Inverting the coupling of the signed Gaussian free field with a loop-soup
Résumé
Lupu introduced a coupling between a random walk loop-soup and a Gaussian free field, where the sign of the field is constant on each cluster of loops. This coupling is a signed version of isomorphism theorems relating the square of the GFF to the occupation field of Markovian trajectories. His construction starts with a loop-soup, and by adding additional randomness samples a GFF out of it. In this article we provide the inverse construction: starting from a signed free field and using a self-interacting random walk related to this field, we construct a random walk loop-soup. Our construction relies on the previous work by Sabot and Tarrès, which inverts the coupling from the square of the GFF rather than the signed GFF itself.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...