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Abstract Particle estimation is a classical problem aris-

ing in many science fields, such as biophysics, fluid me-

chanics, bio-medical imaging. Many interesting applica-

tions in these areas involve 3D imaging data: this work

presents a technique to estimate the 3D coordinates

of the center of spherical particles. This procedure has

its core in the processing of the images of the scanned

volume: it firstly applies denoising techniques to each

frame of the scanned volume, then provides an estima-

tion of both the center and the profile of the 2D inter-

sections of the particles with the frames, by coupling the

usage of Total Variation functional and of a regularized

weighted Least Square fit. Then, the 2D information is

used to retrieve the 3D coordinates using geometrical

properties. The experiments provide evidence that im-

age denoising has a large impact on the performance
of the particle tracking procedures, since they strongly

depend on the quality of the initial acquisition. This

work shows that the choice of tailored image denoising
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technique for Poisson noise leads to a better estimation

of the particle positions.
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1 Introduction

Particle tracking techniques are widely employed in sev-

eral science fields for identifying particular structures

or processes of interest. Some important examples in-

clude biophysics, where these techniques are involved

in the observation of molecular level motion of kinesin

in microtubules and of motion of myosin on actin [42],

in the study of the infection path of a virus [39] or in

the investigation of cytoskeletal filaments [1]; another

topic involving particles tracking problem regards the

observation of protein motion in cell membranes [29]

or intracellular transport [24]. Other interesting areas

of application include statistical mechanics [4,5], fluid

dynamics and mechanics, in particular Rheology [26],

where the thermal motion of Brownian particles has

been tracked to study local rheological properties [14];

complex fluids [2,37]; and Microrehology in Medicine

[17]. Colloidal works have benefited from developments

in particle tracking procedures in measuring biofluids

such as mucus [38] and vitreous humor [40]. All these

practical instances of particle tracking rely on imag-

ing data, acquired via confocal microscopy, electric mi-

croscopy and/or similar techniques.

It has been pointed out [15] that particles have dif-

ferent meanings depending on the applications: a single

molecule, a virus, a spherical object. In this work, a

particle is a spherical object around 1 micrometer in

diameter, observed in confocal microscopy.
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Particle tracking consists of two main steps: parti-

cle position estimation and trajectory reconstruction.

The former is based on the acquired images, while the

latter employs the retrieved information together with

probabilistic results. In the past, several procedure have

been proposed to estimate the particle position: cross–

correlation of a sequence of images [27], centroid tech-

niques [25], Gaussian fitting [30]. Some of them claim

subpixel resolution, and in [13] a wide comparison of

these techniques showed that significant numerical ex-

perimentation is needed before validating such results.

Other methods includes combinatorial optimization [36],

nearest neighbour [23], Kalman filtering coupled with

probabilistic data association [20], use of the Viterbi al-

gorithm [31] and several others. An experimental com-

parison of a plethora of methods can be found in [15].

In [34] (and references therein), a particular focus on

microrheology-related problems is considered, and the

balance between high spatial resolution and timescale of

data acquisition is considered in depth: the former leads

to approximate multiple–tracking techniques while the

latter allows a greater flexibility and provides an high

statistical accuracy. In [13] the spatial resolution influ-

ence was investigated. In the presented paper, the first

step of particle tracking problem is solved: the proposed

algorithm provides estimations of the particles position

with subpixel resolution, both in two and three dimen-

sional cases. The analysis focuses also on the role of

image denoising techniques, which heavily influence the

final result and performance of position estimation algo-

rithms. The proposed procedure aims mainly to treat

the static error [34], which arise from noise affecting

this type of experiments; this static error is equivalent

to the notion of precision in [13].

Following [34] and the consideration in [13] about

preliminary synthetic experiments, in this work a nu-

merical simulation of the standard setup is adopted:

the simulated system consists of a CCD camera con-

nected to a microscope which records images (frames)

of molecules or spherical particles. Our proposed pro-

cedure is first tested on synthetic but realistic data.

