Total positivity for the Lagrangian Grassmannian - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Total positivity for the Lagrangian Grassmannian

Résumé

The positroid decomposition of the Grassmannian refines the well-known Schubert decomposition, and has a rich combinatorial structure. There are a number of interesting combinatorial posets which index positroid varieties,just as Young diagrams index Schubert varieties. In addition, Postnikov’s boundary measurement map gives a family of parametrizations for each positroid variety. The domain of each parametrization is the space of edge weights of a weighted planar network. The positroid stratification of the Grassmannian provides an elementary example of Lusztig’s theory of total non negativity for partial flag varieties, and has remarkable applications to particle physics.We generalize the combinatorics of positroid varieties to the Lagrangian Grassmannian, the moduli space of maximal isotropic subspaces with respect to a symplectic form
Fichier principal
Vignette du fichier
final_80.pdf (331.9 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02168177 , version 1 (28-06-2019)

Identifiants

Citer

Rachel Karpman. Total positivity for the Lagrangian Grassmannian. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6392⟩. ⟨hal-02168177⟩
32 Consultations
633 Téléchargements

Altmetric

Partager

More