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Quasisymmetric functions from combinatorial
Hopf monoids and Ehrhart Theory

Jacob A. White
School of Mathematical and Statistical Sciences
University of Texas - Rio Grande Valley
Edinburg, TX 78539

Abstract. We investigate quasisymmetric functions coming from combinatorial Hopf monoids. We show that these
invariants arise naturally in Ehrhart theory, and that some of their specializations are Hilbert functions for relative
simplicial complexes. This class of complexes, called forbidden composition complexes, also forms a Hopf monoid,
thus demonstrating a link between Hopf algebras, Ehrhart theory, and commutative algebra. We also study various
specializations of quasisymmetric functions.

Resumé. Nous étudions les fonctions quasisymétriques associées aux monoı̈des de Hopf combinatoriaux. Nous
démontrons que ces invariants sont des objets naturels à la théorie de Ehrhart. De plus, certains correspondent à des
fonctions de Hilbert associées à des complexes simpliciaux relatifs. Cette classe de complexes, constitue un monod̈e
de Hopf, révélant ainsi un lien entre les algèbres de Hopf, la théorie de Ehrhart, et l’algèbre commutative. Nous
étudions également diverses catégories de fonctions quasisymétriques.

Keywords. Chromatic Polynomials, Symmetric Functions, Combinatorial Species, Combinatorial Hopf Algebras,
Ehrhart Theory, Hilbert functions

1 Introduction
Chromatic polynomials of graphs, introduced by Birkhoff and Lewis (1946) are wonderful polynomials.
Their properties can be understood as coming from three different theories:

1. Chromatic polynomials were shown by Beck and Zaslavsky (2006) to be Ehrhart functions for
inside-out polytopes.

2. They arise as the Hilbert polynomial for the coloring ideal introduced by Steingrı́msson (2001).
Moreover, this ideal is the Stanley-Reisner module for a relative simplicial complex (Γ,∆).

3. The chromatic polynomial is the image of a homomorphism from the incidence Hopf algebra of
graphs, first studied in Schmitt (1994), to the polynomial algebra.

Similar results have been shown by Aguiar and Ardila (2010) for the Hopf algebra of generalized Permuto-
hedra. Thus, we can give three distinct proofs of Stanley’s Reciprocity Theorem of chromatic polynomials
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Stanley (1973). Chromatic polynomials form a situation where ‘Ehrhart polynomial = Hilbert polynomial
= polynomial coming from a Hopf algebra’. The idea of ‘Ehrhart = Hilbert’ has been studied before by
Breuer and Dall (2010). We call such polynomials triune, because they can be studied from three different
perspectives at one time.

The primary goal of this paper is to study triune quasisymmetric functions which are Ehrhart functions,
specialize to Hilbert functions, and come from combinatorial Hopf algebras. The motivation is that such
invariants have three different aspects, which give them a rich structure. Given any combinatorial Hopf
monoid H with a Hopf submonoid K, there is a natural quasisymmetric function ΨK(h) associated to every
element h ∈ H. This invariant is a special case of the work of Aguiar et al. (2006). In our case, the
invariant can be studied from the perspective of geometric combinatorics: there is a canonical relative
simplicial complex (ΓK,h,∆h) associated to h, with a natural geometric realization in RI , such that ΨK(h)
enumerates lattice points with positive coordinates inside of the complex. The resulting Ehrhart function
is an Ehrhart quasisymmetric function as defined by Breuer and Klivans (2015). We show how principal
specialization is a morphism of Hopf algebras to the ring of ‘Gaussian polynomial functions’, and that the
corresponding Ehrhart ’Gaussian polynomial’ is a Hilbert function of (ΓK,h,∆h) with respect to a certain
bigrading. Setting q = 1 recovers known results.