The algorithm proved itself to be providing good per-

formance on such data, hence it is applied on real 3D

data with satisfactory results.

The presented procedure provides position estima-

tions of 3D spherical particles: this approximation is

inspired by the problem of estimating the motion of

spherical nanoparticles suspended in a fluid. A novel

approach based on Total Variation functional and on

Least Square fitting is proposed to locate the center of

the spherical particles in 2D frames. The 3D centers of

the particles are hence estimated using geometric prop-

erties and employing the 2D information retrieved in

the previous steps. The algorithm achieves subpixel res-

olution both in the 2D case, i.e. in estimating the posi-

tion of the particles within frames, and in the 3D case.

In real life application, 3D confocal data are corrupted

by noise, usually of Poisson type, hence denoising tech-

niques are necessary to ensure the good quality of the

reconstruction. In this work the comparison between

classical Gaussian filtering and more tailored algorithm

for noise removal is done.

This paper is organized as follows: in Section 2 the

simulation procedure is described, in order to get re-

alistic 3D data to validate the proposed algorithm. In

Section 3 details of the proposed procedure are given:

the pre–processing of the frames and the estimation of

the 2D centers, and then the 3D estimation. Section 4

is devoted to the numerical experimentation on both

synthetic and realistic data; finally, in Section 5, con-

clusions are drawn.

Notation Bold letters, bold capital letters and Latin

(or Greek) letters denote vectors, matrices and scalars,

respectively. The i–th element of the vector x is de-

noted by xi. The notation N
(
µ, σ2

)
indicates a Gaus-

sian distribution of mean µ and variance σ2. I denotes

the identity matrix, 0 the vector with all zeros entries.

2 Data Creation: Simulation Procedure

The synthetic datasets used to validate the proposed

algorithm are simulated following these steps, which are

inspired by the characteristics of real settings:

– N spherical particles of radius a are randomly placed

in a 3D volume of dimension Dx × Dy × Dz. The

particles are assumed to have all the same, known

radius a;

– the 3D volume is discretized into an array of Nx ×
Ny×Nz voxels; each voxel has dimension dx×dy×
dz, being dx = Dx/Nx,dy = Dy/Ny,dz = Dz/Nz.

Nz represents the number of 2D frames. Each par-

ticle is discretized in this volume;

– aiming to simulate realistic data, a blurring opera-

tor is applied to each frame, then Gaussian and/or

Poisson noise is respectively added to or composed

with each image.

In the following the creation of the dataset is described

precisely.

Position simulation The continuous positions {xi}i=1,...,N

of the N particles are randomly chosen in Dx×Dy×Dz,

via an uniform distribution. The 3D position of the i–th

particle is denoted via xi = (xi, yi, zi)
>

.
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(a) Discretization, 2D. (b) Discretization, 3D. (c) Frame.

Fig. 2.1 Panel 2.1(a): discretization of a disk. The true center is represented by the orange dot together with the true profile
in the same color. The pixels at a distance less than a are set to H (highlighted in light blue), while the others are set to h. It
is clear that is not always possible to discretize the disk in a symmetric fashion. The procedure follows the same ratio for the
3D case (2.1(b)). Panel 2.1(c): blurred and noisy frame

Discretization Given the continuous coordinates xi of

the i–th particle and the radius a, the voxels at dis-

tance less or equal to a are filled with a value of H,

while the others are set to h, aiming to have a non–

zero constant background. In our simulations, we set

h = 10 and H = 220. These values were chosen in

order to simulate realistic tiff images, which usually

have values in [0, 255]. In Figure 2.1(a) a 2D explana-

tion of this procedure is depicted: the 3D case follows

the same procedure (Figure 2.1(b)).

