KeyWord Spotting using Siamese Triplet Deep Neural Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

KeyWord Spotting using Siamese Triplet Deep Neural Networks

Yasmine Serdouk
  • Fonction : Auteur
  • PersonId : 1048825

Résumé

Deep neural networks has shown great success incomputer vision fields by achieving considerable state-of-the-artresults and are beginning to arouse big interest in the documentanalysis community. In this paper, we present a novel siamesedeep network of three inputs that allows retrieving the mostsimilar words to a given query. The proposed system followsa query-by-example approach according to a segmentation-based technique and aims to learn suitable representations ofhandwritten word images, for which a simple Euclidean distancecould perform the matching. The results obtained for the GeorgeWashington dataset show the potential and the effectiveness ofthe proposed keyword spotting system
Fichier non déposé

Dates et versions

hal-02155381 , version 1 (13-06-2019)

Identifiants

Citer

Véronique Eglin, Yasmine Serdouk, Stéphane Bres, Mylène Pardoen. KeyWord Spotting using Siamese Triplet Deep Neural Networks. International Conference on Document Analysis and Recognition, ICDAR, Sep 2019, Sydney, Australia. ⟨10.1109/ICDAR.2019.00187⟩. ⟨hal-02155381⟩
374 Consultations
0 Téléchargements

Altmetric

Partager

More