Efficient position estimation of 3D fluorescent spherical beads in confocal microscopy via Poisson denoising - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Efficient position estimation of 3D fluorescent spherical beads in confocal microscopy via Poisson denoising

Francesco Bonacci
Tarik Bourouina

Résumé

Particle estimation is a classical problem arising in many science fields, such as biophysics, fluid mechanics, bio-medical imaging. Many interesting applications in these areas involve 3D imaging data: this work presents a technique to estimate the 3D coordinates of the center of spherical particles. This procedure has its core in the processing of the images of the scanned volume: it firstly applies denoising techniques to each frame of the scanned volume, then provides an estimation of both the center and the profile of the 2D intersections of the particles with the frames, by coupling the usage of Total Variation functional and of a regularized weighted Least Square fit. Then, the 2D information is used to retrieve the 3D coordinates using geometrical properties. The experiments provide evidence that image denoising has a large impact on the performance of the particle tracking procedures, since they strongly depend on the quality of the initial acquisition. This work shows that the choice of tailored image denoising technique for Poisson noise leads to a better estimation of the particle positions.
Fichier principal
Vignette du fichier
Manuscript.pdf (6.81 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02150316 , version 1 (07-06-2019)
hal-02150316 , version 2 (05-09-2019)
hal-02150316 , version 3 (02-10-2019)
hal-02150316 , version 4 (28-07-2020)
hal-02150316 , version 5 (19-02-2021)

Identifiants

  • HAL Id : hal-02150316 , version 3

Citer

Alessandro Benfenati, Francesco Bonacci, Tarik Bourouina, Hugues Talbot. Efficient position estimation of 3D fluorescent spherical beads in confocal microscopy via Poisson denoising. 2019. ⟨hal-02150316v3⟩
537 Consultations
245 Téléchargements

Partager

More