Blurring and Noise A blurring operator of Gaussian

type (dimension: 5×5 pixels, of zero mean and unitary

variance, created via the MatLab function imfilter)

is applied to each frame, simulating the perturbation

given by the acquisition system. Gaussian noise of level

σn is the added to each frame: let η ∼ N (0, σnI) be a

realization of a Gaussian multivalued random variable

of zero mean and covariance matrix σnI. The noise η

is added according to the following formula (which is a

slight modification of the one in [22])

Fz = Fz + σn
η

‖η‖F
(1 + ‖Fz‖F)

being Fz the z–th frame and ‖ · ‖F the Froebenius

norm. A different noise realization η is created for each

frame. Moreover, in order to have the most realistic

data, Poisson noise is composed with the images, via

the MatLab function imnoise, employed by the rescal-

ing 1e12*imnoise(1e-12*F,’Poisson’), being F the

current frame (see the MatLab help for the imnoise

function for more details about this procedure.). Fi-

nally, the intensity values of each frame are rescaled

into the interval [0, 255]. See Figure 2.1(c) for a visual

inspection of the result.

3 Algorithm

The steps for the particles recognition problem in the

3–dimensional case are presented in Algorithm 1:

Subsection 3.1 is devoted to illustrating the idea

and the procedures beyond lines 2–7 of Algorithm 1,

while Subsection 3.2 explains how the 2D information

obtained from the frames can be used to estimate the

particle center coordinates in 3 dimensions (lines 8–9).

3.1 Frames Processing

The procedures in lines 2–7 are listed and expanded

below.

Denoising The presence of noise, together with the blur-

ring operator, could lead to some artefacts in the parti-

cle position and diameter estimation, hence a denois-

ing and deblurring procedure is necessary. A simple

approach is using a Gaussian filtering: this procedure

is very quick and inexpensive, performed via the FFT

MatLab’s native algorithms, see Figure 3.1(b) for the

results. The pros of this approach are that it reduces the

presence of the noise and in its speed; while the draw-

backs lie in the fact that the image is oversmoothed: the

perturbing effect of the PSF is augmented , resulting in

blurred edges.

We propose a denoising strategy based on an opti-

mization method: given the noisy and blurred frame g,
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Algorithm 1 Let Nz be the frames’s number, a the radius of the particles.
1: for z = 1, . . . , Nz do
2: Denoising of z–th frame.
3: Search for the K connected components {Lk}k=1,...,K , in the z–th frame.
4: for k = 1 . . . ,K do
5: Compute the center of mass mk of the k–th component.
6: Open a window in the denoised frame, centered in mk.
7: Compute the k–th center via a regularized weighted Least Square fit.
8: Create the two candidates for computing the center of the particle in 3D.

9: Compute the estimated centers of the particles via a weighted mean.

one is led to compute the denoised frame f̃ as

f̃ = argmin
f∈C

f0(Hf + b; g) + µf1(f)

where C is a convex, non–empty closed set of constrains

(e.g., the non–negative orthant), H is the blurring oper-

ator representing the Point Spread Function (PSF), e.g.

the linear blurring operator, b is a constant background

term, µ > 0 is a real parameter and f0 and f1 are the

fit–to–data and regularization functions, respectively.

This problem has been deeply investigated in recent

years, leading to the development of a great number of

valid optimization algorithms [6,43,18]. Moreover, this

formulation of the problem allows us to choose the func-

tion f1 in order to preserve some desired characteristic

(e.g., sharp edges as in the current framework) on the

recovered image.

Search for the connected components In order to get

an estimation of the profile and of the center of the

particles in the current frame, they must be localized

first. The strategy is quite simple: the first step con-

sists of thresholding the denoised frame, by employing

the Otsu method [32] (see Figure 3.1(c)). Then, the

K connected components {Lk}k=1,...,K in the thresh-

olded frame are recognized and labeled (Figure 3.1(d)).

The Matlab function bwlabel is set to assume the 8–

connected neighbours. At this stage, the area of each

k–th connected component is stored in ak: this area

will be used for the estimation in 3 dimensions of the

center (see Equation (3.3)). The center of mass mk of

Lk is computed, together with a first raw estimation rk
of the radius: rk is the distance of mk from the furthest

pixel in Lk (Figure 3.2(a)).