The paper is organized as follows: we review definitions regarding the Coxeter complex of type A, and
from Ehrhart theory. We discuss the relationship between Ehrhart theory and Hilbert functions for relative
simplicial complexes (Γ,∆), where ∆ is a subcomplex of the Coxeter complex, and define forbidden
composition complexes. In Section 3, we review material on Hopf monoids, and define triune quasisym-
metric functions, which are special cases of invariants defined by Aguiar et al. (2006). In Section 4, we
show that forbidden composition complexes form the terminal Hopf monoid in the category of pairs of
Hopf monoids, which implies that every triune quasisymmetric function is the Ehrhart quasisymmetric
function for some canonical forbidden composition complex. Thus we have a link between geometric
combinatorics and combinatorial Hopf algebras that was known only in special cases. In Section 5, we
discuss various specializations of quasisymmetric functions from the Hopf algebra point of view. This is
motivated by the lecture notes of Grinberg and Reiner (2015), which emphasize principal specialization
at q = 1. This gives new combinatorial identities, including for Ehrhart polynomials. In the process, we
discuss the notion of Gaussian polynomial function, which are linear combinations of polynomials in q
with q-binomial coefficients.

2 Relative Composition complexes and Ehrhart Theory
The motivation for this work comes from the study of chromatic polynomials:

1. In Steingrı́msson (2001), chromatic polynomials of graphs are shown to be Hilbert functions for
coloring ideals, which is the Stanley-Reisner module for the relative coloring complex.

2. In Beck and Zaslavsky (2006), chromatic polynomials of graphs are shown to be Ehrhart polyno-
mials of an inside-out polytope, which is the geometric realization of the relative coloring complex.

Thus, the Ehrhart polynomial of the inside-out polytope of a graph is the Hilbert polynomial of coloring
ideal. We give a q-analogue of this result for arbitrary relative composition complexes.

A set composition is a sequence C1, . . . , Ck of disjoint subsets of I such that ∪ki=1Ck = I . The length
of the composition is `(C) = k. We denote set compositions with vertical bars, so 12|3 corresponds to the
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set composition {1, 2}, {3}, and 21|3 = 12|3. The sets Ci are blocks. Similarly, an integer composition
α is a sequence α1, . . . , αk of positive integers whose sum is n.

Given a set composition C, there is a natural flag of sets F (C) := S1 ⊂ S2 ⊂ · · · ⊂ Sk−1 ⊆ Sk = I ,
where Si = ∪j≤iCi. Similarly, given such a flag F , there is a set composition C(F ) := C1, C2, . . . , Ck,
where Ci = Si \ Si−1. This is analogous to the classic situation for integer compositions, where there is
a correspondence between integer compositions of length ∆ and subsets of [n] of size k− 1. We use both
notations: Si for the sets in the flag, and Ci for the blocks. The Coxeter complex of type A is the order
complex on the boolean lattice 2I \ I . We let ΣI denote the Coxeter complex of type A on the set I .

2.1 Ehrhart Quasisymmetric Function
Let x1, . . . , xi, . . . be a sequence of commuting indeterminates indexed by positive integers. A quasisym-
metric function is a power series in x1, . . ., whose terms have bounded degree, such that for any a1, . . . , ak,
and i1 < i2 < . . . < ik the coefficient of xa1

i1
· · ·xakik is equal to the coefficient of xa1

1 · · ·x
ak
k . A basis is

given by the monomial quasisymmetric functions Mα =
∑
i1<···<ik xα where xα = xα1

i1
· · ·xαk

ik
.

Given a quasisymmetric functionQ, and q ∈ K\{0}, and n ∈ N, the principal specialization ps(Q)(n)
is given by ps(Q)(n) = Q(1, q, q2, . . . , qn−1, 0, 0, 0, . . .). For a fixed q, we view ps(Q) as a function
from N to K. When q = 1, we denote the specialization by ps1(Q)(n). It is known that this is a
polynomial function. The stable principal specialization is given by sps(Q) = Q(1, q, q2, . . .). This
gives a formal power series. However, it turns out that the coefficients Q(n) of the resulting power series
is a quasi-polynomial in n.

