Hook formulas for skew shapes - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2020

Hook formulas for skew shapes

Résumé

The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give two q-analogues of Naruse's formula for the skew Schur functions and for counting reverse plane partitions of skew shapes. We also apply our results to border strip shapes and their generalizations.

Mots clés

Fichier principal
Vignette du fichier
final_142.pdf (376.89 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-02166348 , version 1 (26-06-2019)

Identifiants

Citer

Alejandro H. Morales, Igor Pak, Greta Panova. Hook formulas for skew shapes. 28-th International Conference on Formal Power Series and Algebraic Combinatorics, Simon Fraser University, Jul 2016, Vancouver, Canada. ⟨10.46298/dmtcs.6354⟩. ⟨hal-02166348⟩
45 Consultations
708 Téléchargements

Altmetric

Partager

More