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Abstract

Crump–Mode–Jagers (CMJ) trees generalize Galton–Watson trees by allowing individ-
uals to live for an arbitrary duration and give birth at arbitrary times during their
life-time. In this paper, we exhibit a simple condition under which the height and
contour processes of CMJ forests belong to the universality class of Bellman–Harris
processes. This condition formalizes an asymptotic independence between the chrono-
logical and genealogical structures. We show that it is satisfied by a large class of
CMJ processes and in particular, quite surprisingly, by CMJ processes with a finite
variance offspring distribution. Along the way, we prove a general tightness result.
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1 Introduction and presentation of results in the non-triangular
case

1.1 Crump-Mode-Jagers forests

The subject of the present paper is the study of the height and contour processes of
planar Crump–Mode–Jagers (CMJ) forests, which are random instances of chronolog-
ical forests. Chronological trees generalize discrete trees in the following way. Each
individual u is endowed with a pair (Vu,Pu) such that:

(1) Pu is a point measure on (0,∞) where atoms represent the age of u at childbearing,
so that the mass |Pu| of Pu is the total number of children of u;

(2) Vu ∈ (0,∞) represents the life-length of u and satisfies Pu(Vu,∞) = 0, i.e., individ-
uals produce their offspring during their life-time.

As noted by Lambert [17], a chronological tree can be regarded as a tree satisfying
the rule “edges always grow to the right”. This is illustrated in Figures 1 and 2 where
we present the sequential construction of a planar chronological forest from a sequence
of “sticks” ω = (ωn, n ≥ 0), where ωn = (Vn,Pn). For n ≥ 1, (Vn,Pn) describes the life
of the nth individual according to the lexicographic order.

A CMJ forest is obtained when the initial sequence of sticks ((Vn,Pn), n ≥ 0) is i.i.d..
In this introduction we aim to present our main results in a concise way. In particular, we
explain our main results (corresponding to Theorems A–E below) in the non-triangular
setting where the common law of the (Vn,Pn), denoted by (V ∗,P∗), is independent of
the scaling parameter p and satisfies E(|P∗|) = 1. Except for Theorem D, these results
are extended to the triangular case in Theorems A’, B’, C’ and E’ below. Moreover, our
results involve some complex objects (such as the spine process) which are defined next
only informally: formal and more cumbersome definitions are provided in Section 2.

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

Figure 1: Sequence of sticks used in the next figures: this sequence corresponds to one
chronological tree.
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n = 0 n = 1 n = 2 n = 3 n = 4

n = 5 n = 6

n = 10

Figure 2: Sequential construction of the chronological tree from the sequence of sticks
of Figure 1: as long as there is a stub available, we graft the next stick at the highest
one. At n = 10 the construction is complete (there is no more stub available) and the
next stick will therefore start the next tree in the forest.
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1.2 Height, spine and contour of a CMJ forest

The chronological height, spine and contour processes introduced now are illustrated
on Figures 3 and 4.

We define the chronological height process at time n, denoted H(n), as the date of
birth of the nth individual in the forest. The chronological height can be obtained by
summing up the “chronological contribution” of each ancestor along the ancestral line
associated with n. To formalize this statement, we consider the spine at time n, denoted
Π(n), which is the measure recording each of those contributions along the spine. In
particular, we have the relation H(n) = |Π(n)| with |ν| the mass of a measure ν.

For the contour process, we follow Duquesne [8] (with the difference that we consider
càdlàg instead of càglàd coding functions) and consider an exploration particle traveling
along the edges of the forest from left to right with the following convention: the particle
travels at infinite speed when going downward and at unit speed when going upward
(see Figure 4). Usually, the contour process at time t, denoted C(t), is defined as the
distance of the particle to the root. Here we rather encode the chronological contour
process by two coordinates and write C(t) = (C?(t),X (t)) with C?(t) the chronological
height of the individual visited at time t by the exploration particle and X (t) the position
of the exploration particle relatively to the edge currently visited. In particular, the
distance of the particle to the root at time t (i.e., the value of the classical contour
process) is given by C?(t) + X (t). The motivation for this decomposition is that we then
have the explicit expression

C?(t) = H ◦ V −1(t) and X (t) = t− V (V −1(t)−), t ≥ 0, (1.1)

where V is the renewal process V (n) = V0 + · · · + Vn and V −1 is its right-continuous
inverse, see Figure 4.

Moreover, we will denote by H the genealogical height process defined similarly
as above but from the genealogical forest constructed out of the sequence of sticks

ω7

R̂7({2})

R̂7({1})
H(7)

Figure 3: Spine decomposition of the individual 7: Π(7) = R̂7({2})ε0 + R̂7({1})ε1 where
R̂7({k}) is the age of the kth ancestor of 7 when giving birth to the next individual on the
spine. In particular, H(7) = R̂7({1}) + R̂7({2}) = |Π(7)| expressing that the chronological
height of 7 is obtained by summing up the chronological contribution of each ancestor
on her spine.
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Chronological tree.

H(1)

H(2)

H(3)

H(4)

Associated chronological contour process C.

H(1)

H(2)

H(3)

V ∗0

V ∗0 t

C?(t)

X (t)

Associated chronological height process H.

H(1)

H(2)

H(3)

H(4)

Figure 4: Chronological height and contour processes associated with the chronological
tree constructed from the sequence of sticks of Figure 1.
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Genealogical tree associated with the chronological tree of Figure 4.

0

1

6

9

10

87

2

53

4

Associated genealogical height process H .

H (0)

H (1)

H (2)

H (3)

H (4)

Associated Lukasiewicz path S.

Figure 5: The genalogical tree of the chronological tree of Figure 4, together with the
genealogical processes S and H . The genealogical tree is obtained by resizing all the
sticks to unit size and putting all the atoms at one. The genealogical height process is
then obtained as before, but from the genealogical tree.

(1, |Pi|ε1) where sticks are scaled to unit size and all atoms are gathered at the end
(here and in the sequel, εx denotes the Dirac measure at x). In other words, H (n) is the
number of ancestors of n.

To summarize, we will consider the following processes:

Genealogical process: H denotes the genealogical height process which encodes the
forest constructed out of the sequence (1, |Pi|ε1) – see Figure 5;

Chronological processes: H and C = (C?,C) denote the chronological height and
contour processes, respectively, and Π = (Π(n), n ≥ 0) denotes the spine process.

1.3 General tightness result

Our first main result is that, under the standard assumptions G, C1 and C2 below,
there exists a “good” scaling of the chronological height and contour processes, i.e.,
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one that leads to tight sequences with non-degenerate accumulation points. These
assumptions are related to the tail of random variables T (1) and R(1) where, for a given
“typical” individual x:

• T (1) is the lexicographic distance to her first ancestor;

• R(1) is the age of her parent when begetting x.

Formally, those random variables are defined through the ladder height process associ-
ated with the Lukasiewicz path

S(n) =

n−1∑
i=0

(|Pi| − 1)

and their joint law is described in more details in (2.3) below. Assumption G concerns
the genealogical structure, and Assumptions C1 and C2 the chronological structure.

Assumption G. We say that Assumption G holds if E(|P∗|2) < ∞ or if |P∗| is in the
domain of attraction of a γ-stable distribution with γ ∈ (1, 2).

Assumption C1. We say that Assumption C1 holds if R(1) is in the domain of attraction
of a β-stable distribution with β ∈ (0, 1).

Assumption C2. We say that Assumption C2 holds if V ∗ is in the domain of attraction
of an α-stable law with α ∈ (0, 1).

Actually, our results also apply when R(1) and V ∗ have finite means. However, this
case has already been treated in [25] and leads to somewhat degenerate limits within
the framework of the present paper (deterministic subordinators), see Section 1.7 for
more details.

Let X,Y, Z be stable laws with respective Laplace exponents λγ , λβ , λα. Under
Assumptions G, C1 and C2, there exist vanishing scaling sequences (gp), (cp) and (vp)

such that

gp

p∑
i=1

(|Pi| − 1)⇒ X, cp

[1/gp]∑
i=1

R(i)⇒ Y and vp

p∑
i=1

|Vi| ⇒ Z.

More precisely, these scaling sequences can be written

gp = p−1/γ`(p), cp = g1/β
p `′(p) and vp = p−1/α`′′(p)

with γ ∈ (1, 2] (γ = 2 corresponding to the finite variance case) and `, `′ and `′′ slowly
varying functions. Armed with these scaling sequences we then scale the renewal
process V and the height and contour processes as follows:

Vp(t) = vpV ([pt]), Hp(t) = cpH([pt]), C?p(t) = cpC
?(pt) and Xp(t) = vpX (pt)

for t ≥ 0. Note in particular that the two coordinates of the contour do not have the same
scaling, and we will actually show that, under general assumptions, we have cp � vp,
which informally corresponds to the fact that the edge currently visited is much longer
than the height of its bottom point.

Finally Πp will denote the spine process when time is scaled by p, space by gp
and mass by cp: Πp(t)([0, x]) = cpΠ([pt])([0, x/gp]) (recall that Π(n) is a measure). The
process Πp will be seen as a path-valued process, see Section 2.5 for more details and in
particular for the topology considered.

EJP 24 (2019), paper 47.
Page 7/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP307
http://www.imstat.org/ejp/


Height and contour processes of Crump-Mode-Jagers forests (II)

Theorem A. Under Assumptions G, C1 and C2 and the above scaling, the sequence
(Πp,Vp) is tight. Moreover, let (Π∞,V∞) be any accumulation point and for t ≥ 0 define
H∞(t) = |Π∞(t)|, C?∞(t) = H∞ ◦ V −1

∞ (t) and X∞(t) = t− V∞(V −1
∞ (t)−). Then:

1. Π∞ is almost surely continuous, and V∞ is a subordinator with Laplace exponent λα;

2. for every t ≥ 0, H∞(t) and C?∞(t) are almost surely finite and strictly positive;

3. if (Πp,Vp) ⇒ (Π∞,V∞) along a subsequence, then for any finite set I ⊂ R+ we
have(

Πp,Vp, (Hp(t))t∈I , (C
?
p(t))t∈I ,Xp

)
⇒ (Π∞,V∞, (H∞(t))t∈I , (C

?
∞(t))t∈I ,X∞) (1.2)

along the same subsequence.

In the Galton–Watson case, it is well-known that the height and contour processes
are related by a deterministic time change [9] (as is suggested by the above result
and was shown in [25], this continues to hold as soon as V ∗ has finite mean). The
convergence (1.2) thus states that a similar result holds for general CMJ’s, where the
first coordinate of the contour is obtained by a time change of H∞ expressed in terms of
a subordinator V∞.

1.4 The Bellman–Harris case

In the Bellman–Harris case, an individual gives birth at her death and the number
of children is independent from the life length, i.e., Pu = ξuεVu and ξu an integer-
valued random variable independent from Vu. Bellman–Harris branching processes have
received considerable attention in the literature, in part owing to the fact that they are
the simplest tractable non-Markovian branching processes.

The chronological tree corresponding to a Bellman–Harris process can be obtained by
putting i.i.d. marks (distributed as V ∗) on the edges of the corresponding genealogical
tree, that can be seen as stretching factors. From this viewpoint, these trees are
particular cases of branching random walks which are obtained in a similar manner but
without the positivity constraint on the marks.

Upon normalization, it is known since Aldous [2], see also [9, 11, 21], that the
genealogical tree converges to a random tree called Lévy tree (the famous Brownian
continuous random tree in the case of offspring distribution with finite variance).

Given the above relation between the chronological and genealogical trees in the
Bellman–Harris case, in this case it is natural to expect the CMJ tree to converge toward
a random tree obtained by marking the limiting genealogical Lévy tree and then using
these marks to stretch the corresponding portion of the tree. This intuition has been
carried out for branching random walks with finite variance offspring distribution by
Marckert and Mokkadem [22], see also [12, 14]. Formally, the height process of the
limiting tree is then described as the terminal value of a Brownian snake.

1.5 Main result: the Bellman–Harris universality class

Our second main result is a generalization of the above picture for a much wider class
of CMJ forests. In the Bellman–Harris case, the Brownian snake arises because of the
independence between V ∗ and |P∗|, i.e., between the chronological and genealogical
structures. In this paper we identify general asymptotic independence conditions ((IC1)
and (IC2) below) under which the limiting height process is, as in the Bellman–Harris
case, the terminal value of a snake.

EJP 24 (2019), paper 47.
Page 8/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP307
http://www.imstat.org/ejp/


Height and contour processes of Crump-Mode-Jagers forests (II)

1.5.1 The λγ/λβ snake

As in [12, 14, 22] this snake is a Brownian snake in the case of finite variance offspring
distribution but in the case γ ∈ (1, 2), it will be a snake whose lifelength process is the
height process associated with the Lévy process with Laplace exponent λγ and whose
spatial displacement is given by a subordinator with Laplace exponent λβ: this snake
will be called the λγ/λβ-snake, see Section 2.5 and [9] for more details.

Informally, this object is the continuum counterpart of the description of the Bellman–
Harris forests spelled out in the last paragraph of Section 1.4. It can be generated by
considering a γ-stable Lévy tree, which encodes the genealogy, and by marking the
tree according to a Poisson point process with intensity measure dλ× 1 (x > 0)x−βdx

where λ denotes the branch-length measure on the real tree [10]. In particular, the first
coordinate of each point of the Poisson point process is a location in the tree, whereas
the second coordinate is a positive real number interpreted as a mark (or stretching
factor in the spirit of the previous section). The spine process Π∞(t) associated with the
snake is then obtained by considering the marks lying along the ancestral line associated
with the point t. See Section 2.5 for a definition.