Given a face F = ∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sm ⊂ I of ΣI , there is a corresponding polyhedral cone in
the positive orthant RI≥0. The cone is given by the equations xi < xj whenever i ∈ Sk, j 6∈ Sk for some
∆, and xi = xj whenever i ∈ Sk if and only if j ∈ Sk. For example, for the flag {2, 4} ⊂ {1, 2, 4, 7} ⊂
{1, 2, 3, 4, 7, 9}, we obtain the polyhedral cone given by x2 = x4 < x1 = x7 < x3 = x9 < x5 = x8.
Thus, for any collection F of faces of ΣI , there is a collection C(F) of open polyhedral cones in RI≥0.
Given a lattice point a ∈ RI>0, we let xa =

∏
i∈I xai be its monomial, where the coordinates of a are

encoded in the indices, not the exponents. The Ehrhart quasisymmetric function for C(F) is given by

EC(F) =
∑
a

xa

where the sum is over all lattice points which lie in some cone ofC(F). SinceEC(F) =
∑
F∈FMtype(C(F )),

this is a quasisymmetric function, first appearing in the work of Breuer (2015).
We mention specializations ofEC(F), and their combinatorial interpretations. First, ps1(EC(F))(n+1)

is the number of lattice points inC(F)∩ [0, n]|I|. Also, [qm]sps(EC(F)) is the number of lattices points in
C(F)∩Γm, where Γm is the simplex given by the equation

∑
i∈I ai = m. Finally, [qm]ps(EC(F))(n+1)

is the number of lattice points in C(F) ∩ Γm ∩ [0, n]|I|.

2.2 Relative Composition complexes
We define Stanley-Reisner modules for relative simplicial complexes, and introduce relative composition
complexes, which have a natural geometric realization as open polyhedral cones. We show that specializa-
tions of the Ehrhart quasisymmetric function for relative composition complexes give the Hilbert function
of the Stanley-Reisner module.
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A relative simplicial complex is a pair (Γ,∆) where Γ ⊆ ∆, and ∆ is a simplicial complex. Given ∆
with vertices S, we let C[S] be the polynomial ring with indeterminates s1, . . . , sk, the vertices of S. The
Stanley-Reisner ideal for ∆ is generated by 〈σ ⊆ S : σ 6∈ ∆〉, and the Stanley-Reisner module for (Γ,∆)
is IΓ/I∆. The module is graded by total degree, and its Hilbert function H(Γ,∆)(n) is the number of
monomials of degree n in the module. It is known that the Hilbert function is in fact a polynomial: details
can be found in Stanley (1984).

We also extend the definition of double coning over a simplicial complex. Coning over a non-void
complex ∆ consists of adding new vertex x, and adding new faces σ ∪ {x} for all σ ∈ ∆. If ∆ = ∅, we
let cone(∆) = ∅. For (Γ,∆), cone(Γ,∆) = (cone(Γ), cone(∆)). Finally, the double cone is defined by
dcone(Γ,∆) = cone(cone(Γ,∆)).

Now we define the simplicial complexes that are of interest to us. A relative composition complex is
a relative complex (Γ,∆) where ∆ ⊆ ΣI . Given a relative composition complex (Γ,∆), a composition
C of Γ, and a block B of C, B is forbidden if every composition of ∆ that refines C does not contain B
as block. (Γ,∆) is a forbidden complex if every composition of Γ either has a forbidden block, or is a
facet of ∆. While the definition seems unusual, we will see that forbidden composition complexes arise
naturally in the study of Hopf monoids in species.

Example 1 Here are some examples.

1. Let Γk,I consist of all set compositions that have at least one block of size ≥ k. Then points in Γk,I
consist of points in RI that have at least k equal coordinates. This arises in the study of the k-equal
problem. We see that (Γk,I ,ΣI) is a forbidden composition complex.

2. Let I = {a, b, c, d}, and let ∆ be the complex with facets which correspond to the permutations
abcd, abdc, adbc, adcb, dabc, dacb, dcab, dcba. Let Γ be the subcomplex with facets cd|b|a, cd|a|b, ab|c|d,
ab|d|c, a|bc|d, a|cd|b, d|ab|c, and d|bc|a. Then (Γ,∆) is a forbidden composition complex. The
Ehrhart quasisymmetric function is 8M1111 + 4M112 + 2M121 + 2M211 +M22.

