,∆n be d-dimensional Cohen–Macaulay simplicial complexes on disjoint
vertex sets. Let Γ be a Cohen–Macaulay simplicial complex of dimension d − 1 or d, and suppose that
each ∆i contains a copy of Γ as an induced subcomplex. Then the complex Ω obtained from ∆1, . . . ,∆n

by identifying the n copies of Γ is Cohen–Macaulay.

2.3 Shellability, partitionability, and constructibility
Definition 2.3. Let ∆ be a pure simplicial complex. A shelling of ∆ is a total ordering F1, . . . , Fn of its
facets so that for every j, the set {σ ⊆ Fj | σ 6⊆ Fi for all i < j} has a unique minimal element Rj .

The h-vector of a shellable complex has a simple combinatorial interpretation:

hk(∆) = #{j |#Rj = k}. (1)

In particular hk(∆) ≥ 0 for all k, and in fact hk(∆) = 0 implies h`(∆) = 0 for all ` > k (a consequence
of [BH93, Theorem 5.1.15]). Shellable complexes are Cohen–Macaulay, although the converse is not
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true: well-known counterexamples include any triangulation of the dunce hat, as well as the nonshellable
balls constructed by Rudin [Rud58] and Ziegler [Zie98]. On the other hand, Cohen–Macaulay complexes
satisfy the same conditions on the h-vector, so it is natural to look for a combinatorial interpretation of
their h-vectors.

Definition 2.4. Let ∆ be a pure simplicial complex with facets F1, . . . , Fn. A partitioning P of ∆ is a
decomposition into pairwise-disjoint Boolean intervals

∆ =

n⊔
i=1

[Ri, Fi]

where [Ri, Fi] = {σ ∈ ∆ | Ri ⊆ σ ⊆ Fi}. We say that each Fi is matched to the corresponding Ri.

Clearly, shellable complexes are partitionable. If ∆ is partitionable, then its h-vector automatically car-
ries the combinatorial interpretation (1) [Sta96, Proposition III.2.3]. Moreover, Definitions 2.3 and 2.4,
and the interpretation of the h-vector, carry over precisely from absolute to relative complexes. A parti-
tionable complex need not be Cohen–Macaulay, much less shellable; see the example due to Björner in
[Sta96, p. 85].

Constructibility, introduced by Hochster [Hoc72], is a combinatorial condition intermediate between
shellability and Cohen–Macaulayness.

Definition 2.5. A complex ∆d is constructible if it is a simplex, or if it can be written as ∆ = ∆1 ∪∆2,
where ∆1, ∆2, and ∆1 ∩∆2 are constructible of dimensions d, d, and d− 1 respectively.

Hachimori [Hac00] investigated the question of whether constructibility implies partitionability. Our
counterexample to the Partitionability Conjecture is in fact constructible, resolving this question as well.

3 The counterexample
We first give a general construction that reduces the problem of finding a counterexample to the problem
of constructing a certain kind of non-partitionable Cohen–Macaulay relative complex.

Theorem 3.1. Let Q = (X,A) be a relative complex such that
(i) X and A are Cohen–Macaulay;

(ii) A is an induced subcomplex of X of codimension at most 1; and
(iii) Q is not partitionable.

Let k be the total number of faces ofA, letN > k, and let C = CN be the simplicial complex constructed
from N disjoint copies of X identified along the subcomplex A. Then C is Cohen–Macaulay and not
partitionable.

Proof. First, C is Cohen–Macaulay by Proposition 2.2. Second, suppose that C has a partitioning P . Let
X1, X2, . . . , XN be the N copies of X . By the pigeonhole principle, since N > k, there is some copy of
X , say XN , none of whose facets is matched to a face in A. Let [R1, F1], . . . , [R`, F`] be the intervals in
P for which Fi ∈ XN ; then ⋃̀

i=1

[Ri, Fi] ⊆ XN \A. (2)

No other interval in P can intersect XN \A nontrivially, so in fact equality must hold in (2). But then (2)
is in fact a partitioning of XN \A = Q, which was assumed to be non-partitionable.
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Remark 3.2. It is easy to see that a subcomplex A ⊂ X is an induced subcomplex if and only if every
minimal face of X \ A has dimension 0. Therefore, this condition may be viewed as a restriction on the
relative complex (X,A).

3.1 The construction
Throughout, we abbreviate the simplex on vertices {v1, . . . , vk} by v1 · · · vk. Our construction begins
with Ziegler’s nonshellable 3-ball Z, which is a nonshellable triangulation of the 3-ball with 10 vertices
labeled 0, 1, . . . , 9, and the following 21 facets [Zie98, §4]:

0123, 0125, 0237, 0256, 0267, 1234, 1249,
1256, 1269, 1347, 1457, 1458, 1489, 1569,
1589, 2348, 2367, 2368, 3478, 3678, 4578.

The complex Z is not shellable, but it is partitionable, Cohen–Macaulay and, in fact, constructible
[Hac01].