1.5.2 The Bellman–Harris universality class

The conditions that generalize the independence condition in the Bellman–Harris case
are:

P (cpR(1) ≥ ε | T (1) ≥ δp)→ 0 for every ε, δ > 0 (IC1)

and

P (|P∗| ≥ εpgp | vpV ∗ ≥ δ)→ 0 for every ε, δ > 0. (IC2)

In the Bellman–Harris case the independence structure implies that

P (cpR(1) ≥ ε | T (1) ≥ δp) = P (cpR(1) ≥ ε)

and

P (|P∗| ≥ εpgp | vpV ∗ ≥ δ) = P (|P∗| ≥ εpgp)

so that (IC1) and (IC2) are indeed satisfied as cp → 0 while pgp →∞.

Theorem B. If Assumptions G, C1 and C2 are satisfied and the asymptotic independence
condition (IC1) holds, then Πp ⇒ Π∞ where Π∞ is the λγ/λβ snake. In particular, Hp has
the same scaling limit than the scaled height process of a well-chosen Bellman–Harris
forest.

Combining Theorems A and B, we see that when G, C1, C2 and (IC1) hold, then
(Πp,Vp) is tight and the marginals of any accumulation point (Π∞,V∞) are specified: Π∞
is the λγ/λβ-snake and V∞ is a subordinator with Laplace exponent λα. As H∞(t) =

|Π∞(t)| this is enough to describe the law of H∞ (which by Theorem A is the scaling limit
of Hp) but since C?∞ = H∞ ◦ V −1

∞ one needs to specify the correlation structure between
Π∞ and V∞ in order to determine the scaling limit of C?p. Our next main result shows
that if in addition (IC2) holds, then H∞ and V∞ are independent, thereby implying the
finite-dimensional convergence of (Hp,C

?
p) (and thus of (Hp,C

?
p,Xp)).

Theorem C. If Assumptions G, C1 and C2 are satisfied and the asymptotic independence
conditions (IC1) and (IC2) hold, then V∞ is independent of Π∞. Moreover, in this case
we have cp/vp →∞.
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Under the assumptions of Theorem C, we therefore have (C?p,Xp)
fdd⇒ (C?∞,X∞). This

convergence suggests that asymptotically, the chronological contour process C can
be seen as a nice, baseline process H∞ ◦ V −1

∞ on the space scale 1/cp, to which long
“hairs” of the order vp � 1/cp are grafted. Such a behavior was first established for
Bellman–Harris processes in [26] and then in a more precise form for branching random
walks [14, Theorem 5].

1.6 Explicit examples

We now describe two large classes of models where the above assumptions are
satisfied. The first class consists of CMJ forests with finite variance offspring distribution.
We find it quite striking that such a simple condition, without any assumption on how
atoms of P∗ are spread, implies that the corresponding CMJ forests belong to the
Bellman–Harris universality class.

Theorem D. If Assumptions G, C1 and C2 are satisfied with E(|P∗|2) <∞, then (IC1)
and (IC2) hold. In particular, the limiting spine process is a λ2/λβ snake and the
time-change V∞ is an independent subordinator with Laplace exponent λα.

The second class is a natural extension of the Bellman–Harris case, and allows |P∗|
to have infinite variance.

Theorem E. Assume that:

• Assumptions G and C2 are satisfied with V ∗ and |P∗| independent;

• conditionally on (V ∗, |P∗|) = (v, n), the locations of the atoms of P∗ are i.i.d. with
common distribution vX for some random variable X ∈ (0, 1].

Then Assumption C1 is satisfied with β = α and (IC1) and (IC2) hold. In particular, Π∞
is the λγ/λα-snake and the time-change V∞ is an independent subordinator with Laplace
exponent λα.

Note that this result generalizes results for Bellman–Harris processes which corre-
spond to the case X = 1.

1.7 Beyond the Galton–Watson and Bellman–Harris universality classes

As presented above, our main results assume that R(1) and V ∗ have infinite first
moment. When both R(1) and V ∗ have finite first moment, all the edges are “short” and
the CMJ forest is close to its genealogical counterpart: in other words, the time structure
does not matter much. This case of “short edges” has been worked out in [25]. The main
result is that CMJ forests with E(R(1)) <∞ and E(V ∗) <∞ belong to the universality
class of Galton–Watson processes and that in the limit, the chronological height and
contour processes are related through a deterministic time-change.

Beyond the Galton–Watson and Bellman–Harris universality classes treated in [25]
and in the present paper, there remains a large class of CMJ forests with “long” edges
but where the chronological and genealogical structures remain dependent in the limit
(i.e., (IC1) or (IC2) does not hold). In current work in progress, we are looking at the
case where P∗ conditionally on V ∗ is a renewal process stopped at V ∗: the chronology
and the genealogy then remain positively correlated. Whether or not even more general
results can be obtained in this dependent setting is an interesting research direction.

1.8 Comments on the contour process

There are various definitions of the contour process in the literature. In every case,
the value of the contour is defined as the distance to the root of an exploration particle,
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but various choices have been made for the speed at which this particle explores the
tree.

For discrete trees and in [25], the particle is assumed to travel at unit speed along
the edges of the forest, in such a way that each point of the tree is visited twice.

Alternatively, Lambert proposed in [17] the Jumping Chronological Contour Process
where the particle travels at infinite speed when going upward and at speed one when
going downward. In the binary, homogeneous case where P∗ is an independent Poisson
process stopped at V ∗, this contour process has the desirable property of being a Lévy
process. This property has far-reaching implications which allow for a detailed study of
this important class of CMJ processes, see for instance [5, 6, 7, 18, 19, 23, 24].

In the present paper, analogously to [8] we make the exploration particle move at
infinite speed when going downward, and at unit speed when going upward, see Figure 4.
We believe that this is a good choice as far as scaling limits are concerned because of the
relations (1.1). In [25], we defined the contour process in the “classical way”, i.e., when
the exploration particle moves at constant speed. This definition led to a significant
number of technical problems due to the absence of tightness of the contour in the
Skorohod topology. Our choice of contour function allows to circumvent these problems
and we believe that it has potential for broader applications.

2 Notation and set-up

2.1 Notation

We gather here the notation used in the rest of the paper. Let Z denote the set
of integers, N = Z ∩ R+ the set of non-negative integers and Q the set of rational
numbers. For x, y ∈ R let [x] = max{n ∈ Z : n ≤ x}, x+ = max(x, 0) and x∧ y = min(x, y).
Throughout we adopt the convention max ∅ = sup ∅ = −∞ and min ∅ = inf ∅ =∞.

2.1.1 Functions

The set of càdlàg functions is endowed with the Skorohod topology. For a càdlàg function
f : R→ R we denote by f(x−) its left-limit at x ∈ R, by ∆f(x) = f(x)− f(x−) the size
of its jump and by f−1 its right-continuous inverse:

f−1(t) = inf {s ≥ 0 : f(s) > t} , t ∈ R.

For any h ≥ 0 and any two mappings f, g defined on R+ or a subset thereof (such that f
is at least defined on [0, h]) we define [f, g]h by

[f, g]h(x) =

{
f(x) if x ≤ h,
f(h) + g(x− h) if x > h.

(2.1)

For h ∈ R we consider Θh, · |h and · |h− the shift and stopping operators, which act on
functions f : R→ R by

Θh(f)(x) =

{
f(x+ h)− f(h) if x > 0,

0 if x ≤ 0,

and

f |h (x) = f (x ∧ h) and f |h− (x) = f |h (x)−∆f(h)1 (x ≥ h) =

{
f(x) if x < h,

f(h−) if x ≥ h.

Note in particular that Θh(f)(0) = 0, f |h (h) = f(h) and f |h− (h) = f(h−).
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2.1.2 Measures

We let M be the set of positive Radon measures on [0,∞) endowed with the weak
topology, εx ∈M for x ≥ 0 be the Dirac measure at x and z be the zero measure. We will
identify any measure ν ∈M with the càdlàg, non-decreasing function x ∈ R 7→ ν[0, x+] ∈
R+ which gives sense to Θh(ν), ν |h, ν |h− and [ν, ν′]h for ν, ν′ ∈M and h ∈ R, e.g.,

Θh(ν)(x) = ν ((h, x+ h] ∩R+) , ν |h (x) = ν
(
[0, h] ∩ [0, x]

)
and [ν, ν′]h = ν |h +Θ−h(ν′)

for x ≥ 0. We will also write

[ν, ν′]h− = ν |h− +Θ−h(ν′)

so that [ν, ν′]h = [ν, ν′]h− + ν({h})εh. Note also that we have ν = [ν,Θh(ν)]h.

The mass of ν ∈M will be denoted by |ν| = ν[0,∞) and the supremum of its support
by π(ν) = inf{x ≥ 0 : π(x,∞) = 0} with the convention π(z) = 0. When |ν| and π(ν) are
finite we consider the reversed measure L (ν) defined by

L (ν)(x) = ν[π(ν)− x, π(ν)] = |ν| − ν[0, π(ν)− x), x ≥ 0.

If ν ∈ M is of the form ν =
∑|ν|
i=1 εa(i) with 0 ≤ a(1) ≤ · · · ≤ a(|ν|)) and if k ∈

{0, . . . , |ν| − 1}, we will write Ak(ν) = a(k + 1) for the position of the (k + 1)st atom of ν
where atoms are ranked from bottom to top.

In the following we need continuity properties of some of the above operators. The
following lemma gathers the required results, which can be proved using standard
results of the Skorohod topology, see for instance [13].

Lemma 2.1. If fp → f , tp → t and either ∆fp(tp)→ ∆f(t) or ∆f(t) = 0, then fp |tp→ f |t,
fp |tp−→ f |t− and Θtp(fp)→ Θt(f).

If νp → ν with π(ν) = ∞, hp → h and ν has no atom at h, then L (νp |hp) → L (ν |h)

as well as L (νp |hp−)→ L (ν |h).

2.1.3 Random variables

Let

L = {(v, ν) ∈ (0,∞)×M : ν{0} = 0 and v ≥ π(ν)}.

We will start from discrete processes defined on the measurable space (Ω,F ) with
Ω = LZ the space of doubly infinite sequences of sticks and F the σ-algebra generated
by the coordinate mappings. An elementary event ω ∈ Ω is written as ω = (ωn, n ∈ Z)

and ωn = (Vn,Pn). For n ∈ Z we consider the operators θn, ϑn : Ω → Ω defined as
follows:

• θn is the shift operator, defined by θn(ω) = (ωn+k, k ∈ Z);

• ϑn is the dual (or time-reversal) operator, defined by ϑn(ω) = (ωn−k−1, k ∈ Z).

When no confusion can arise we will use the notation Wn = W ◦ θn and Ŵn = W ◦ ϑn for
any random variable W defined on Ω.

We define σ(X) as the σ-algebra generated by the random variable X, F≥Γ =

σ(ωk, k ≥ Γ) and F<Γ = σ(ωk, k < Γ) for any random time Γ : Ω → N, and mF the set
of random variables that are measurable with respect to the σ-algebra F . For random
variables X,Y we will write X⊥⊥Y to mean that they are independent.
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2.2 Lukasiewicz path and ladder process

In this section, we introduce an important trivariate renewal process (Z , T,R):
(Z , T ) is the usual ladder process of the Lukasiewicz path, and R adds chronological
information. We define the Lukasiewicz path S = (S(n), n ∈ Z) by S(0) = 0 and, for
n ≥ 1,

S(n) =

n−1∑
k=0

(|Pk| − 1) and S(−n) = −
−1∑

k=−n

(|Pk| − 1).

Define the ladder time process T = (T (k), k ∈ N) by T (0) = 0 and for k ≥ 0,

T (k + 1) = inf
{
` > T (k) : S(`) ≥ S(T (k))

}
= T (1) ◦ θT (k) + T (k)

with the convention T (k+ 1) =∞ if T (k) =∞. We identify T and the function x ∈ R+ 7→
T ([x]), and thus also with the measure

∑
k∈N(T (k + 1) − T (k))εk+1. We consider the

following two inverses of T :

T−1(n) = min {k ≥ 0 : T (k) ≥ n} and T̃−1(n) = max {k ≥ 0 : T (k) ≤ n} .

Note that T−1(n) = T̃−1(n) if n is a weak record time and T−1(n) = T̃−1(n)+1 otherwise.
Moreover, it is well-known that in the Galton–Watson case, the height process at time n
is related to the renewal process T through the relation H (n) = T̃−1(n) ◦ ϑn.

Consider the ladder height process Z , defined (as a measure) by

Z ({k}) = S(T (1)) ◦ θT (k−1)

for k ≥ 1 with T (k− 1) <∞. In words, Z ({k}) is the value of the kth overshoot of S. We
can now define the process R that contains the useful chronological information (recall
that Ak(ν) denotes the position of the (k + 1)st atom of ν):

R =
∑

k∈N∗:T (k)<∞

AZ ({k})(PT (k)−1) εk.

As we shall see in Theorem 2.2 below, R̂n = R ◦ ϑn makes it possible to recover the
chronological contribution of the successive ancestors of n to its chronological height.