3. Let Γ be the simplex corresponding to 12|34|56. Then (Γ,Σ[6]) is a relative composition complex,
but it is not a forbidden complex, because 1|2|34|56, 12|3|4|56 and |12|34|5|6 are all faces of Σ[6].
Thus, 12|34|56 has no forbidden blocks.

Forbidden composition complexes generalize coloring complexes. Given a graph g, let Γg denote
the collection of set compositions C for which some block contains an edge of g. This is the coloring
complex introduced by Steingrı́msson (2001). We let (Γg,ΣI) be the relative coloring complex. The
Stanley-Reisner module for the double cone over (Γg,ΣI) is the coloring ideal. Our relative coloring
complex is thus an example of a forbidden composition complex.

In the case of relative composition complexes, the polynomial ring associated to ∆ has indeterminates
given by all subsets S ⊆ I . We define the bidegree of S to be (|S|, 1). In this case, H(Γ,∆)(m,n) is the
function which counts the number of monomials of degree (m,n).

Theorem 2 Let (Γ,∆) be a relative composition complex. Then H(dcone(Γ,∆))(n) = ps1(EC∆\Γ)(n).
Similarly, letting H(dcone(Γ,∆))(q, n) =

∑
m≥0H(dcone(Γ,∆))(m,n)qm, we have

qn|I|H(dcone(Γ,∆))(q−1, n) = ps(EC(∆\Γ))(n).

Our first result follows from work of Breuer and Klivans (2015). However, in their setting there is no
natural Stanley-Reisner module. The second result is similar to work of Breuer and Dall (2010).
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3 Hopf monoids and Characters
In this section, we dicuss combinatorial Hopf monoids, their characters, and their quasisymmetric func-
tions. Hopf monoids are a generalization of graphs, posets and matroids. The idea is that we have some
notion of combinatorial structure, called a species, as introduced by Joyal (1981). Moreover, we have rules
for combining and decomposing these structures in a coherent way. Hopf monoids in species were orig-
inally introduced in Aguiar and Mahajan (2010), although the variation we discuss here can be found in
Aguiar and Mahajan (2013). Hopf monoids allow us to define a whole class of quasisymmetric functions,
and prove identities relating quasisymmetric functions in the same class, such as the class of chromatic
symmetric functions of graphs.

3.1 Hopf monoids in species
Definition 3 A species is an endofunctor F : Set → Set on the category of finite sets with bijections. For
each finite set I , FI is a finite set, and for every bijection σ : I → J between finite sets, there is a bijection
Fσ : FI → FJ , such that Fσ◦τ = Fσ ◦ Fτ for every pair σ : I → J , τ : K → I . It is connected if |F∅| = 1.
All species in this paper are connected, and 1F denotes the only element of F∅.

The exponential generating function for F is F(x) =
∑
n∈N |F[n]|x

n

n! .

Example 4 We list various examples of species.

1. The graph species G: the set GI consists of all graphs with vertex set I . Given σ : I → J , and
g ∈ GI , Gσ(g) = h is the graph on vertex set J where i ∼ j in h if and only if σ−1(i) ∼ σ−1(j) in
g. Then G(x) =

∑
n≥0 2(n

2) x
n

n! = 1 + x+ 2x
2

2 + 8x
2

6 + · · ·

2. The poset species P: the set PI consists of all partial orders on I . Given σ : I → J , and p ∈ PI ,
Gσ(p) = q is the partial order on J where i ≤q j if and only if σ−1(i) ≤p σ−1(j). P(x) =

1 + x+ 3x
2

2 + 19x
3

6 + · · · .

3. The matroid species, whose structures MI consist of all matroids on I . Then M(x) = 1+2x+5x
2

2 +

16x
3

6 + · · ·

4. The species R: the set RI consists of all relative composition complexes (Γ,∆) where ∆ ⊆ ΣI .

Definition 5 A monoid is a species F, equipped with associative multiplication maps µS,T : FS × FT →
FStT for every pair S, T of finite sets, where S t T denotes disjoint union. We denote the product of
f ∈ FS , g ∈ FT by f · g. Associativity means that (f · g) · h = f · (g · h) whenever the multiplication is
defined. Moreover, 1F · f = f = f · 1F.