Let B be the induced subcomplex Z|{0,2,3,4,6,7,8}. That is, B is the pure 3-dimensional complex with
facets

0237, 0267, 2367, 2368, 2348, 3678, 3478.

The given order is a shelling of B; in particular B is Cohen–Macaulay. Define Q to be the relative
complex Q = (Z,B). Then Q is also Cohen–Macaulay by [Duv96, Corollary 3.2].

The facets of Q are

1249, 1269, 1569, 1589, 1489, 1458, 1457,
4578, 1256, 0125, 0256, 0123, 1234, 1347.

(3)

The minimal faces of Q are just the vertices 1, 5, 9. We can picture Q easily by considering its com-
binatorial closure Q̄, that is, the 3-dimensional simplicial complex generated by the facets (3). In fact
Q̄ is a shellable ball; the ordering of facets given in (3) is a shelling. The complement A = Q̄ \ Q =
Q̄|{0,2,3,4,6,7,8} is the shellable 2-ball with facets

026, 023, 234, 347, 478. (4)

Thus Q = (Q̄, A). The f - and h-vectors of these complexes are

f(Q̄) = (1, 10, 31, 36, 14), h(Q̄) = (1, 6, 7, 0, 0),

f(A) = (1, 7, 11, 5, 0), h(A) = (1, 4, 0, 0, 0),

f(Q) = (0, 3, 20, 31, 14), h(Q) = (0, 3, 11, 0, 0).

The 1-skeleton of Q̄ is shown in Figure 1. The triangles on the boundary of Q, i.e., those contained in
exactly one facet, are illustrated in Figure 2, which shows the boundary of Q as seen from the front (left)
and back (right). The five shaded triangles are the facets of A, and hence are missing from Q. Note that
the triple transposition τ = (0 7)(2 4)(6 8) is a simplicial automorphism of Q̄; this symmetry is apparent
as a reflection through the plane containing vertices 1, 3, 5, and 9 in Figure 1, and as a vertical reflection
in each part of Figure 2.
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Fig. 1: A perspective view of the 1-skeleton of Q̄ from the top. Dark edges are exterior edges visible from the top;
light edges are interior edges, or exterior edges at the bottom. Light vertices are in A.

1

9

0

6

7

8
2 4

3

1

9

5

7

8

0

6

Fig. 2: Left: A front view of Q. Right: A back view of Q. The shaded and dashed faces are in A.

Theorem 3.3. The relative complex Q is not partitionable.

The proofs of Theorem 3.3 and Theorem 3.5 have been omitted here; see [DGKMar] for the full article.
We can now give an explicit description of our counterexample to the Partitionability Conjecture. Since

X = Q̄ and A are both shellable balls, they are Cohen–Macaulay. We may therefore apply Theorem 3.1,
with N = 25 (since A has 24 faces total).

Theorem 3.4. Let X = Q̄ be the combinatorial closure of Q, and let A = X \Q. That is, X and A are
the absolute simplicial complexes whose facets are listed in (3) and (4), respectively. Then the simplicial
complex C25 constructed in Theorem 3.1 is Cohen–Macaulay and non-partitionable.

The f -vector is f(C25) = f(A) + 25f(Q) = (1, 82, 511, 780, 350).
For this particular construction, the full power of Theorem 3.1 is not necessary; there is a much smaller

counterexample.

Theorem 3.5. Let Q, A, and X = Q̄ be as described above. Then the simplicial complex C3 obtained by
gluing together three copies of X along A is Cohen–Macaulay and non-partitionable.

The f -vector is f(C3) = f(A) + 3f(Q) = (1, 16, 71, 98, 42). We do not know if there exists a smaller
counterexample (for example, the complex C2 obtained by gluing two copies of X together along A is
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partitionable). In particular, it is still open whether every two-dimensional Cohen–Macaulay simplicial
complex is partitionable; see Hachimori [Hac08].

We have previously observed that X and A are shellable. We note that X and A are contractible,
and it is easily seen that X deformation-retracts onto A, so C3 is contractible as well, although it is not
homeomorphic to a ball.

Remark 3.6. There is a much smaller relative simplicial complex that is Cohen–Macaulay but not
partitionable, with f -vector (0, 0, 5, 10, 5). This complex can be written as Q′ = (X ′, A′), where
X ′ = Q′ = Z|{1,4,5,7,8,9} is the complex with facets {1589, 1489, 1458, 1457, 4578}, and A′ is
the (non-induced) subcomplex of X ′ with facets {489, 589, 578, 157}. These complexes are shellable
balls of dimensions 3 and 2 respectively (the given orders of facets are shelling orders), and A′ is con-
tained in the boundary of X ′ (note that each facet in A′ is contained in only one facet of X ′), so Q′ is
Cohen–Macaulay by [Sta87, Corollary 5.4]. On the other hand, one can check directly that there is no
partitioning ofQ′. BecauseA′ is not an induced subcomplex, it is not possible to obtain a counterexample
to the Partitionability Conjecture by applying Theorem 3.1.