The strong Markov property implies that (T,Z , R) is a trivariate renewal process.
With the notation of the present paper, the equation below (2.18) in [25] states that

E
[
F
(
PT (1)−1,−S(T (1)− 1), T (1)

) ]
=

∑
t≥1,x≥0

E (F (P∗, x, t); |P∗| ≥ x+ 1)P
(
τ−x = t

)
(2.2)

with τ−x = inf{n ≥ 0 : S(n) = −x}, from which we deduce that for any G : N×N×R+ →
R+ measurable, we have

E
[
G(T (1),Z (1), R(1))

]
=
∑
t,x≥1

∑
z≥0

E [G(t, z, Az(P
∗)); |P∗| = x+ z]P

(
τ−x−1 = t− 1

)
.

(2.3)

2.3 Spine process

The spine process was introduced in [25] as an extension of the classical exploration
process [20] suited for the chronological setting. Here, we only need a marginal of this
process, denoted Π = (Π(n), n ≥ 0), which for simplicity we continue to name spine
process. For each n ≥ 0, Π(n) ∈M is the random measure defined by

Π(n) =

H (n)∑
i=1

R̂n({i}) εH (n)−i =

T̃−1(n)∑
i=1

R({i}) εT̃−1(n)−i

 ◦ ϑn. (2.4)

EJP 24 (2019), paper 47.
Page 13/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP307
http://www.imstat.org/ejp/


Height and contour processes of Crump-Mode-Jagers forests (II)

2.4 Joint distribution

One of the main result of [25] is to relate the height process H as well as the spine
process Π to the bivariate renewal process (T,R). Namely, with the notation of the
present paper, Theorem 1.1 and Proposition 2.4 of [25] can be formulated as follows.

Theorem 2.2. For any n ≥ 0 we have

H(n) =
(
R ◦ T̃−1(n)

)
◦ ϑn, H (n) = T̃−1(n) ◦ ϑn and Π(n) = L

(
R |T̃−1(n)

)
◦ ϑn. (2.5)

In particular, H(n) can be recovered by summing up the weights carried by the atoms of
the measure Π(n), i.e.,

H(n) = |Π(n)| = Π(n)(H (n)−) =

H (n)∑
i=1

R̂n({i}) = R̂n (H (n)) .

2.5 The ψ/φ-snake

Let ψ with
∫∞

du/ψ(u) < ∞ be the Laplace exponent of a spectrally positive Lévy
process with infinite variation that does not drift to +∞. We call ψ-height process the
height process associated with the Lévy process with Laplace exponent ψ and ψ/φ-
snake the Lévy snake whose life-time process is the ψ-height process and whose spatial
displacement is the Lévy process with Laplace exponent φ, see Duquesne and Le Gall [9].

The ψ-height process encodes the genealogy of the forest. As explained in the
introduction, the scaling limit of the chronological forest will be obtained by marking
the genealogy where the marks correspond to random stretching, which is exactly the
interpretation of the ψ/φ-snake when φ is the Lévy exponent of a subordinator as will be
the case here.

Let a killed path be a càdlàg mapping w : [0, ζ)→ R with ζ ∈ (0,∞) called the life-time
of the path and W be the set of killed paths, which is the state-space of the ψ/φ-snake.

Whenever it exists in R ∪ {±∞}, we call terminal value of a killed path the value of
w(ζ−). For two killed paths w,w′ ∈ W with respective life times ζ and ζ ′, we consider
the distance

d (w,w′) = |ζ − ζ ′|+
∫ ζ∧ζ′

0

d(u)(w≤u, w
′
≤u) ∧ 1 du, (2.6)

where w≤u is the restriction of the path w to [0, u] and d(u)(f, g) denotes the Skorohod
distance on the set of real-valued, càdlàg functions defined on [0, u]. As mentioned in [1],
(W , d) is a Polish space. We will use the following characterization of the ψ/φ-snake.

Theorem 2.3. The ψ/φ-snake is the unique W -valued continuous process (W (t), t ≥ 0)

satisfying the two following properties:

(1) the life-time process H is the ψ-height process;

(2) conditionally on H, (W (t), t ≥ 0) is the W -valued time-inhomogeneous Markov
process with the following transition mechanism. For every 0 ≤ s ≤ t,

W (t) =
[
W (s), W̃

]
min[s,t]H

in law (2.7)

where W̃ is a Lévy process independent from W (s) with Laplace exponent φ and
killed at H(t)−min[s,t]H.
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2.6 Triangular setting

Recall that the main results announced in the introduction are stated in a non-
triangular setting. In the following, we consider a triangular setting where Pp is the law
under which the common law of the (Vk,Pk) is equal to (V ∗p ,P

∗
p ). When considering

convergence, we are then implicitly working under Pp, that is, Xp ⇒ X∞ means that

Ep(f(Xp))→ E(f(X∞)) for every bounded continuous function f . Likewise,
fdd⇒ refers to

convergence of the finite-dimensional distributions under Pp.

3 General tightness result

3.1 Scaling

As in the introduction, we consider throughout three vanishing scaling sequences
(gp), (cp) and (vp) used to scale the genealogical and chronological processes as follows:

Hp(t) = gpH ([pt]) and Sp(t) =
1

pgp
S([pt]),

Cp = (C?p,Xp) with C?p(t) = cpC
?(pt) and Xp(t) = vpXp(pt),

and
Hp(t) = cpH([pt]), Πp(t)(x) = cpΠ([pt])(x/gp) and Vp(t) = vpV ([pt])

with as before V (n) = V0 + · · · + Vn for n ≥ 0. In the sequel, we will consider Πp as a
W -valued process since the definition (2.4) of Π(n) implies Πp(t)[Hp(t),∞) = 0 and thus
allows to identify Πp(t) with the killed path x ∈ [0,Hp(t)) 7→ Πp(t)[0, x]. Scale in addition
the processes T,R and Z as

Tp(x) =
1

p
T (x/gp), Rp(x) = cpR(x/gp) and Zp(x) =

1

pgp
Z (x/gp), x ≥ 0,

and finally define the dual and shifted versions of Tp, Rp and Zp as follows:

T̂ tp = Tp ◦ ϑ[pt], R̂tp = Rp ◦ ϑ[pt] and Ẑ t
p = Ẑp ◦ ϑ[pt] (3.1)

and
T tp = Tp ◦ θ[pt], R

t
p = Rp ◦ θ[pt] and Z t

p = Zp ◦ θ[pt]. (3.2)

Note that with these definitions, Theorem 2.2 gives

Hp(t) = |Πp(t)| = Πp(t)
(
Hp(t)−

)
and Πp(t) = L

(
R̂tp |Hp(t)

)
.

3.2 Main assumptions and general tightness result

Throughout the paper, we consider a double-sided Lévy process S∞ = (S∞(t), t ∈ R)

of infinite variation, which is spectrally positive and does not drift to +∞ as t→ +∞. We
denote by ψ its Laplace exponent which is assumed to satisfy∫ ∞

1

du

ψ(u)
<∞.

We let T∞ denote the ladder time process of (S∞(t), t ≥ 0) and Z∞ = S∞ ◦ T∞ denote
its ladder height process. We also consider H∞ its associated height process which is
therefore the ψ-height process.

Duquesne and Le Gall [9] proved that the following assumption implies the joint
convergence of the Lukasiewicz path together with the genealogical height and contour
processes. Proposition 3.1 below states a slight extension of this result needed for
our purposes. Note that the condition on Zp below is automatically satisfied in the
non-triangular case.
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Assumption G’. We say that Assumption G’ holds if Sp ⇒ S∞ with S∞ introduced above,
and if for every δ > 0 we have

lim inf
p→∞

P (Zp([δ/gp]) = 0) > 0

where (Zp(k), k ≥ 0) is a Galton–Watson process with offspring distribution |P∗
p | and

started with [pgp] individuals.

Note that Assumption G’ implies that pgp → ∞. In addition to the genealogical
Assumption G’, we will need the next chronological assumptions.

Assumption C1’. We say that Assumption C1’ holds if Rp ⇒ R∞ with R∞ a non-
degenerate subordinator. In this case, its Laplace exponent is denoted by φ.

Assumption C2’. We say that Assumption C2’ holds if Vp ⇒ V∞ with V∞ a non-
degenerate subordinator.

Theorem A’ (Triangular version of Theorem A). Under Assumptions G’, C1’ and C2’,
the sequence (Πp,Vp) is tight. Moreover, let (Π∞,V∞) be any accumulation point and
for t ≥ 0 define H∞(t) = |Π∞(t)|, C?∞(t) = H∞ ◦ V −1

∞ (t) and X∞(t) = t− V∞(V −1
∞ (t)−).

Then:

1. Π∞ is almost surely continuous;

2. for every t ≥ 0, H∞(t) and C?∞(t) are almost surely finite and strictly positive;

3. if (Πp,Vp) ⇒ (Π∞,V∞) along a subsequence, then for any finite set I ⊂ R+ we
have(

Πp,Vp, (Hp(t))t∈I , (C
?
p(t))t∈I ,Xp

)
⇒ (Π∞,V∞, (H∞(t))t∈I , (C

?
∞(t))t∈I ,X∞) (1.2)

along the same subsequence.

The proof of Theorem A’ relies on genealogical results which we establish first.

3.3 Genealogical convergence

For every t ∈ R, define St∞ = Θt(S∞) the shifted version of S∞ at time t, i.e.,

St∞(u) = S∞(t+ u)− S∞(t), u ≥ 0,

and Ŝt∞ the dual path of S∞ at time t as

Ŝt∞(u) = S∞(t)− S∞(t− u), u ≥ 0.

For every random variable W that can be written as a measurable function of S∞, Ŵ t or
W ◦ ϑt will refer to the same functional applied to Ŝt∞ and W t or W ◦ θt will refer to the
same functional applied to St∞. This gives for instance sense to T̂ t∞, Ẑ

t
∞, T t∞ and Z t

∞ that
will appear repeatedly, and is coherent with the notation introduced in (3.1) and (3.2).

An important relation, which follows from the definition of the height process, is
that for every t ≥ 0 we have H∞(t) = (T̂ t∞)−1(t) almost surely. Note that this is the
continuous analog of the relation H (n) = T−1(n) ◦ ϑn of (2.5). The next result is an
extension of a result due to Duquesne and Le Gall [9]

Proposition 3.1. If Assumption G’ holds, then(
Sp,Hp, (Ẑ

t
p , T̂

t
p, (T̂

t
p)−1)t∈Q

)
⇒
(
S∞,H∞, (Ẑ

t
∞, T̂

t
∞, (T̂

t
∞)−1)t∈Q

)
. (3.3)
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Proof. Throughout the proof, we repeatedly use the following token in order to get joint
convergence results: if (Xp, Yp)⇒ (X∞, Y∞) and (Xp, Zp)⇒ (X∞, Z∞) with Y∞ and Z∞
measurable functions of X∞, then (Xp, Yp, Zp) ⇒ (X∞, Y∞, Z∞). This comes from the
continuous mapping theorem and will be used without further mention.

First, we reduce the proof of (3.3) to the simpler convergence

(Sp, Tp, T
−1
p ,Zp)⇒ (S∞, T∞, T

−1
∞ ,Z∞). (3.4)

Indeed, if (3.4) holds, then for each fixed t ≥ 0 a simple time-reversal argument im-
plies that (Sp, T̂

t
p, (T̂

t
p)−1, Ẑ t

p ) ⇒ (S∞, T̂
t
∞, (T̂

t
∞)−1, Ẑ t

∞) and since (T̂ t∞, (T̂
t
∞)−1, Ẑ t

∞) is
measurable with respect to S∞ we obtain the joint convergence for t ∈ Q. Moreover,
Duquesne and Le Gall [9, Corollary 2.5.1] have proved that Assumption G’ implies that
(Sp,Hp) ⇒ (S∞,H∞). Since again H∞ is a measurable function of S∞, this finally
gives the full joint convergence of (3.3). The rest of the proof is therefore devoted to
proving (3.4).

The joint convergence of the Lukasiewicz path together with its local time process
at its maximum is proved in the proof of Theorem 2.2.1 in [9]: to be precise, the
almost sure convergence γ−1

p Λ
(p)
[pγpt]

→ Lt stated in Equation (50) of [9] implies with our

notation1 that (Sp, (T
−1
p (t))t∈I) ⇒ (S∞, (T

−1
∞ (t))t∈I) for every finite set I ⊂ R+. Since

T−1
p and T−1

∞ are non-decreasing and T−1
∞ is continuous (as the local time process at 0

of S∞ reflected at its maximum), standard properties of the Skorohod topology imply

that the finite-dimensional convergence T−1
p

fdd⇒ T−1
∞ actually implies the functional

convergence T−1
p ⇒ T−1

∞ , see for instance [13, Theorem VI.2.15]. Thus we obtain
(Sp, T

−1
p )⇒ (S∞, T

−1
∞ ).

Because Tp for p ∈ N ∪ {∞} is non-decreasing, we have (T−1
p )−1 = Tp and so general

properties of the inverse map in the Skorohod topology show that the convergence
(Sp, T

−1
p )⇒ (S∞, T

−1
∞ ) implies (Sp, T

−1
p , (Tp(t))t∈I)⇒ (S∞, T

−1
∞ , (T∞(t))t∈I) for any finite

set I ⊂ R+, see for instance the remark following Theorem 7.1 in [27]. Since Tp is a
random walk, we thus obtain (Sp, T

−1
p , Tp)⇒ (S∞, T

−1
∞ , T∞) by [15, Theorem 16.14].

