Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart Theory - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart Theory

Résumé

We investigate quasisymmetric functions coming from combinatorial Hopf monoids. We show that these invariants arise naturally in Ehrhart theory, and that some of their specializations are Hilbert functions for relative simplicial complexes. This class of complexes, called forbidden composition complexes, also forms a Hopf monoid, thus demonstrating a link between Hopf algebras, Ehrhart theory, and commutative algebra. We also study various specializations of quasisymmetric functions.
Fichier principal
Vignette du fichier
final_119.pdf (288.3 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02168182 , version 1 (28-06-2019)

Identifiants

Citer

Jacob A. White. Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart Theory. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6334⟩. ⟨hal-02168182⟩
28 Consultations
568 Téléchargements

Altmetric

Partager

More