Linear regression with stationary errors : the R package slm - Archive ouverte HAL
Article Dans Une Revue The R Journal Année : 2021

Linear regression with stationary errors : the R package slm

Résumé

This paper introduces the R package slm which stands for Stationary Linear Models. The package contains a set of statistical procedures for linear regression in the general context where the error process is strictly stationary with short memory. We work in the setting of Hannan (1973), who proved the asymptotic normality of the (normalized) least squares estimators (LSE) under very mild conditions on the error process. We propose different ways to estimate the asymptotic covariance matrix of the LSE, and then to correct the type I error rates of the usual tests on the parameters (as well as confidence intervals). The procedures are evaluated through different sets of simulations, and two examples of real datasets are studied.
Fichier principal
Vignette du fichier
article_arxiv_version.pdf (793.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02157155 , version 1 (15-06-2019)
hal-02157155 , version 2 (19-06-2019)
hal-02157155 , version 3 (22-10-2019)

Identifiants

Citer

Emmanuel Caron, Jérôme Dedecker, Bertrand Michel. Linear regression with stationary errors : the R package slm. The R Journal, 2021, 13 (1), pp.83--100. ⟨10.32614/rj-2021-030⟩. ⟨hal-02157155v3⟩
187 Consultations
249 Téléchargements

Altmetric

Partager

More