Since T∞ is strictly increasing, this convergence implies that(
Sp, T

−1
p , Tp, (Sp ◦ Tp(t))t∈I

)
⇒
(
S∞, T

−1
∞ , T∞, (S∞ ◦ T∞(t))t∈I

)
for any finite set I ⊂ R+, see for instance [16, Lemma 2.3]. Since Sp ◦ Tp = Zp for
p ∈ N ∪ {∞} and Zp is a random walk, the previous finite-dimensional result can be
strengthened to a functional one and so we get the desired result.

3.4 Proof of Theorem A’

We decompose the proof into several steps.

Step 1: proof of tightness and of (1)

By assumption, Vp ⇒ V∞ and so the proof of this step amounts to showing that (Πp)

is tight (as a W -valued process) and that any accumulation point is continuous.
The measure Π(n) describes the ancestral line of the individual n, where the

first atoms correspond to the ancestors closest to the root. In particular, we have
Π(n) |H (µ)−1= Π(m) |H (µ)−1 with µ the most recent common ancestor of m and n,
whose height H (µ) is given by H (µ) = min{m,...,n}H − 1 (µ 6= m). A formal proof

1To be more precise: γp in [9] is the time scale of the Galton–Watson branching proces, i.e., their γp is our
1/gp; (Lt, t ≥ 0) is the local time process at level 0 of the Lévy process reflected at its maximum, i.e., their Lt

is our T−1
∞ (t); and their Λ(p) is the same at the discrete level, i.e., upon proper scaling, their γ−1

p Λ
(p)
[pγpt]

is our

T−1
p (t).
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of these facts is given in [25]. Upon scaling we thus obtain Πp(s) |h= Πp(t) |h with
h = min[s,t] Hp − 2cp and so from the expression (2.6) of the distance d we get that

d (Πp(s),Πp(t)) ≤ |Hp(t)−Hp(s)|+ Hp(t) ∧Hp(s)− inf
[s,t]

Hp + 2cp.

Since Hp ⇒H∞ with H∞ continuous, the above inequality gives the tightness of (Πp)

and also shows that any accumulation point is almost surely continuous.

Step 2: exchangeability argument

We now present a simple yet crucial exchangeability argument. For a < b let us write
ωba = (ωk, k = [a], . . . , [b]− 1). Then for any t, k, exchangeability implies that ωk0 ◦ ϑV −1(t)

conditioned on V −1(t) ≥ k is equal in distribution to ωk0 conditioned on V −1(t) ≥ k.
Indeed, consider an arbitrary measurable ϕ : Lk → R+. Since

Ep
(
ϕ(ωk0 ) | V −1(t) ≥ k

)
=

1

Pp(V −1(t) ≥ k)

∑
`≥k

Ep
(
ϕ(ωk0 ); V −1(t) = `

)
in order to prove this claim it is enough to prove that

Ep
(
ϕ(ωk0 ); V −1(t) = `

)
= Ep

(
ϕ(ωk0 ) ◦ ϑ`; V −1(t) = `

)
for every ` ≥ k. To see this, write

Ep
(
ϕ(ωk0 ); V −1(t) = `

)
= Ep

(
ϕ(ωk0 );

`−1∑
i=0

Vi ≤ t <
∑̀
i=0

Vi

)
= Ep (h(ω0, . . . , ω`))

with

h(ω0, . . . , ω`) = ϕ(ωk0 )1

(
t− V` <

`−1∑
i=0

Vi ≤ t

)
.

Since the ωk’s are i.i.d., we have

Ep (h(ω0, . . . , ω`−1, ω`)) = Ep (h(ω`−1, . . . , ω0, ω`))

= Ep

(
ϕ(ω`−1, . . . , ω`−k);

`−1∑
i=0

Vi ≤ t <
∑̀
i=0

Vi

)
= Ep

(
ϕ(ωk0 ) ◦ ϑ`; V −1(t) = `

)
This exchangeability property will be used in the sequel in the following form: for any
measurable mapping ϕ ≥ 0 acting on finite sequence of sticks, we have

Ep

(
ϕ(ωεp0 ) ◦ ϑpV

−1
p (t); V −1

p (t) ≥ ε
)

= Ep
(
ϕ(ωεp0 ); V −1

p (t) ≥ ε
)
. (3.5)

Step 3: proof of (3) and that H∞(t),C?∞(t) <∞
Assume without loss of generality that (Πp,Vp) ⇒ (Π∞,V∞). By definition, the

process Xp increases at rate 1 in time intervals of the form (Vp(k/p−),Vp(k/p)), k ∈ N,
and jumps to 0 at times Vp(k/p). From this description and the convergence Vp ⇒ V∞
it can be proved that Xp ⇒X∞ jointly with Πp and Vp. Indeed, if the Lévy measure of
V∞ was finite, this would be immediate, and the general case follows by a truncation
argument. We thus have (Πp,Vp,Xp)⇒ (Π∞,V∞,X∞) and so in order to prove (3) and
that H∞(t) and C?∞(t) are almost surely finite, it is enough to prove that

(Πp,Vp,Hp(τp))⇒ (Π∞,V∞,H∞(τ∞)) for τp = t or τp = V −1
p (t), t ≥ 0, p ∈ N ∪ {∞}
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with H∞(τ∞) being almost surely finite. We will only show that

Hp(τp)⇒ H∞(τ∞) with P(H∞(τ∞) <∞) = 1 (3.6)

where either τp = t, or τp = V −1
p (t) (p ∈ N ∪ {∞}, t > 0). Indeed, the joint convergence

with (Πp,Vp) relies on the same arguments but is only notationally more cumbersome.
In order to show (3.6), we will need the next technical lemma.

Lemma 3.2. Let tp → t∞ in R+, wp for p ∈ N ∪ {∞} be a W -valued process with wp(t)

non-decreasing for every t ≥ 0, and ζp be the life time of wp(tp). If wp → w∞, w∞ is
continuous and

lim
c↑ζ∞

lim sup
p→∞

(wp(tp)(ζp−)− wp(tp)(c)) = 0 (3.7)

then w∞(t∞)(ζ∞−) <∞ and wp(tp)(ζp−)→ w∞(t∞)(ζ∞−).

Proof. Let c < ζ∞ with w∞(t∞) continuous at c: then wp(tp)→ w∞(t∞) in W (which holds
because wp → w∞ with w∞ continuous) implies wp(tp)(c)→ w∞(t∞)(c) (note that c < ζp
for p large enough as wp → w∞ implies ζp → ζ∞). Since w∞(t∞)(c) <∞, this implies in
view of (3.7) that lim supp→∞ wp(tp)(ζp−) <∞. Next, since wp(tp)(ζp−) ≥ wp(tp)(c) for p
large enough, we obtain

w∞(t∞)(c) ≤ lim sup
p→∞

wp(tp)(ζp−)

and then
w∞(t∞)(ζ∞−) ≤ lim sup

p→∞
wp(tp)(ζp−)

by letting c ↑ ζ∞ along continuity points. This shows that w∞(t∞)(ζ∞−) < ∞ and we
now proceed to showing that wp(tp)(ζp−)→ w∞(t∞)(ζ∞−). For p ∈ N ∪ {∞} and c < ζ∞
let δp(c) = |wp(tp)(ζp−)− wp(tp)(c)|: then

|wp(tp)(ζp−)− w∞(t∞)(ζ∞−)| ≤ δp(c) + δ∞(c) + |wp(tp)(c)− w∞(t∞)(c)| .

Proceeding with similar arguments as above we obtain the result by letting first p→∞
and then c ↑ ζ∞.

Since Hp(τp) = Πp(t)(Hp(τp)−), proving (3.6) is the same as proving

Πp(τp)(Hp(τp)−)⇒ Π∞(τ∞)(H∞(τ∞)−) with P (Π∞(τ∞)(H∞(τ∞)−) <∞) = 1. (3.8)

By standard arguments (e.g., Skorohod’s representation theorem), Lemma 3.2 implies
that in order to prove this, it is enough to prove that

lim sup
p→∞

Pp

(
Πp(τp)(Hp(τp)−)−Πp(τp)(Hp(τp)− c) ≥ η

)
−→
c→0

0

for every η > 0. Since Π(n) = L (R̂n |H (n)) according to Theorem 2.2, we have

Πp(τp)(Hp(τp)−)−Πp(τp)(Hp(τp)− c) ≤ R̂τpp (c)

which reduces the proof of (3.8) to showing that

lim sup
p→∞

P
(
R̂τpp (c) ≥ η

)
−→
c→0

0 (3.9)

for every η > 0. If τp = t, then R̂
τp
p (c) is identical in law to Rp(c), and so (3.9) follows by

the convergence of Rp and the continuity of R∞ at 0.
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Let us now prove (3.9) for τp = V −1
p (t). Since T−1

p (Tp(t)) = t and Rp ◦ T−1
p is

increasing, on the event {Tp(c) ≤ ε} we have

Rp(c) = Rp ◦ T−1
p (Tp(c)) ≤ Rp ◦ T−1

p (ε).

In particular,

Pp (Rp(c) ◦ ϑτp ≥ η) ≤ Pp
(
Rp ◦ T−1

p (ε) ◦ ϑτp ≥ η
)

+ Pp (Tp(c) ◦ ϑτp ≥ ε)
≤ Pp

(
Rp ◦ T−1

p (ε) ◦ ϑτp ≥ η,V −1
p (t) ≥ ε

)
+ Pp

(
Tp(c) ◦ ϑτp ≥ ε,V −1

p (t) ≥ ε
)

+ 2Pp
(
V −1
p (t) ≤ ε

)
.

By definition, we can write Rp ◦ T−1
p (ε) as a function of ωpε0 , i.e., Rp ◦ T−1

p (ε) = ϕ(ωpε0 ) for
some measurable mapping ϕ. The exchangeability identity (3.5) thus gives

Pp
(
Rp ◦ T−1

p (ε) ◦ ϑτp ≥ η,V −1
p (t) ≥ ε

)
= Pp

(
Rp ◦ T−1

p (ε) ≥ η,V −1
p (t) ≥ ε

)
and, for the same reasons,

Pp
(
Tp(c) ◦ ϑτp ≥ ε,V −1

p (t) ≥ ε
)

= Pp
(
Tp(c) ≥ ε,V −1

p (t) ≥ ε
)

which thus leads to the bound

Pp (Rp(c) ◦ ϑτp ≥ η) ≤ Pp
(
Rp ◦ T−1

p (ε) ≥ η
)

+ Pp (Tp(c) ≥ ε) + 2Pp
(
V −1
p (t) ≤ ε

)
.

Letting first p → ∞, then c → 0 and finally ε → 0 yields (3.9) in the case τp = V −1
p (t),

which achieves the proof of this step.

Step 4: proof that H∞(t),C?∞(t) > 0

We now prove that H∞(t) and C?∞(t) are almost surely strictly positive. For H∞(t),
this comes from the convergence Hp(t)⇒ H∞(t) which we have just proved, together

with the fact that Hp(t) is equal in distribution to Rp ◦ T̃−1
p (t) with Rp and T̃−1

p converging

to two subordinators (this does not imply that Rp ◦ T̃−1
p (t) ⇒ R∞ ◦ T−1

∞ (t), but it does
imply that any accumulation point is necessarily almost surely > 0).

Let us now prove that
lim inf
p→∞

Pp
(
C?p(t) ≥ η

)
−→
η↓0

1.

We use the same exchangeability arguments as in the previous step. We have

C?p(t) = Hp(V
−1
p (t)) =

(
Rp ◦ T̃−1

p ◦ ϑpV
−1
p (t)

)
(V −1
p (t)).

Let ϕp be the measurable mapping such that ϕp(ωn0 ) = Rp ◦ T̃−1
p (n/p), so that ϕp(ω

pt
0 ) =

Rp ◦ T̃−1
p (t): then for any u ≥ t, on the event {V −1

p (t) = u} we have(
Rp ◦ T̃−1

p ◦ ϑpV
−1
p (t)

)
(V −1
p (t)) =

(
Rp ◦ T̃−1

p ◦ ϑpu
)

(u) = ϕp(ω
pu
0 ) ◦ ϑpu ≥ ϕp(ωpt0 ) ◦ ϑpu

with the last inequality following from the monotonicity of n 7→ ϕp(ω
n
0 ). In particular,

Pp
(
C?p(t) ≥ η

)
≥ Pp

(
Hp(V

−1
p (t)) ≥ η,V −1

p (t) ≥ ε
)

≥ Pp
(
ϕp(ω

pt
0 ) ◦ ϑpV

−1
p (t) ≥ η,V −1

p (t) ≥ ε
)

and (3.5) finally gives

Pp
(
C?p(t) ≥ η

)
≥ Pp

(
ϕp(ω

pt
0 ) ≥ η,V −1

p (t) ≥ ε
)
≥ Pp (Hp(t) ≥ η)− Pp

(
V −1
p (t) ≤ ε

)
.

Letting first p → ∞, then η ↓ 0 and finally ε → 0 gives the result, since we know that
Hp(t)⇒ H∞(t) with P(H∞(t) > 0) = 1.
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4 Convergence of the height process

In this section we state and prove the following triangular version of Theorem B.

