Generic transversality of heteroclinic and homoclinic orbits for scalar parabolic equations - Archive ouverte HAL
Article Dans Une Revue Journal of Dynamics and Differential Equations Année : 2019

Generic transversality of heteroclinic and homoclinic orbits for scalar parabolic equations

Romain Joly
Geneviève Raugel
  • Fonction : Auteur
  • PersonId : 854083

Résumé

In this paper, we consider the scalar reaction-diffusion equations $\partial_t u = ∆u + f(x,u,∇u)$ on a bounded domain $\Omega\subset\mathbb{R}^d$ of class $C^2$. We show that the heteroclinic and homoclinic orbits connecting hyperbolic equilibria and hyperbolic periodic orbits are transverse, generically with respect to f. One of the main ingredients of the proof is an accurate study of the singular nodal set of solutions of linear parabolic equations. Our main result is a first step for proving the genericity of Kupka-Smale property, the generic hyperbolicity of periodic orbits remaining unproved.
Fichier principal
Vignette du fichier
parabolic-generic-transversality.pdf (541.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02159504 , version 1 (18-06-2019)

Identifiants

Citer

Pavel Brunovský, Romain Joly, Geneviève Raugel. Generic transversality of heteroclinic and homoclinic orbits for scalar parabolic equations. Journal of Dynamics and Differential Equations, 2019, 34 (4), pp.2639-2679. ⟨10.1007/s10884-019-09813-7⟩. ⟨hal-02159504⟩
52 Consultations
133 Téléchargements

Altmetric

Partager

More