Least Square Fit Once the connected components are

recognized, a least square fit is performed on each one in

order to estimate the profile and the center of the par-

ticle. First of all, a Total Variation functional [43] is ap-

plied to the current denoised frame, namely D, aiming

to find the edges of the particles (Figure 3.2(c)). Denot-

ing (with an abuse of notation) the partial derivatives

(a) Original. (b) Denoised.

(c) Thresholded. (d) Labeled.

Fig. 3.1 Particular of the frame of Figure 2.1(c). (a): a re-
gion of interest with two separated particles. (b): result of
the Gaussian filtering. The noise is reduced, but the edges
are blurred. (c): thresholding via the Otsu method. (d): la-
beling procedure, where different colors mean different labels.
The order of labeling does not influence the final result.

via ∂x and ∂y in the two directions, the Total Variation

function on D reads as

TV(D) =

√
(∂xD)

2
+ (∂yD)

2
. (3.1)

The data are discrete, hence a discrete version of TV

is implemented: the derivatives are computed via cen-

tered differences with 2nd order accuracy. Centered dif-

ferences with 4th order accuracy were tested, but no

significant differences were observed in the final results.

For sake of clarity, we focus on the k–th component,

assuming that is well separated from all the others.

1. A squared window of interest (WOI) centered in

mk of width 2 × (1.5rk) is opened (Figure 3.2(b))
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(a) mk and rk. (b) WOI. (c) Thresholded TV. (d) Estimation.

Fig. 3.2 Procedure for the least square fit, focusing on a single connected component. First panel: connected component,
with its center of mass and raw radius estimation. Second panel: window of interest around the localized particle. Third panel:
chosen pixels for the least square fit, with the relative intensity values. Fourth panel: estimated center together with the profile,
based on the thresholded values.

in TV (D). If a particle is near to one edge of the

frame, the window is reduced until it falls entirely in

to the frame. This reduction is not performed evenly

on the two dimension: it could lead to a rectangular

WOI.

2. The WOI is thresholded via a value obtained again

with the Otsu method: this thresholding yields the

positions of the largest changes in intensity, which

are ideally located on the profile edge, and at the

same time discards the fluctuations given by the

residual noise (Figure 3.2(c)).

3. The position of the q pixels above the threshold are

stored in an array {xi, yi, wi}i=1,...,q together with

the corresponding intensity values wi.

4. A constrained regularized Least Square fit is per-

formed (Figure 3.2(d)):

α ∼ argmin
α2

1+α
2
2−α3−a2≤0

1

2
‖WRα−Wy‖22 +

µ

2
‖α‖22

(3.2)

where

W =


√
w1 0 . . . 0

0
√
w2 . . . 0

0 0
. . . 0

0 0 . . .
√
wq

 , R =


−2x1 −2y2 1

−2x2 −2y2 1

−2x3 −2y3 1
...

...
...

−2xq −2yq 1



y = −


x21 + y21
x22 + y22

...

x2q + y2q

 , α =

α̃1

α̃2

α̃3


and a is the true radius of the particles. The coor-

dinates of the estimated center (xek, y
e
k) are simply

(α̃1, α̃2), while the estimated radius rek is computed

as rek =
√
α̃2
1 + α̃2

2 − α̃3: this is the main reason for

the constrain in Equation (3.2).

The regularization term is included due to the fact

that the matrix WR could be ill–conditioned [21],

hence the algorithm could fail to converge to a fea-

sible solution (e.g., if the estimated radius is greater

than a): in order to avoid that, the parameter µ is

set as 1/K, being K the condition number of WR.

Numerical experiments have shown that K is usually

large, hence µ is small, resulting on a small influence

on the regularization, but still sufficient to avoid in-

feasible solutions. Sometimes K is so large that even

the regularization does not allow to achieve a fea-

sible estimation. In this case, the regularization pa-

rameter is repeatedly increased by a factor 1.1 until

the constraint is satisfied.