Theorem B’ (Triangular version of Theorem B). If Assumptions G’, C1’ and C2’ are
satisfied and the asymptotic independence relation

Pp (cpR(1) ≥ ε | T (1) ≥ δp)→ 0 for every ε, δ > 0 (IC1’)

holds, then Πp ⇒ Π∞ where Π∞ is the ψ/φ snake. In particular, Hp
fdd⇒ |Π∞( · )|.

The rest of the section is devoted to the proof of Theorem B’: until the end of this
section, we thus assume that all the assumptions of Theorem B’ hold. The core of the
proof is given in this section, and the lengthy proof of a technical result (Proposition 4.1)
is in Section 7.

First, we note that the assumptions made imply that (Rp, Tp,Zp) ⇒ (R∞, T∞,Z∞)

with R∞ independent from (Z∞, T∞). Indeed, Rp ⇒ R∞ by assumption and (Tp,Zp)⇒
(T∞,Z∞) by Proposition 3.1. Moreover, the independence condition (IC1’) means pre-
cisely that in the limit, R∞ and T∞ do not jump simultaneously, and as any accumulation
point of (Rp, Tp,Zp) is necessarily a subordinator, this implies that R∞⊥⊥T∞ from which
we get R∞⊥⊥(T∞,Z∞).

In order to prove Theorem B’, we will need the following stronger independence
property. The proof is rather long and technical, and thus postponed to Section 7.

Proposition 4.1. Assume that the assumptions of Theorem B’ hold. Then for any finite
set J ⊂ R we have R∞⊥⊥(Z t

∞, T
t
∞)t∈J .

Remark 4.2. In Theorem E, we introduce a simple extension of a Bellman–Harris forest.
In this case, one can check that Rp⊥⊥(Tp,Zp) but that Rp is in general not independent
from (Z t

p , T
t
p)t∈J for |J | > 1. As a consequence, the passage from R∞⊥⊥(T∞,Z∞) to

Proposition 4.1 only holds asymptotically and actually requires some delicate arguments
developed in Section 7.

Recall from Theorem A’ that (Πp) is tight. Since by assumptions we have (Sp,Hp)⇒
(S∞,H∞) and (Rp, Tp,Zp) ⇒ (R∞, T∞,Z∞) with R∞⊥⊥(T∞,Z∞), it follows by duality
and the previous result that the sequence(

Sp,Hp,Πp, (Ẑ
t
p , T̂

t
p, R̂

t
p)t∈Q

)
is tight. Consider any accumulation point and assume without loss of generality in the
rest of this section that there is almost sure convergence(

Sp,Hp,Πp, (Ẑ
t
∞, T̂

t
p, R̂

t
p)t∈Q

)
→
(
S∞,H∞,Π∞, (Ẑ

t
∞, T̂

t
∞, R̂

t
∞)t∈Q

)
(4.1)

with R̂t∞⊥⊥(Ẑ t
∞, T̂

t
∞) for any t ∈ Q and Π∞ continuous with life-time process H∞. Since

(T̂ t∞)−1(t− s) = H∞(t)−min
[s,t]

H∞, 0 ≤ s ≤ t ∈ Q (4.2)

(see for instance [25, Lemma 5.3]) we obtain in particular R̂t∞⊥⊥H∞(t). Actually, as a
consequence of Proposition 4.1, a stronger result holds.

Lemma 4.3. For any t ∈ Q we have R̂t∞⊥⊥H∞.

Proof. According to Proposition 4.1 we have R∞⊥⊥(Tu∞, u ∈ J) for any finite set J ⊂ R,
which implies R̂t∞⊥⊥(Tu∞ ◦ ϑt, u ∈ J) for every t ∈ Q. Since Tu∞ ◦ ϑt = T̂ t−u∞ (i.e., reverting
time from t and then shifting by u is the same as reverting time from t− u) and H∞(u) =

(T̂u∞)−1(u) we obtain the result.
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Lemma 4.4. For any t ∈ Q we have Π∞(t) = L (R̂t∞ |H∞(t)).

Proof. Since R̂t∞⊥⊥H∞(t) and R̂t∞ is a subordinator, R̂t∞ does not jump at time H∞(t)

and so Lemma 2.1 and the convergence (4.1) imply that

Πp(t) = L
(
R̂tp |Hp(t)

)
→ L

(
R̂t∞ |H∞(t)

)
with the convergence holding in the usual Skorohod space. On the other hand, since
Πp → Π∞ with Π∞ continuous, we have also Πp(t)→ Π∞(t), this time in W . From these
two convergences one gets the desired result.

For s ≤ t with t ∈ Q, we define

Π̃∞(s, t) = L
(
R̂t∞ |(T̂ t∞)−1(t−s)

)
.

Intuitively, Π̃∞(s, t) is the section of the chronological spine from t that does not overlap
the chronological spine from s.

Lemma 4.5. Let s ≤ t with t ∈ Q. Then Π∞(t) =
[
Π∞(s), Π̃∞(s, t)

]
min[s,t] H∞

. Moreover,

conditionally on H∞, Π̃∞(s, t) is a subordinator with Laplace exponent φ killed at
(T̂ t∞)−1(t− s) and independent from (Π∞(u), u ≤ s).

Proof. That conditionally on H∞, Π̃∞(s, t) is a subordinator with Laplace exponent
φ killed at (T̂ t∞)−1(t − s) is immediate from its definition and the fact that R̂t∞ is a
subordinator with Laplace exponent φ independent from H∞. It remains to prove

Π∞(t) =
[
Π∞(s), Π̃∞(s, t)

]
min[s,t] H∞

and the conditional independence.

Proof of the relation Π∞(t) =
[
Π∞(s), Π̃∞(s, t)

]
min[s,t] H∞

. We have seen in the proof of

Theorem A’ that Πp(t) |min[s,t] Hp−2cp= Πp(s) |min[s,t] Hp−2cp : letting p→∞ we thus obtain

Π∞(t) |min[s,t] H∞= Π∞(s) |min[s,t] H∞ (using as before the convergence of the R̂tp’s, their
asymptotic independence with H∞ and Lemma 2.1) and so

Π∞(t) =
[
Π∞(t),Θmin[s,t] H∞(Π∞(t))

]
min[s,t] H∞

=
[
Π∞(s),Θmin[s,t] H∞(Π∞(t))

]
min[s,t] H∞

.

Since Π∞(t) = L (R̂t∞ |(T̂ t∞)−1(t)) (Lemma 4.4) and (T̂ t∞)−1(t− s) = H∞(t)−min[s,t] H∞
(Relation (4.2)) we obtain

Θmin[s,t] H∞ (Π∞(t)) = L
(
R̂t∞ |(T̂ t∞)−1(t−s)

)
.

Combining the last two displays proves the desired relation.

Proof of the conditional independence. We now prove that Π̃∞(s, t) is independent of
(Π∞(u), u ≤ s) conditionally on H∞. For finite p, define

Π̃p(s, t) = L (R̂tp |(T̂ tp)−1(t−s)−).

We have (Π̃p(s, t),Θs(Sp)) ∈ mF≥[ps] and ((R̂up )u≤s, Sp |s) ∈ mF<[ps] which implies by
letting p→∞ that (

Π̃∞(s, t),Θs(S∞)
)
⊥⊥
(

(R̂u∞)u≤s,u∈Q, S∞ |s
)
.

Since Π∞(u) = L (R̂u∞ |H∞(u)) for u ∈ Q, this gives(
Π̃∞(s, t),Θs(S∞)

)
⊥⊥
(

(Π∞(u))u≤s , S∞ |s
)
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(note that we can remove the condition u ∈ Q by continuity of Π∞) which further gives
the independence between Π̃∞(s, t) and (Π∞(u), u ≤ s) conditionally on S∞. Since finally
σ(S∞) = σ(H∞) this gives the desired conditional independence result.

We can now prove Theorem B’.

Proof of Theorem B’. We already know that its life-time process is H∞ and is the height
process associated with S∞. Thus according to Theorem 2.3 we only have to show that
conditionally on H∞, Π∞ is (time-inhomogeneous) Markovian and satisfies for every
s ≤ t the equality in distribution

Π∞(t) = [Π∞(s),Γ]min[s,t] H∞

with Γ an independent subordinator with Laplace exponent φ killed at H∞(t)−min[s,t] H∞.
To do so, we only have to prove that

E [f(Π∞(t)) |H∞,Π∞(u), u ≤ s] = E
[
f
(

[Π∞(s),Γ]min[s,t] H∞

)
|H∞,Π∞(s)

]
.

For t ∈ Q this is a direct consequence of Lemma 4.5, and so the result follows by
continuity of Π∞.

5 Convergence of the contour process

In this section we state and prove the following triangular version of Theorem C.

Theorem C’ (Triangular version of Theorem C). If Assumptions G’, C1’ and C2’ are
satisfied, if (IC1’) holds and if

P
(
|P∗

p | ≥ εpgp | vpV ∗p ≥ δ
)
−→
p→∞

0 for every ε, δ > 0, (IC2’)

then V∞ is independent of H∞ and cp/vp →∞. In particular, C?p
fdd⇒ H∞ ◦ V −1

∞ .

Under the assumptions of this theorem, we know by Theorem B’ that Πp ⇒ Π∞ and
since Vp ⇒ V∞, we can assume without loss of generality that (Πp,Vp)⇒ (Π∞,V∞) with
an unknown (at this point) correlation structure between Π∞ and V∞.

As we will see, the main idea is that the asymptotic behavior of Vp and Cp is governed
by long edges, i.e., edges with length ≥ ε/vp for some ε > 0. In contrast, H and C? only
“see”, by construction, the birth times of individuals, which are of the order of 1/cp and
are thus somehow insensitive to long edges because, intuitively, these long edges are
close to the leaves.

To formalize this idea, for each ε > 0 and k ≥ 0 we consider λk the kth individual with
an edge longer than ε/vp and λ+

k its last child: λ0 = 0 and for k ≥ 1,

λk = min {n > λk−1 : Vn ≥ ε/vp} and λ+
k = inf

{
n ≥ λk : S(n) = S(λk)− 1

}
.

In particular, {λk, . . . , λ+
k − 1} is the set of λk’s descendants (including λk) and⋃

k≥0

{
λk, . . . , λ

+
k − 1

}
.

is the set of individuals with an ancestor (including potentially the individual herself)
with an edge ≥ ε/vp. Note that the sequences (λk) and (λ+

k ) depend on p and ε but this
dependency is omitted from the notation for simplicity. We will also denote with ·̃ scaled
versions of these random times, namely

λ̃+
k =

1

p
λ+
k and λ̃+

k =
1

p
λ+
k
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We finally define λ∞k as the time of the kth jump ≥ ε of V∞. Note that since Vp ⇒ V∞,
standard properties of the Skorohod topology imply that(

λ̃k, k ≥ 0
)
⇒ (λ∞k , k ≥ 0) , (5.1)

see for instance [13, Proposition VI.2.17].
We will thus consider sequences (Xp,ε) indexed by the scaling parameter p and also

by ε, and for such sequences we will use the notation Xp,ε ⇒p,ε X to mean that Xp,ε

converges weakly to X when we let first p→∞ and then ε ↓ 0, or more formally that for
every bounded continuous function f we have

lim sup
p→∞

|E [f(Xp,ε)]− E [f(X)]| −→
ε→0

0.

For instance, standard properties of the Skorohod topology imply that V <ε
p (t)⇒p,ε dt for

each fixed t ≥ 0, where d ≥ 0 denotes the drift of the process V ∞ and V <ε
p for p ∈ N∪{∞}

is obtained from Vp by only keeping jumps < ε, i.e., by removing all jumps ≥ ε.

5.1 Step 1: cp/vp →∞
The proof of cp/vp → ∞ relies on the next lemma which shows that the time spent

visiting subtrees rooted at long edges is negligible.

Lemma 5.1. For every k ≥ 0 we have λ̃+
k − λ̃k ⇒ 0.

Proof. We note that λ+
k −λk is equal in distribution to the hitting time of −M by S, where

M⊥⊥S is distributed as |Pλ1
|. Since Sp ⇒ S∞, the time needed for S to hit −εpgp is of

the order of p. Since |Pλ1
|/(pgp)⇒ 0 by assumption, i.e., M is negligible compared to

pgp, the hitting time of M is also negligible compared to p, hence the result.

We now prove that cp/vp →∞: by working along appropriate subsequences assume
without loss of generality that vp/cp → ` = lim supp(vp/cp). Since R(k) ≤ VT (k)−1 we
have

H([pt]) =

 ∑
k:T (k)≤[pt]

R(k)

 ◦ ϑ[pt] ≤

 ∑
k:T (k)≤[pt]

VT (k)−1

 ◦ ϑ[pt].

Let

Ep =

[pt] /∈
⋃
k≥1

{
λk, . . . , λ

+
k − 1

}
be the event that no ancestor of [pt] has long edges. In Ep we have

H([pt]) ≤
∑
j≤[pt]

Vj1 (Vj < ε/vp)

and so upon scaling, we get vpHp(t)/cp ≤ V <ε
p (t) in Ep. Since Hp(t) ⇒ R∞(T−1

∞ (t)),
V <ε
p (t) ⇒p,ε dt and P(Ep) → 1 as a consequence of Lemma 5.1, we obtain that
P(`R∞(T−1

∞ (t)) ≤ dt) = 1 which can only hold if ` = 0.