Remark 3.7. It is easily seen that C3 is constructible. Therefore, it is also a counterexample to the
conjecture that every constructible simplicial complex is partitionable [Hac00, §4]. Furthermore, since all
constructible complexes are Cohen–Macaulay [BH93, p. 219], the constructibility and non-partitionability
of C3 are sufficient to disprove the Partitionability Conjecture.

3.2 Stanley depth
Let k be a field and S = k[x1, . . . , xn], and let M be a Zn-graded S-module. A Stanley decomposition D
of M is a vector space decomposition

M =

r⊕
i=1

k[Xi] ·mi

where each Xi is a subset of {x1, . . . , xn} and each mi is a homogeneous element of M . The Stanley
depth of M is defined as

sdepthM = max
D
{min(|X1|, . . . , |Xr|)} ,

whereD ranges over all Stanley decompositions ofM . If Φ is an (absolute or relative) simplicial complex,
then we define its Stanley depth to be the Stanley depth of its associated Stanley–Reisner ring or mod-
ule. This invariant has received substantial recent attention [PSFTY09, Her13], centering on the Depth
Conjecture of Stanley [Sta82, Conjecture 5.1], which we now restate.

Conjecture 1.2 (Depth Conjecture). For all Zn-graded S-modules M ,

sdepthM ≥ depthM.

Herzog, Jahan and Yassemi [HJY08, Corollary 4.5] proved that if ∆ is a Cohen–Macaulay simplicial
complex whose Stanley–Reisner ring [Sta96, §II.1] is k[∆] := S/I∆ (so that depthk[∆] = dim k[∆] =
dim ∆ + 1), then Conjecture 1.2 holds for k[∆] if and only if ∆ is partitionable. Therefore, our con-
struction provides a counterexample to the Depth Conjecture. Katthän has conjectured that the inequality
sdepthS/I ≥ depthS/I−1 holds for every monomial ideal I; for a detailed exposition and the evidence
for this conjecture, see [Kat16].
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A smaller counterexample to Conjecture 1.2 is provided by the relative complexQ′ in Remark 3.6. The
depth of each of C3 and Q′ is easily seen to be 4, but the Stanley depth of each of C3 and Q′ is 3. The
Stanley depth computations were made by Katthän [Kat], using the algorithm developed by Ichim and
Zarojanu [IZ14].

4 Open questions
Now that we know that Cohen–Macaulayness and even constructibility are not sufficient to guarantee
partitionability, it is natural to ask what other conditions do suffice. Hachimori defined a related but more
restricted class of strongly constructible complexes and showed that they are always partitionable [Hac00,
Corollary 4.7]. Here are two additional possibilities, inspired by what our counterexampleC3 is not. First,
C3 is not homeomorphic to a ball, because the triangles in A are each contained in three facets. On the
other hand, balls are Cohen–Macaulay, motivating the following question:

Question 4.1. Is every simplicial ball partitionable?

This conjecture is true if we further assume the ball is convexly realizable, by [Sta96, Proposition III.2.8];
see also [KS91]. On the other hand, there exist non-convex simplicial balls in dimensions as small as 3;
see, e.g., [Lut04, Lut08].

Garsia [Gar80, Remark 5.2] proposed the Partitionability Conjecture for the special class of order com-
plexes of Cohen–Macaulay posets (see also [Bac76, Bac80, BGS82]), which give rise to balanced Cohen–
Macaulay simplicial complexes. Recall that a d-dimensional simplicial complex is balanced if its vertices
can be colored with d + 1 colors so that every facet has one vertex of each color. For instance, if P
is a ranked poset, then its order complex is easily seen to be balanced by associating colors with ranks.
The complex Q̄ with facets listed in (3) is not balanced (because its 1-skeleton is not 4-colorable), hence
neither is C3 or C25, nor indeed CN for any N .

Question 4.2. Is every balanced Cohen–Macaulay simplicial complex partitionable?

Although Cohen–Macaulay complexes are not necessarily partitionable, their h-vectors are still nice;
they are always non-negative and in fact coincide with the h-vectors of shellable complexes. Without the
Partitionability Conjecture, the question remains:

Question 4.3. What does the h-vector of a Cohen–Macaulay simplicial complex count?

One answer is given by [DZ01], where it is shown that every simplicial complex can be decomposed
into Boolean trees indexed by iterated Betti numbers; see [DZ01, Corollary 3.5]. The starting point of
that paper is a conjecture of Kalai’s [Kal02, Conjecture 22] that any simplicial complex can be partitioned
into intervals in a way related to algebraic shifting. Kalai’s conjecture would have implied that simplicial
complexes could be decomposed into Boolean intervals. Such a decomposition into intervals, however,
would have implied the Partitionability Conjecture. Hence our result provides a counterexample to Kalai’s
conjecture. Moreover, the decomposition in [DZ01] may be best possible at this level of generality.
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