Example 6 We list various monoid operations.

1. The graph species G is a monoid. Given two graphs g and h with disjoint vertex sets, g · h is their
disjoint union: the graph with edges i ∼ j if and only if i, j ∈ V (g) and i ∼ j in g, or i, j ∈ V (h),
and i ∼ j in h.

2. The poset species P is a monoid. The product is also given by disjoint union of partial orders.

3. The matroid species M is a monoid. The product is the direct sum.
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4. The relative composition complex species R is a monoid. Given (Γ,∆) ∈ RI and (Γ′,∆′) ∈ RJ ,
we let ∆ · ∆′ be the set of all quasi-shuffles of set compositions C,C ′, where C ∈ ∆ and C ′ ∈
∆′′. Here is an example: the quasi-shuffles of 1|2 and a|b are: 1|2|a|b, 1|2a|b, 1|a|2|b, 1|a|2b,
1a|2|b, 1a|2b, a|1|2|b, a|1|2b, a|1|b|2, a|1b|2, a|b|1|2, 1|a|b|2, and 1a|b|2. The subcomplex Γ · Γ′
consists of all quasi-shuffles of all compositions C,C ′ where C ∈ Γ, C ′ ∈ ∆′ or C ∈ ∆ and
C ′ ∈ Γ′. The product is then (Γ,∆) · (Γ′,∆′) = (Γ · Γ′,∆ ·∆′).

5. The species Φ of forbidden composition complexes is a submonoid of R.

Definition 7 A combinatorial Hopf monoid (in species) is a monoid F such that, for every S ⊆ I , there
are partial functions restriction F|S : FI → FS and contraction F/S : FI → FI\S , subject to:

1. For any T ⊆ S ⊆ I , (f|S)|T = f|T .

2. For any T ⊆ S ⊆ I , (f/T )/S = f/S.

3. For any T ⊆ S ⊆ I , (f|S)/T = (f/T )|S .

4. (f · g)|S = f|S∩A · g|S∩B .

5. (f · g)/S = f/(S ∩A) · g/(S ∩B).

We are working with partial functions, so if one side of the equation is undefined, then so is the other side.

Example 8 We list various examples of Hopf monoids.

1. The graph species G is a combinatorial Hopf monoid. The restriction map g|S consists of the graph
on S with edges i ∼ j if and only if i ∼ j in g. In this case, we define g/S = g|I\S .

2. The poset species P is a combinatorial Hopf monoid. Given p, and S ⊆ I , we let p[I] denote the
induced subposet. Then p|S = p[S] provided p[S] is an order ideal of p. Similarly, if p[S] is a
lower order ideal, we let p/S = p[I \ S].

3. The matroid species M is a combinatorial Hopf monoid, with the restriction and contraction.

4. The species Φ of forbidden composition complexes is a Hopf monoid. We do not give the definition
of the coproduct, as it is technical. It involves the notion of deconcatenation.

3.2 Characters and Inversion
Now we discuss characters of Hopf monoids.

Definition 9 Given a Hopf monoid H, and a field K, a character is a multiplicative function ϕ : H → K.
For every finite set I , there is a map ϕI : HI → K, natural in I , such that, for all I = S t T , hS ∈
HS , hT ∈ HT , we have ϕS(hS)ϕT (hT ) = ϕI(hS · hT ). The character is connected if ϕ∅(h∅) = 1.

Example 10 One example is the character given by ϕI(h) = 1 for all I , h ∈ HI . This is the zeta
character.

Let G be the Hopf monoid of graphs. Given a graph g, let

ϕ(g) =

{
1 g has no edges
0 otherwise
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Species Example x x|S x/S

GI
x y z x y z

PI
x

y

z x

y

z

PI
x

y

z undefined: x|S is not an order ideal. undefined

Fig. 1: Examples of restriction and quotient. Shaded vertices are elements of S.