5.2 Step 2: snake-like property

Let in the sequel
X(m) = sup

{0,...,m}
S − S(m).

In the following statement, we consider a functional W whose kth increment is a
functional of the sequence of sticks between the kth and (k + 1)th record time of the
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path S. By standard fluctuation theory, W can be seen as a renewal process whose time
is measured in local time units for the reflected process X.

The basic idea behind the next relation consists in decomposing the process W before
and after the local time corresponding to the excursion of X straddling t. We refer the
reader to Figure 6.

Recall (see Section 2.1.3) that F<Γ = σ(ωk, k < Γ) for any random time Γ : Ω → N,
that mF is the set of random variables that are measurable with respect to the σ-algebra
F , and that we use throughout the notation Wn = W ◦ θn and Ŵn = W ◦ ϑn for any
random variable W defined on Ω. In the following statement, Z is any random variable
taking values in an arbitrary measurable space: the following result will typically be
used for real-valued random variables.

Lemma 5.2 (Snake-like property). Let Z ∈ mF<T (1) and

W =
∑
k∈N

Z ◦ θT (k) εk+1. (5.2)

Then W |T̃−1(m)∈ F≤m and if m is not a weak record time for the walk S, then

ΘT−1(m)(W ) = Θ(Zm)−1◦X(m)(W
m) and W =

[
W,Θ(Zm)−1◦X(m)(W

m)
]
T̃−1(m)+1

. (5.3)

Proof. The fact that W |T̃−1(m)∈ F≤m is a direct consequence of the assumption Z ∈
mF<T (1) and the fact that T (T̃−1(m)) ≤ m and is a stopping time.

Consider now m which is not a weak ascending ladder height time and let us prove
the two relations of (5.3). Since W = [W,Θh(W )]h for every h ≥ 0, the second relation
follows directly from the first one with h = T−1(m) since, whenm is not a weak ascending
ladder height time, we have T−1(m) = T̃−1(m) + 1.

As for the first one, ΘT−1(m)(W ) is obtained by skipping the T−1(m) first excursions of
S reflected at its maximum. In terms of the shifted process Wm at time m, this amounts
to skipping the excursions needed to escape the “valley” in which m sits, see Figure 6
for an explanation of this loose statement on a picture. The shifted process needs to
reach level X(m) to escape the valley, and the number of excursions needed to do so is
precisely given by (Z m)−1 ◦X(m) by definition of Z m. This proves the result.

5.3 Step 3: Π∞⊥⊥V∞ by a perturbation argument

In this step we prove that Π∞⊥⊥V∞ through a perturbation argument. We first
introduce the perturbed sequence, explain the main idea and prove that S∞⊥⊥V∞ in Sec-
tion 5.3.1. The independence between Π∞ and V∞ is then established in Section 5.3.2.

5.3.1 Perturbed sequence, main idea and S∞⊥⊥V∞

For each p ≥ 1, let ((V ′n,P
′
n), n ≥ 1) be a sequence of i.i.d. random variables, independent

of ((Vn,Pn), n ≥ 1) and with the same law as that of (V ∗p ,P
∗
p ) conditioned on V ∗p < ε/vp.

Out of the sequence ((V ′n,P
′
n), n ≥ 1) and the original sequence ((Vn,Pn), n ≥ 1), we

define a new sequence of sticks(
V̂n, P̂n

)
=

{
(Vn,Pn) if Vn < ε/vp,

(V ′n,P
′
n) else.

Then ((V̂n, P̂n), n ≥ 1) forms a sequence of i.i.d. random variables with common distri-
bution the law of (V ′1 ,P

′
1) and we will denote with a hat ·̂ all the processes defined from

this sequence of sticks, e.g., Π̂, Π̂p, etc. Moreover, by construction we have(
(λk, Vλk ,Pλk), k ≥ 1

)
⊥⊥
(
(V̂n, P̂n), n ≥ 1

)
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which implies for instance that
Π̂p⊥⊥V ≥εp

with V ≥εp = Vp−V <ε
p obtained from Vp by only keeping jumps≥ ε. If we can show that the

perturbation induced by the (V ′n,P
′
n)’s is negligible in the sense that Πp(t)− Π̂p(t)⇒ 0

for each fixed t, then we will get Π∞⊥⊥V∞ (because V ≥εp ⇒p,ε (V∞(t)− dt, t ≥ 0)). This
is the object of the next section, and before going on we use these arguments to show
that S∞⊥⊥V∞.

The fact that Sp − Ŝp ⇒ 0 is a direct consequence of the assumption (IC2’) and the

fact that ((Vn,Pn), n ≥ 1) and ((V̂n, P̂n), n ≥ 1) only differ by a locally finite number of
terms (by Lemma 5.1). More precisely, we have

sup
[0,t]

∣∣∣Sp − Ŝp∣∣∣ ≤ 1

pgp

∑
k:λk≤[pt]

(
|Pλk |+

∣∣P ′
λk

∣∣) . (5.4)

By assumption we have |Pλk |/(pgp)⇒ 0. Since

P
(∣∣P ′

λk

∣∣ ≥ xpgp) = P
(∣∣P∗

p

∣∣ ≥ xpgp | V ∗p < ε/vp
)
≤
P
(∣∣P∗

p

∣∣ ≥ xpgp)
P
(
V ∗p < ε/vp

)
we also have |P ′

λk
|/(pgp)⇒ 0 since Assumptions G’ and C2’ imply that |P∗

p |/(pgp)⇒ 0

and vpV ∗p ⇒ 0. Since the number of terms in the sum in the right-hand side of (5.4) forms

a tight sequence, we get as desired that Sp− Ŝp ⇒ 0. We now show that the perturbation
does not significantly change the chronological height process as well.

5.3.2 Perturbation of the chronological spine process

Let ((V̂
(k)
n , P̂

(k)
n ), n ≥ 1) be obtained by induction as (V̂

(0)
n , P̂

(0)
n ) = (Vn,Pn) and

(
V̂ (k+1)
n , P̂(k+1)

n

)
=

{
(V ′n,P

′
n) if n = λk+1,(

V̂
(k)
n , P̂

(k)
n

)
else.

Thus, ((V̂
(k)
n , P̂

(k)
n ), n ≥ 1) and ((V̂

(k+1)
n , P̂

(k+1)
n ), n ≥ 1) only differ by one element and

in order to prove that Πp(t)− Π̂p(t)⇒ 0 it is enough to prove that Π̂
(k)
p (t)− Π̂

(k+1)
p (t)⇒ 0

for every k ≥ 0. Because Πp(t) = (Rp |T̃−1
p (t)) ◦ ϑ[pt], (Rp, Tp) ⇒ (R∞, T∞) with R∞ a

subordinator independent from T∞, it is enough to prove that

R̂(k)
p − R̂(k+1)

p ⇒ 0 and T̂ (k)
p − T̂ (k+1)

p ⇒ 0, k ≥ 0.

By shifting and using the strong Markov property, it is enough to prove the result for
k = 0. We show that Rp − R̂(1)

p ⇒ 0, the convergence Tp − T̂ (1)
p ⇒ 0 can be shown along

the same lines. To ease the notation let us define λ̃ = 1
pλ1 and let us also denote with ·

instead of with ·̂(1) all quantities defined from the (V̂
(1)
n , P̂

(1)
n )’s, e.g., Rp instead of R̂(1)

p ,
etc.

For the sake of simplicity, let us now assume that the drift of the subordinator Z∞ is
equal to 0. We will briefly discuss in Remark 5.3 how to adapt our argument to the case
of positive drift. Since S∞⊥⊥V∞, λ1 is with high probability not a record time of S and so
Lemma 5.2 entails (in an event of probability going to one)

R = R |T̃−1(λ1) +∆R
(
T−1(λ1)

)
εT−1(λ1) + Θ(Z λ1 )−1(X(λ1))

(
Rλ1

)
(5.5)

and
R = R |

T̃
−1

(λ1)
+∆R

(
T−1(λ1)

)
εT−1(λ1) + Θ(Z λ1 )−1(X(λ1))

(
Rλ1

)
. (5.6)
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In order to grasp more intuition on what follows, let us briefly give an interpretation of
the previous relations. Recall that for the processes R, T,Z , time is measured in local
time units for the reflected process X. The previous relation consists in decomposing
the process R (and R̄) before and after the local time corresponding to the excursion
of X straddling λ1. In particular, (Zλ1)−1(X(λ1)) is the local time needed to exit the
“valley” straddling λ1. See Figure 6.

Since the two initial sequences of sticks coincide up to λ1, we have

R |T̃−1(λ1)= R |
T̃
−1

(λ1)
.

Next, let E be the event{
depth of the valley straddling λ1 + overshoot upon exiting the valley︸ ︷︷ ︸

for S

≥ depth of the valley︸ ︷︷ ︸
for S̄

}

which can be formerly defined as

E =
{

Z λ1 ◦
(
Z λ1

)−1 ◦X(λ1) ≥ X(λ1)
}

and analogously, define

E =

{
Z λ1 ◦

(
Z λ1

)−1

◦X(λ1) ≥ X(λ1)

}
.

In the event E ∩E, the two Lukaziewicz paths exit the valley straddling λ1 at the same
time, i.e.,

T ◦ T−1(λ1) = T ◦ T−1(λ1),

and this implies that, in this event,

Θ(Zλ1 )−1(X(λ1))

(
Rλ1

)
= Θ(Zλ1 )−1(X(λ1))

(
Rλ1

)
.

We now claim that P(E),P(E)→ 1. Let us first consider the overshoot when exiting the
valley straddling λ1, which is given by

Z λ1 ◦
(
Z λ1

)−1 ◦X(λ1)−X(λ1).

As X(λ1) ∈ mF<λ1
and Z λ1 ∈ mF≥λ1

, the latter quantity converges in distribution
(after proper space rescaling by 1/pgp) to Z∞ ◦ Z −1

∞ (ξ) − ξ, where ξ⊥⊥Z∞ is almost
surely positive. In the absence of drift for the subordinator Z∞, we must have

Z∞ ◦Z −1
∞ (ξ)− ξ > 0

because S∞ does not creep at level ξ (see for instance [3, Thereom VI.19]) and as a
consequence, Z λ1 ◦

(
Z λ1

)−1 ◦X(λ1) −X(λ1) is of the order of 1/(pgp). On the other
hand, X(λ1)−X(λ1) is negligible compared to 1/(pgp) because of (IC2’) which implies
that P(E) → 1. By similar arguments one can prove that P(E) → 1. This shows that
P(E),P(E) → 1, and as discussed earlier, the last terms on the RHS of (5.5) and (5.6)
are equal.

In order to conclude the proof, we only have to show that for the middle terms of (5.5)
and (5.6) we have

P
(
cp∆R(T−1(λ1)) ≥ x

)
−→
p→∞

0, P
(
cp∆R(T−1(λ1)) ≥ x

)
−→
p→∞

0
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for any x > 0. We have

∆R(T−1(λ1)) = ∆Rλ1
(
(Z λ1)−1(X(λ1))

)
.

As X(λ1) ∈ mF<λ1
and (Rλ1 ,Z λ1) ∈ mF≥λ1

we see that cp∆R(T−1(λ1)) is equal in
distribution to ∆Rp(Z −1

p (ζp)) with (Rp,Zp)⊥⊥ζp and ζp equal in distribution to Xp(λ̃).
Thus ζp converges in distribution to some ζ∞ independent from Z∞, so that Z −1

p (ζp)⇒
Z −1
∞ (ζ∞) and because R∞⊥⊥Z∞ we obtain ∆Rp(Z −1

p (ζp)) ⇒ 0. In the event E ∩ E we
have

∆R(T−1(λ1)) = ∆Rλ1
(
(Zλ1)−1(X(λ1))

)
and so the same argument as above gives cp∆R(T−1(λ1))⇒ 0. This shows that V∞⊥⊥Π∞
which completes the proof of Theorem C’.

Remark 5.3. As mentioned in the proof, we only proved the previous result assuming
that Z∞ has no drift. In this case, we argued that the two random walks exit the λ1-valley
at the same time with high probability. In the presence of drift, this is not the case
anymore. The two random walks S or S̄ can exit the valley by “creeping”. In this case,
the exit times are not equal, but their differences vanish (macroscopically) at the limit. A
similar but more cumbersome argument can then be applied, but the spirit of the proof
remains the same.

6 Applications

We now come back to the two specific examples of Section 1.6.

6.1 Proof of Theorem D

In the non-triangular case and when |P∗| has finite variance, Assumptions G, C1
and C2 imply Assumptions G’, C1’ and C2’ with ψ(λ) = λ2, and so in order to prove The-
orem D we only have to check that conditions (IC1) and (IC2) hold. We first check (IC2).
Fix ε > 0 and let λ = inf{n ≥ 0 : Vn ≥ ε/vp}. Then for every K > 0

P (|P∗| ≥ x√p | vpV ∗ ≥ ε) = P (|Pλ| ≥ x
√
p)

≤ P (λ ≥ [Kp]) + P

(
max

i∈{0,...,[Kp]}
|Pi| ≥ x

√
p

)
.

Since |P∗| has finite variance, the second term vanishes when we let p→∞, while since
Vp ⇒ V∞ we have that λ/p is tight, and so the first term also vanishes when we let first
p→∞ and then K →∞.

We now turn to (IC1). We have

P (cpR(1) ≥ ε | T (1) ≥ δp) =
P (cpR(1) ≥ ε, T (1) ≥ δp)

P (T (1) ≥ δp)
.

