A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a Blue Noise in Screen Space - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a Blue Noise in Screen Space

Eric Heitz
  • Fonction : Auteur
  • PersonId : 947452
Laurent Belcour
  • Fonction : Auteur
  • PersonId : 864919
  • IdRef : 170787540

Résumé

We introduce a sampler that generates per-pixel samples achieving high visual quality thanks to two key properties related to the Monte Carlo errors that it produces. First, the sequence of each pixel is an Owen-scrambled Sobol sequence that has state-of-the-art convergence properties. The Monte Carlo errors have thus low magnitudes. Second, these errors are distributed as a blue noise in screen space. This makes them visually even more acceptable. Our sam-pler is lightweight and fast. We implement it with a small texture and two xor operations. Our supplemental material provides comparisons against previous work for different scenes and sample counts.
Fichier principal
Vignette du fichier
samplerBlueNoiseErrors2019_paper.pdf (3.64 Mo) Télécharger le fichier
samplerBlueNoiseErrors2019_video.mp4 (62 Mo) Télécharger le fichier
samplerCPP.zip (2.77 Mo) Télécharger le fichier
supplemental.zip (44.53 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02150657 , version 1 (12-06-2019)

Identifiants

  • HAL Id : hal-02150657 , version 1

Citer

Eric Heitz, Laurent Belcour, Victor Ostromoukhov, David Coeurjolly, Jean-Claude Iehl. A Low-Discrepancy Sampler that Distributes Monte Carlo Errors as a Blue Noise in Screen Space. SIGGRAPH'19 Talks, Jul 2019, Los Angeles, United States. ⟨hal-02150657⟩
4886 Consultations
2590 Téléchargements

Partager

More