Height and contour processes of Crump-Mode-Jagers forests (II): The Bellman-Harris universality class - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2019

Height and contour processes of Crump-Mode-Jagers forests (II): The Bellman-Harris universality class

Résumé

Crump-Mode-Jagers (CMJ) trees generalize Galton-Watson trees by allowing individuals to live for an arbitrary duration and give birth at arbitrary times during their life-time. In this paper, we exhibit a simple condition under which the height and contour processes of CMJ forests belong to the universality class of Bellman-Harris processes. This condition formalizes an asymptotic independence between the chronological and genealogical structures. We show that it is satisfied by a large class of CMJ processes and in particular, quite surprisingly, by CMJ processes with a finite variance offspring distribution. Along the way, we prove a general tightness result.
Fichier principal
Vignette du fichier
Simatos_23759.pdf (511.6 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02168469 , version 1 (28-06-2019)

Identifiants

Citer

Emmanuel Schertzer, Florian Simatos. Height and contour processes of Crump-Mode-Jagers forests (II): The Bellman-Harris universality class. Electronic Journal of Probability, 2019, 24, pp.47. ⟨10.1214/19-EJP307⟩. ⟨hal-02168469⟩
44 Consultations
68 Téléchargements

Altmetric

Partager

More