In the finite variance case, the tail of the ladder height time of a recurrent, zero-mean
random walk with finite variance decays asymptotically like x−1/2 up to a multiplicative
constant. Applying this result to S and −S, we obtain the existence of finite and positive
constants κ1, κ2 such that

P(T (1) ≥ x) ∼ κ1x
−1/2 and P(τ−1 ≥ x) ∼ κ2x

−1/2 as x→∞,

and in particular, in order to prove (IC1) we only have to prove that

√
p P (cpR(1) ≥ ε, T (1) ≥ δp)→ 0.

EJP 24 (2019), paper 47.
Page 29/38

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP307
http://www.imstat.org/ejp/


Height and contour processes of Crump-Mode-Jagers forests (II)

Remark 6.1. Note that

√
p P (cpR(1) ≥ ε, T (1) ≥ δp) ≤ √p P (T (1) ≥ δp)

From the tail behavior P(T (1) ≥ x) ∼ κ1x
−1/2, the right-hand side remains bounded.

Obviously, the previous bound is poor since we got rid of an event of small probability.
Informally, the upcoming computations boil down to proving that for large values of p,
the events {√p(cpR(1) ≥ ε} and {T (1) ≥ δp} are sufficiently decorrelated so that the the
left-hand side goes to 0.

Since x 7→ 1− e−x is decreasing, Markov inequality gives

P (cpR(1) ≥ ε, T (1) ≥ δp) ≤ 1

(1− e−ε)(1− e−δ)
E
((

1− e−cpR(1)
)(

1− e−T (1)/p
))

and so in order to prove the result, it is enough to show that

√
pE
((

1− e−cpR(1)
)(

1− e−T (1)/p
))
−→
p→∞

0.

Considering F (t, z, r) = (1 − e−t/p)(1 − e−cpr) in (2.3) and using the notation ξ = |P∗|,
we obtain

E
((

1− e−T (1)/p
)(

1− e−cpR(1)
))

=
∑
t,x,z

E
((

1− e−t/p
)(

1− e−cpAz(P∗)
)

; ξ = x+ z
)
P(τ−x−1 = t− 1)

=
∑
x,z

E
(

1− e−cpAz(P∗); ξ = x+ z
)
E
(

1− e−(τ−x−1+1)/p
)

=
∑
x≥1

E
(

1− e−cpAξ−x(P∗); ξ ≥ x
)(

1− e−1/puxp

)
where the initial sum is taken over t, x ≥ 1 and z ≥ 0 and up = E(e−τ

−
1 /p). We thus have

√
pE
((

1− e−T (1)/p
)(

1− e−cpR(1)
))

=
√
p
∑
x≥1

E
(

1− e−cpAξ−x(P∗); ξ ≥ x
) (

1− uxp
)
+o(1)

with o(1) an error term that vanishes as p → ∞. We split the sum into two terms,
depending on whether x is large or not. Fix until further notice some η > 0, and consider
the terms x ≤ η√p: we have

√
p
∑

x≤η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
) (

1− uxp
)

≤ √p
(

1− uη
√
p

p

) ∑
x≤η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
)

≤ √p
(

1− uη
√
p

p

)∑
x

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
)

=
√
pE
(

1− e−cpR(1)
)
×
(

1− uη
√
p

p

)
= 1− uη

√
p

p .

From the tail behavior P(τ−1 ≥ x) ∼ κ2x
−1/2, standard Tauberian theorems imply the

existence of a finite constant κ such that E(1− e−λτ
−
1 ) ∼ κλ1/2 as λ→ 0 (see for instance

[4, Corollary 8.1.7]), which implies in particular that 1−uη
√
p

p → 1− e−ηκ. Thus we obtain

lim sup
p→∞

√
p
∑

x≤η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
) (

1− uxp
)
≤ 1− e−ηκ.
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Let us now look at the other terms corresponding to x ≥ η√p: we have

√
p
∑

x≥η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
) (

1− uxp
)

≤ √p
∑

x≥η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
)

=
√
p
∑

x≥η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1, ξ ≥ η√p
)

≤ √p
∑
x

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1, ξ ≥ η√p
)
.

From (2.2) we obtain

E
(

1− e−cpR(1); |PT (1)−1| ≥ η
√
p
)

=
∑
x

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1, ξ ≥ η√p
)

and so using Cauchy–Schwarz inequality we get

√
p
∑

x≥η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
) (

1− uxp
)

≤ √p
√
E
[(

1− e−cpR(1)
)2]

P
(
|PT (1)−1| ≥ η

√
p
)

≤ η−1/2
√√

pE
(
1− e−2cpR(1)

)
E
(∣∣PT (1)−1

∣∣ ; ∣∣PT (1)−1

∣∣ ≥ η√p).
Since |P∗| is assumed to have finite variance, |PT (1)−1| has finite mean and so as p→∞
we have E(|PT (1)−1|; |PT (1)−1| ≥ η

√
p)→ 0. On the other hand, the fact that R(1) is in

the domain of attraction of a β-stable distribution and the choice of cp (which ensures
that R∞ has Laplace exponent λβ) implies that

√
pE(1− e−2cpR(1))→ 2β , and so we get

√
p
∑

x≥η√p

E
(

1− e−cpAξ−x(P∗); ξ ≥ x+ 1
) (

1− uxp
)
−→
p→∞

0.

We have thus proved that for any η > 0,

lim sup
p→∞

√
pE
((

1− e−tT (1)/p
)(

1− e−cpR(1)
))
≤ 1− e−ηκ.

Letting η → 0 concludes the proof of (IC1).

6.2 Proof of a triangular version of Theorem E

The following result extends Theorem E to a triangular setting.

Theorem E’ (Triangular version of Theorem E). Assume that:

• Assumptions G’ and C2’ are satisfied and V ∗p and |P∗
p | are independent;

• conditionally on (V ∗p , |P∗
p |) = (v, n), the locations of the atoms of P∗

p are i.i.d. with
common distribution vXp for some random variable Xp ∈ (0, 1];

• lim infpE(Xp) > 0.

Then Assumption C1’ is satisfied with cp = v[1/gp]/E(Xp) and R∞ = V∞, and (IC1’)
and (IC2’) hold. In particular, Π∞ is the ψ/ϕ-snake with ϕ the Laplace exponent of V∞.
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Proof. We need to check Assumption C1’ and that the asymptotic independence con-
ditions (IC1’) and (IC2’) hold. Let for simplicity define ξ = |PT (1)−1|. It is well-known
that conditionally on ξ = n, Z(1) is uniformly distributed on {0, . . . , n− 1} (this can be
checked from (2.2)). Given the law of (V ∗p ,P

∗
p ), it follows that R(1) conditioned on ξ = n

is equal in distribution to V ∗p X
(U :n)
p where V ∗p , X

1
p , . . . , X

n
p and U are independent, the

Xk
p are i.i.d. distributed as Xp, U is uniformly distributed on {1, . . . , n} and X(k:n)

p is the

kth order statistic of the (X1
p , . . . , X

n
p ). Since X

(U :n)
p is equal in distribution to Xp by

exchangeability, we obtain that R(1) is independent from ξ, and thus from T (1), and is
equal in distribution to V ∗p Xp with V ∗p ⊥⊥Xp.

It follows that Assumption C1’ is satisfied with cp = v[1/gp]/E(Xp) and R∞ = V∞. The
independence condition (IC1) also holds since we have just argued that

Pp(cpR(1) ≥ ε | T (1) ≥ δp) = P(cpV
∗
p Xp ≥ ε)→ 0.

Further, (IC2) holds since V ∗p ⊥⊥|P∗
p | by assumption and pgp →∞.

7 Proof of Proposition 4.1

In the following, for m ∈ N, t ≥ 0 and p ∈ N ∪ {∞} we define

X(m) = sup
{0,...,m}

S − S(m) and Xp(t) = sup
[0,t]

Sp − Sp(t) = − inf
[0,t]

Ŝtp. (7.1)

To prove Proposition 4.1 we will repeatedly use the following two simple lemmas. The
first lemma is obvious but the situation it considers will actually be often encountered in
what follows. The second lemma follows from Lemma 2.1 and the assumption (Rp, Tp)⇒
(R∞, T∞) with R∞⊥⊥T∞ (so that that R∞ is almost surely continuous at any random time
Γ ∈ mσ(T∞)). Recall also that under Assumption G’ we have proved in Proposition 3.1
that T−1

p ⇒ T−1
∞ which is also needed in the proof.

Lemma 7.1. If the pair (A∞, B∞) is the weak limit of a sequence (Ap, Bp) such that
Ap ∈ mF<[pt] and Bp ∈ mF≥[pt] for some t ≥ 0, then A∞⊥⊥B∞.

Lemma 7.2. If Assumption G’ holds and (Rp, Tp) ⇒ (R∞, T∞) with R∞⊥⊥T∞, then for
any t ≥ 0 we have Rp |T−1

p (t)⇒ R∞ |T−1
∞ (t) as well as Rp |T−1

p (t)−⇒ R∞ |T−1
∞ (t).

For 0 ≤ s ≤ t let

Ξs(t) =
(
T s∞ |(T s∞)−1(t−s)−,Z

s
∞ |(T s∞)−1(t−s)−

)
.

Since Rup is distributed as Rp, the sequence (Rup ) is tight. In the following, we will
assume without loss of generality by working along appropriate subsequences that
Rup ⇒ Ru∞ with Ru∞ equal in distribution to R∞, and that this convergence holds jointly
with any other random variables needed. In particular, the Ru∞ are assumed to live
on the same probability space as all the other random variables previously defined, in
particular S∞ and R∞.

7.1 Subordinator decomposition

We first extend the snake-like property of Proposition 5.2 to the continuum. For
further notice we make the following remark.

Remark 7.3. Under Assumption G’, S suitably rescaled converges to a Lévy process
with infinite variation and so the condition “m is not a weak record time” holds with high
probability. In particular, without loss of generality and in order to avoid cumbersome
statements we will henceforth assume that (5.3) always holds, thereby neglecting an
event of vanishing probability.
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The main application of Proposition 5.2 is to disentangle the dependence of the
subordinators R∞, T∞,Z∞ in the past before time t and in the future after time t, where
time is now measured in real time units. This is the purpose of the next result.

Proposition 7.4. For any s ≤ t ∈ R such that ∆S∞(t−s) = 0, (T s∞,Z
s
∞) can be expressed

as a measurable function of T t∞, Z t
∞, Ξs(t) and X∞(t).

Proof. Upon shifting time, it is enough to prove the result for s = 0. By definition we
have

T∞ =
[
T∞,ΘT−1

∞ (t)(T∞)
]
T−1
∞ (t)−

+ εT−1
∞ (t)∆T∞

(
T−1
∞ (t)

)
(7.2)

and
Z∞ =

[
Z∞,ΘT−1

∞ (t)(Z∞)
]
T−1
∞ (t)−

+ εT−1
∞ (t)∆Z∞

(
T−1
∞ (t)

)
. (7.3)

Now we claim that the shifted processes are given by

ΘT−1
∞ (t)(T∞) = Θ(Z t

∞)−1◦X∞(t)(T
t
∞) and ΘT−1

∞ (t)(Z∞) = Θ(Z t
∞)−1◦X∞(t)(Z

t
∞) (7.4)

while the jumps are given by

∆T∞(T−1
∞ (t)) = T t∞ ◦ (Z t

∞)−1 ◦X∞(t) +
(
t− T∞(T−1

∞ (t)−)
)

(7.5)

and
∆Z∞(T−1

∞ (t)) = ∆Z t
∞
(
T t∞ ◦ (Z t

∞)−1 ◦X∞(t)
)
. (7.6)

Indeed, all relations (7.4)–(7.6) hold at the discrete level, i.e., by replacing ∞ by
p < ∞: for (7.4) this is obtained after scaling from Lemma 5.2; for (7.5) and (7.6) this
comes from the fact that T (T−1(m)) −m = Tm ◦ (Z m)−1 ◦X(m) which expresses the
fact that, for the shifted process, the time needed to exit the “valley” straddling t is equal
to the time needed to go above level X(m) (see Figure 6): this directly implies (7.5) and
also (7.6) because both sides then correspond to the overshoot when exiting the valley.

Since these relations hold at the discrete level, (Tp,Zp)⇒ (T∞,Z∞) and we consider
a continuity point of all the processes involved, we can invoke Lemma 2.1 to justify the
passage to the limit p =∞ and thus obtain (7.4)–(7.6). This completes the proof of the
result.

A direct consequence of the next result is that Proposition 4.1 holds for negative
indices. Recall the random variables Ru∞ introduced after Lemma 7.2, which are weak
limits of the Rup assumed to live on the same probability space than S∞.

Corollary 7.5. Assume that the assumptions of Theorem B’ hold. Then for any finite set
J ⊂ R ∩ (−∞, 0) we have

R∞⊥⊥
((

Z u
∞, T

u
∞, R

u
∞ |(Tu∞)−1(−u)

)
u∈J , Ŝ

0
∞

)
.