The set χ(H) of connected characters on H is a group, with multiplication given by:

(ϕ ∗ ψ)I(h) =
∑
S⊆I

ϕS(h|S)ψI\S(h/S)

for ϕ,ψ ∈ χ(H), where the right hand side is 0 for any S where h|S or h/S is undefined.
The inverse of a character ϕ is defined recursively:

1. ϕ−1
∅ = ϕ∅

2. For h ∈ HI , ϕ−1(h) = −
∑
S⊂I

ϕ−1
S (h|S)ϕI\S(h/S)

We discuss characters coming from Hopf submonoids K ⊆ H. A Hopf submonoid K is a subspecies,
meaning that KI ⊆ HI for all I . Moreover, the product, restriction, and contraction of elements of K
remain in K. Given a submonoid K ⊂ H, there is a character ϕK : H→ K given by:

ϕK(h) =

{
1 h ∈ KI
0 otherwise

In the case of graphs, one Hopf submonoid is the species of edgeless graphs. In the case of posets,
there is the Hopf submonoid of antichains. There is a Hopf monoid of generalized Permutohedra, and the
character Aguiar and Ardila (2010) study also comes from a Hopf submonoid. Finally, the Hopf monoid
of composition complexes is a Hopf submonoid of Φ. In each of these cases, we obtain a character.

3.3 The quasisymmetric function associated to a character
We recall the quasisymmetric function associated to a character on a Hopf monoid H. Given a set compo-
sition C of I , and h ∈ HI , define ϕC(h1, . . . , hk) =

∏k
i=1 ϕ(hi), hi = (h|Si

)/Si−1, where Si ∈ F (C).
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m a

th

m a

th

Fig. 2: Example graph and poset

Definition 11 Given a combinatorial Hopf monoid H, a character ϕ, a finite set I , and h ∈ HI , define

Ψϕ(h) =
∑
C|=I

`(C)∏
i=1

ϕ(h|i)

Mtype(C).

Given a combinatorial Hopf monoid, the vector space generated by the equivalence classes of H-structures
forms a combinatorial Hopf algebra, which appears in Aguiar and Mahajan (2010). Moreover, by work of
Aguiar et al. (2006), there is a unique morphism from this Hopf algebra to QSym. Our definition Ψϕ(H)
is the resulting map.

There is a description for Ψ in terms of colorings. Given a coloring f : I → N, and i ∈ N, we let
h|i = h|f−1([i])/f

−1([i− 1]) be the ith minor of h under f .

Theorem 12 Let H be a combinatorial Hopf monoid, with a character ϕ : H → E. Fix a finite set I , and
h ∈ HI . Then

Ψϕ(h) =
∑
f :I→N

ϕf (h)xf

where ϕf (h) =
∏
i∈N ϕ(h|i), which is well-defined.

For a coloring of a graph g, , the ith minor is the induced subgraph on the ith color class, so ϕ(g|i) = 1
if and only if the ith color class is an independent set. Thus our quasisymmetric function enumerates
proper colorings, giving the chromatic symmetric function introduced by Stanley (1995). For example,
for the graph in figure 3.2 the resulting chromatic symmetric function is 24M1111 + 4M211 + 4M121 +
4M112 + 2M22. For posets, ϕf (p) = 1 if and only if f : I → N is a strictly order preserving map, which
is the quasisymmetric function for strict P -partitions considered by Stanley (1972). For example, for the
poset p in figure 3.2, the quasisymmetric function is given by 5M1111 + 2M211 +M121 + 2M112 +M22.

Theorem 13 Let Φ be the Hopf monoid of forbidden composition complexes. Then for all (Γ,∆) ∈ ΦI ,
we have Ψϕ(Γ,∆) = EC(∆\Γ).

4 Forbidden composition complexes
We show that, for any pair K ⊆ H of Hopf monoids, and any element h ∈ HI , there is a forbidden com-
position complex (ΓK,h,∆h) whose Ehrhart quasisymmetric function is ΨϕK

(h). Let H be a combinatorial
Hopf monoid, h ∈ HI , and define ∆h ⊆ Σ to be those faces F such that hi is defined for all Si ∈ F . This
defines a morphism of Hopf monoids ∆ : H→ C, the species of composition complexes.
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Let K ⊆ H be a Hopf submonoid, and define ∆K,h to consist faces F ∈ ∆h such that some minor h|i 6∈
KSi−Si−1

. Since K is a Hopf submonoid, ΓK,h is a simplicial complex. Moreover, (ΓK,h,∆h) is a forbidden
composition complex, and the map ΓK : H → Φ defined by Γ(h) = (ΓK,h,∆H) is a morphism of Hopf
monoids. However, even more is true: the quasisymmetric function ΨϕK

(h) is the Ehrhart quasisymmetric
function for Γ(h):

Theorem 14 Given a set I , let ΦI denote the set of all forbidden composition complexes on I , and CI
denote the set of all composition complexes on I .

1. Given any combinatorial Hopf monoid H, with K ⊆ H, there exists unique morphisms of combina-
torial Hopf monoids ∆ : K → C, ΓK : H → Φ such that ι∆ = ΓKι, where ι denotes inclusion maps
K ⊆ H, and C ⊆ Φ.

2. Under this map, ΨϕK
(h) = E(C(Γ(h))).

For a graph g, ∆g is the relative coloring complex. Given a poset p, let C(p) be the polyhedral cone
in RI bounded by equations xi ≤ xj , for all i ≤ j in p. Then ∆p consists of all cones in the Coxeter
arrangement which lie in C(p). Similarly, ΓK,p consists of the cones which lie on the boundary of C(p).

5 Specializations
We discuss specializations of quasisymmetric functions, and interpretations of Ψ under specialization.
We show combinatorial identities relating quasisymmetric functions for various elements of the same
combinatorial Hopf monoid. It is known that ps1 is a Hopf algebra homomorphism from QSym to
K[x]. We show that ps is a morphism of Hopf algebras in general. The image of ps is the ring of
Gaussian polynomial functions, which are q-analogues of polynomials. We also study the stable principal
specialization psp. While this section primarily emphasizes the Hopf algebra perspective, many of the
results are of combinatorial interest.

5.1 Gaussian polynomials and principal specialization
Clearly, ps(Q) : N→ C is a polynomial function when q = 1. This leads to the question of what type of
function we get for general q. For now, assume that we are working over C(q).

For any integer m, define Dm(f) : N → C(q) by Dm(f)(n) = f(n + 1) − qmf(n), and Dm(f) =
Dm ◦ Dm−1(f). A function f is a Gaussian polynomial function of degree at most d if Dd+1(f) = 0.
We recovering the classical definitions when q = 1. The terminology comes from the fact that q-binomial
coefficients are sometimes called Gaussian polynomials, and all Gaussian polynomial functions can be
expressed as linear combinations of q-binomial coefficients. Consider a Gaussian polynomial function of
degree m. Then we can define f(−n) = q−m(f(−n + 1) − Dm(f)(−n)), for n > 0. Thus Gaussian
polynomials are functions from Z→ C.

Theorem 15 The algebra of Gaussian polynomials,G, is a Hopf algebra, with basis given by [x]n, n ∈ N.
The unit is 1, and multiplication is given by [x]k · [x]m = [x]k+m. The comultiplication sends [x] to
[x]⊗ 1 + qx ⊗ [x], and the antipode is generated by S([x]) = [−x].

Moreover, ps : QSym → G is a morphism of Hopf algebras, and G is graded as an algebra, but not
as a coalgebra.
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Let us consider some examples. For the graph g in figure 3.2, the resulting Gaussian chromatic polyno-

mial is 14q6

[
n
4

]
q

+ (2q5 + 4q4 + 2q3)

[
n+ 1

4

]
q

+ 2q2

[
n+ 2

4

]
q

. For the poset in figure 3.2, the resulting

Gaussian polynomial is q6

[
n
4

]
q

+ (q5 + q4 + q3)

[
n+ 1

4

]
q

+ q2

[
n+ 2

4

]
q

. Finally, for the forbidden

composition complex in Example 1, part 2, the resulting Gaussian polynomial is 2q6

[
n
4

]
q

+ (3q5 + q4 +

q3)

[
n+ 1

4

]
q

+ q2

[
n+ 2

4

]
q

.