Proof. Let G∞ = (Ru∞ |(Tu∞)−1(−u))u∈J and Gp = (Rup |(Tup )−1(−u)−)u∈J for p ∈ N. By
working under appropriate subsequences, it follows from Lemma 7.2 that(

Gp, Ŝ
0
p , Rp,Zp, Tp

)
⇒
(
G∞, Ŝ

0
∞, R∞,Z∞, T∞

)
Since for finite p ∈ N we have (Gp, Ŝ

0
p) ∈ mF<0 while (Rp,Zp, Tp) ∈ mF≥0, Lemma 7.1

shows that (G∞, Ŝ
0
∞)⊥⊥ (R∞,Z∞, T∞). Since by assumption we have R∞⊥⊥ (Z∞, T∞),

this gives further R∞⊥⊥(Z∞, T∞, G∞, Ŝ0
∞). This finally entails the desired result as the

remaining random variables (Z u
∞, T

u
∞)u≤0 are measurable with respect to (Z∞, T∞, Ŝ0

∞)

in view of Proposition 7.4 (because T∞ |T−1
∞ (t)−, Z∞ |T−1

∞ (t)− and X∞(t) are measurable

with respect to Ŝt∞).
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Remark 7.6. Contrary to the shifted process T s∞ that can be directly defined through
the shifted path Ss∞, the process Rs∞ has no other obvious definition at the continuum
than its existence in terms of the limit of its discrete counterpart.

We will finally need the following result, whose proof uses the same continuity
arguments as in the proof of Proposition 7.4. Note in particular (and this is rather
crucial) that R∞ and Rs∞ are continuous at the points considered because R∞⊥⊥T∞
and Rs∞⊥⊥(Z s

∞, X∞(s)). Note also that in contrast with the similar decompositions (7.2)
and (7.3) for T∞ and Z∞, there is no extra atom in the decomposition of R∞ because of
this independence structure.

Proposition 7.7. Assume that the assumptions of Theorem B’ hold. Then for every
s ≥ 0, we have almost surely that

R∞ =
[
R∞,Θ(Z s

∞)−1◦X∞(s)(R
s
∞)
]
T−1
∞ (s)

=
[
R∞,Θ(Z s

∞)−1◦X∞(s)(R
s
∞)
]
T−1
∞ (s)− . (7.7)

7.2 Another path decomposition

The proof of Proposition 4.1 relies on one extra path decomposition presented now.
We begin with the following result, which is a consequence of excursion theory applied
to the process reflected at its supremum.

Lemma 7.8. Let (Gt) be a filtration such that S∞ is still a Lévy process with respect
to this filtration. Fix some τ ≥ 0 and let e := (S∞(t+H)− S∞(H), t ∈ [0, τ −H]) with
H = T∞(T−1

∞ (τ)−) be the last negative excursion of S∞ away from its supremum. If
X ∈ mGH then X and e are independent conditionally on H.

Corollary 7.9. Let J ⊂ R be any finite set with min J = 0, τ > max J and e and H

defined as in the previous lemma. Then e and R∞ |T−1
∞ (τ) are independent conditionally

on the shifted/stopped processes (Ξs(τ), s ∈ J).

Proof. The main idea is to apply the previous lemma with the filtration Gt = σ(Zt) where

Zt =
(
R∞ |T−1

∞ (t), S∞ |t
)
, t ≥ 0,

and X = ZH . We decompose the proof into two steps.

Step 1. We first prove that the assumptions of the previous result hold: by definition we
have X ∈ mGH and so we need to show that S∞ is a Lévy process in the filtration (Gt).
To do so we only have to prove that for any bounded and continuous functions f and g
and any t ≥ 0 we have

E
[
f (Θt(S∞)) g

(
R∞ |T−1

∞ (t), S∞ |t
)]

= E [f (S∞)]E
[
g
(
R∞ |T−1

∞ (t), S∞ |t
)]
.

For finite p this is true as

Θt(Sp) ∈ mF≥[pt] while
(
Rp |T−1

p (t)−, Sp |t
)
∈ mF<[pt]

and so the result follows by letting p→∞.

Step 2. In the first step we have proved that the assumptions of the previous lemma
hold, which gives the independence between ZH and the excursion e conditionally on H.
By definition of H, S∞ does not accumulate any local time at its maximum on [H, τ ] and
so we have T−1

∞ (τ) = T−1
∞ (H). Thus, we obtain the independence between(

R∞ |T−1
∞ (τ), S∞ |H

)
and e (7.8)
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conditionally on H. Let σ∗ = min{s ∈ J ∪ {τ} : s ≥ H} and define

A = (Ξs(τ), s ∈ J ∩ [0, σ∗)) and B = (Ξs(τ), s ∈ J ∩ [σ∗, τ ]) .

Then by definition of H we have A ∈ mσ (S∞ |H) while B ∈ mσ (e). Thus (7.8) implies
that (

R∞ |T−1
∞ (τ), A

)
and (e,B)

are independent conditionally on H. If X⊥⊥(Y, Z), then X and Y are independent condi-
tionally on Z: using this observation twice, we obtain from the previous independence
statement that (

R∞ |T−1
∞ (τ)

)
and e

are independent conditionally on (H,A,B) and so also simply conditionally on (A,B)

since H ∈ mσ(A). This completes the proof of the result.

7.3 Proof of Proposition 4.1

We decompose the proof into several steps. The last step of the proof will use the
following lemma.

Lemma 7.10. If S1 and S2 are two i.i.d. subordinators, then for any random time κ

independent from (S1, S2), [S1, S2]κ is distributed as S1 and is independent of κ.

Step 0. The very first step is to show that it is enough to prove the result for finite sets J
such that 0 = minJ . Indeed, assume this is the case and consider any finite set J ⊂ R
with 0 ∈ J . Write J = J− ∪ J+ where J− consists of all the strictly negative indices and
J+ ⊂ R+. Lemma 7.1 implies that(

R∞, (Z
s
∞, T

s
∞)s∈J+

)
⊥⊥Ŝ0

∞

and thus
R∞⊥⊥

(
Ŝ0
∞, (Z

s
∞, T

s
∞)s∈J+

)
since we assume R∞⊥⊥ (Z s

∞, T
s
∞)s∈J+ . Since min J+ = 0 and (Z u

∞, T
u
∞) ∈ mσ(Z∞, T∞,

Ŝ0
∞) for any u ≤ 0 by Proposition 7.4 we get the desired result.

Therefore, the rest of the proof is devoted to proving that

R∞⊥⊥
(
T t∞,Z

t
∞
)
t∈J

for any finite set J ⊂ Q with min J = 0. The proof operates by induction on |J | ≥ 1. For
|J | = 1 this is simply R∞⊥⊥ (Z∞, T∞) which holds by assumption, so let J ⊂ Q be a finite
set with min J = 0, let τ > max J and J+ = J ∪ {τ}: assuming that R∞⊥⊥(T s∞,Z

s
∞)s∈J ,

the rest of the proof is devoted to proving that R∞⊥⊥(Z s
∞, T

s
∞)s∈J+ , i.e., that

E
[
f (R∞) g

(
(Z s
∞, T

s
∞)s∈J+

)]
= E [f (R∞)]E

[
g
(
(Z s
∞, T

s
∞)s∈J+

)]
(7.9)

for any bounded measurable functions f, g. Recall the random variables Rs∞ introduced
after Lemma 7.2 and in order to ease the notation, for s ∈ J define

Γ = Θ(Z τ
∞)−1◦X∞(τ)(R

τ
∞)

so that
R∞ = [R∞,Γ]T−1

∞ (τ)

in view of Proposition 7.7. We now investigate in more details the structure of this
decomposition.
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Step 1. A consequence of Corollary 7.5 (replacing R∞ with Rτ∞ and taking u = −τ ) is
that

Rτ∞⊥⊥
(

(Z s
∞, T

s
∞)s∈J+ , R∞ |T−1

∞ (τ), X∞(τ)
)
.

As Rτ∞ is a β-stable subordinator, this entails that Γ is a β-stable subordinator indepen-

dent from
(

(Z s
∞, T

s
∞)s∈J+ , R∞ |T−1

∞ (τ)

)
.

Step 2. In this step we prove that

E
[
f
(
R∞ |T−1

∞ (τ)

)
| (Z s

∞, T
s
∞)s∈J+

]
= E

[
f
(
R∞ |T−1

∞ (τ)

)
| T−1
∞ (τ)

]
. (7.10)

To prove this we will use the following independence and measurability results:(
R∞ |T−1

∞ (τ), (Ξ
s(τ), Xs

∞(τ − s))s∈J
)
⊥⊥ (Z τ

∞, T
τ
∞) (7.11)

as a consequence of Lemma 7.1, and

(Xs
∞(τ − s), s ∈ J+) ∈ mσ(e) (7.12)

where e is defined as in Corollary 7.9. Indeed, either e does not straddle s and then
Xs
∞(τ − s) = −min e, or e straddles s and then Xs

∞(τ − s) can be computed from e.
Let us now proceed with the proof of (7.10). By shifting at time s, Proposition 7.4

implies that for any s ∈ J we have

(Z s
∞, T

s
∞) ∈ mσ (Z τ

∞, T
τ
∞,Ξ

s(τ), Xs
∞(τ − s))

and thus
(Z s
∞, T

s
∞)s∈J+ ∈ mσ

(
Z τ
∞, T

τ
∞, (Ξ

s(τ), Xs
∞(τ − s))s∈J

)
.

In particular, the law of total expectation gives

E
[
f
(
R∞ |T−1

∞ (τ)

)
| (Z s

∞, T
s
∞)s∈J+

]
= E

(
E
[
f
(
R∞ |T−1

∞ (τ)

)
| Z τ
∞, T

τ
∞, (Ξ

s(τ), Xs
∞(τ − s))s∈J

]
| (Z s

∞, T
s
∞)s∈J+

)
. (7.13)

Next, if X⊥⊥(Y, Z), then X and Y are independent conditionally on Z: using this ob-
servation with the independence relation (7.11) allows to get rid of (Z τ

∞, T
τ
∞) in the

conditioning, i.e.,

E
[
f
(
R∞ |T−1

∞ (τ)

)
| Z τ
∞, T

τ
∞, (Ξ

s(τ), Xs
∞(τ − s))s∈J

]
= E

[
f
(
R∞ |T−1

∞ (τ)

)
| (Ξs(τ), Xs

∞(τ − s))s∈J
]

which leads further to

E
[
f
(
R∞ |T−1

∞ (τ)

)
| Z τ
∞, T

τ
∞, (Ξ

s(τ), Xs
∞(τ − s))s∈J

]
= E

[
f
(
R∞ |T−1

∞ (τ)

)
| (Ξs(τ))s∈J

]
according to Corollary 7.9 and (7.12). At this point, we have therefore proved that

E
[
f
(
R∞ |T−1

∞ (τ)

)
| Z τ
∞, T

τ
∞, (Ξ

s(τ), Xs
∞(τ − s))s∈J

]
= E

[
f
(
R∞ |T−1

∞ (τ)

)
| (Ξs(τ))s∈J

]
and since

(Ξs(τ))s∈J ∈ mσ(Z s
∞, T

s
∞, s ∈ J) ⊂ mσ(Z s

∞, T
s
∞, s ∈ J+), (7.14)

(7.13) implies that

E
[
f
(
R∞ |T−1

∞ (τ)

)
| (Z s

∞, T
s
∞)s∈J+

]
= E

[
f
(
R∞ |T−1

∞ (τ)

)
| (Ξs(τ))s∈J

]
.
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Let us now evaluate the right-hand side of the latter identity. Since (R∞)⊥⊥(Z s
∞, T

s
∞)s∈J

by induction hypothesis and because of (7.14), we get that R∞ |T−1
∞ (τ) only depends on

(Ξs(τ), s ∈ J) through T−1
∞ (τ), i.e.,

E
[
f
(
R∞ |T−1

∞ (τ)

)
| (Ξs(τ))s∈J

]
= E

[
f
(
R∞ |T−1

∞ (τ)

)
| T−1
∞ (τ)

]
.

This concludes the proof of this step.

Step 3. We now conclude the proof: Step 1 and (7.10) entail, using total expectation,

E
[
f (R∞) g

(
(Z s
∞, T

s
∞)s∈J+

)]
= E

[
f
([
R∞ |T−1

∞ (τ),Γ
])
g
(
(Z s
∞, T

s
∞)s∈J+

)]
= E

[
g
(
(Z s
∞, T

s
∞)s∈J+

)
E
[
f
([
R∞ |T−1

∞ (τ),Γ
])
| (Z s

∞, T
s
∞)s∈J+

]]
= E

[
g
(
(Z s
∞, T

s
∞)s∈J+

)
E
[
f
([
R∞ |T−1

∞ (τ),Γ
])
| T−1
∞ (τ)

]]
.

At this point we want to apply Lemma 7.10. We first note that
(
R∞ |(T s∞)−1(τ),Γ

)
is equal

in distribution to
(
R∞ |(T s∞)−1(τ), Γ̃

)
where Γ̃ is independent of (R∞, T∞) according to

Step 1. Further, since R∞⊥⊥T∞, it follows that R∞, Γ̃ and T∞ are mutually independent.
Finally, applying Lemma 7.10 with S1 = R∞, S2 = Γ̃ and κ = T−1

∞ (τ) we get that
[R∞ |T−1

∞ (τ), Γ̃] is equal in distribution to R∞ and is independent from T−1
∞ (τ), i.e.,

E
[
E
[
f
([
R∞ |T−1

∞ (τ), Γ̃
])
| T−1
∞ (τ)

]]
= E [f (R∞)] .

This concludes the proof of Proposition 4.1.
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