Definition 16 Given a combinatorial Hopf monoid H with a characterϕ, and h ∈ HI , define Pϕ(h, q, n) =
ps(Ψϕ(h)). This is the polynomial of h associated toϕ. Alternatively, Pϕ(h, q, n) =

∑
f :I→[n] ϕf (h)qw(f),

where w(f) =
∑
i∈I(f(i)− 1).

For a poset p, [qn]Pϕ(p, q,m) is the number of p∗-partitions of n with part size at most m.

Proposition 17 Let H be a combinatorial Hopf monoid with character ϕ, and let h ∈ HI , k ∈ HJ , where
I and J are disjoint sets. Then the following identities hold:

1. Pϕ(h · k, q, n) = Pϕ(h, q, n) · Pϕ(k, q, n).

2. for any n,m ∈ N, Pϕ(h, q,m+ n) = qm|I|
∑
S⊆I q

−m|S|Pϕ(h|S , q,m) · Pϕ(h/S, q, n).

3. Pϕ(h, q,−n) = q|I|Pϕ−1(h, q−1, n).

The last identity is a reciprocity result. On the left-hand side, we are counting negative colors, so we
expect to have negative powers of q. When q = 1, these identities are already known for graphs and
posets. Also, combinatorial reciprocity for Pϕ(p, q, n) is also due to Stanley (1972).

When ϕ = ϕK for some Hopf submonoid K ⊆ H, then the fact that PϕK
(h, 1, n) is an Ehrhart function,

and a Hilbert function, allows us to conclude new results regarding ϕ−1.

Corollary 18 Let K ⊆ H be an inclusion of Hopf monoids, and let h ∈ HI . Then (−1)|I|Pϕ−1
K

(h, 1, n) =∑
a∈ZI∩(0,n]I w(a), where w(a) is the number of cones C of (ΓK,h,∆h) such that a ∈ C̄.
Moreover, ϕ−1(h) = χ(ΓK,h,∆h) =

∑
σ∈∆h\ΓK,h

(−1)|σ|, the Euler characteristic.

5.2 The stable principal specialization
We define Qϕ(h, q) = sps(Ψϕ(h)). In particular, Qϕ(h, q) =

∑
f :I→N ϕf (h)qw(f). For posets, Qϕ(p, q)

is the generating function for strict p∗-partitions.

Theorem 19 Let H be a combinatorial Hopf monoid with character ϕ, and let h ∈ HI , k ∈ HJ , where I
and J are disjoint sets. Then the following identities hold:

1. Qϕ(h · k, q) = Qϕ(h, q) ·Qϕ(k, q).

2. Qϕ(h, q−1) = (−q)|I|Qϕ−1(h, q).

The last identity is a reciprocity result, and is due to Stanley (1972) in the case of posets.
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6 Conclusion
We conclude with questions:

1. Which properties of complexes are stable under the Hopf monoid operations in Φ? Do shellable
complexes form a Hopf submonoid? What about Cohen-Macaulay complexes, or partitionable
complexes?

2. What properties of a forbidden composition complex allow us to conclude that the triune quasisym-
metric function is positive in the basis of fundamental quasisymmetric functions? This question is
interesting: The complex (Γ,∆) in Example 1 part 2 has the feature that the Ehrhart quasisymmet-
ric functions of Γ and ∆ are not F -positive, but the triune quasisymmetric function for (Γ,∆) is
F -positive.

3. If we linearize Φ, what other natural bases does it possess?

Forbidden composition complexes, and triune quasisymmetric functions merit further study, as these geo-
metric objects and their symmetric function invariants can be approached from three distinct perspectives.
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