Remark 1 One may wonder if a simpler procedure could

be used in place of this Total Variation approach. We

compared the results (on synthetic tests) obtained via

our proposed approach with the ones achieved with a

more direct strategy. This simple procedure estimates

the center of each particle profile via the weighted mean

of the elements of the connected component, while the

radius is computed employing the variances of these ele-

ments. In this way, the achieved total error T is around

0.15, the Vertical error V is close to 0.10–0.11 and the

Plane error P ranges between 0.08 and 0.09. Compar-

ing these results with the one obtained via the Total

Variation approach convincingly shows that the latter

strategy is more effective.

We now focus on a pathological case, where two

particles are very close (Figure 3.3(a)): the situation

is problematic, but still tractable. When the WOI is

opened around one particle, it may happen that some

pixels belonging to the edge of the other fall inside the

window (Figure 3.3(a) and Figure 3.3(b)), affecting the
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least square procedure as it is evident in Figure 3.3(c).

Thus, a further control is needed in this case. Another

search for connected components is performed inside

the WOI: if the number of the found components is

greater than 1 (Figure 3.3(d)), then only the largest one

is kept (Figure 3.3(e)). Adopting this procedure leads

to a better fit, as shown in Figure 3.3(f).

(a) WOI: 2 items. (b) Thresholding. (c) Perturbed fit.

(d) 2 components. (e) Largest item. (f) Improved fit.

Fig. 3.3 Upper panels: when two (or more) particles are very
close but still separated, selecting a large WOI may lead to
include some undesired pixels in the LS fit, resulting into a
perturbed result. Bottom panels: searching inside the WOI
for all connected components avoids the problem depicted in
upper panels. If the particles are close but disconnected, one
can easily isolate the largest component which is related to
the particle, and hence a reliable LS fit can be reached.

Unfortunately, the case in Figure 3.4(a) can occur:

the above procedure fails to recognize two distinct par-

ticles and compute a center which is very close to the

center of mass of the particles. Two possible strategy

are proposed, but they still need to be investigated.

The first is to perform some morphological operations

[33], in order to be allowed to recognize the different

particles.

The second consists of performing a LS fit using an el-

lipse model, instead of a circumference (Figure 3.4(c)):

if the ratio of the semi–axes of the ellipse is either highly

greater or lower than 1, it means that inside the ellipse

there are more than one particle, due to the assump-

tion of the spherical properties of the particles. Another

check is given by the eccentricity of the ellipse. Thus, us-

ing the information (length and orientation) of the axes

of the ellipse, the WOI can be divided in two smaller

WOIs (Figure 3.4(d)): another LS ellipse fit is pursued

in each portion. For each one, the ratio of the semi–

(a) Two particles. (b) One component.

(c) Ellipse with axes. (d) 2 WOIs (yellow).

Fig. 3.4 From left to right, ut to bottom: true image, la-
belled component, estimated ellipse, WOI divided in two
more WOIs. In the fourth panel, the window of interest is
divided along the longest axis. The example shown refers to
a vertical ellipse, but the procedure can take into account
arbitrarily oriented ellipses.

axis is checked again: if it is around 1, then a particle is

found, on the other case the same procedure is iterated.

Remark 2 The situation depicted in Figure 3.3 can

be worse: 3 or more particles can cluster, leading to an

ellipsoid fit which strongly resembles a circumference.

In this undesired case, the control on the ratio of the

semi–axis could be misleading while the eccentricity can

give a more reliable output. Another strategy could be to

rely on more advanced image segmentation than simple

thresholding, e.g. via a Mumford–Shah functional [19,

41,44].

3.2 3–dimensional Estimation

The procedure lying beyond lines 8–9 of Algorithm 1 for

the estimation of the center of the particles is now ex-

plicited. It consists of two main steps: first, given the 2D

estimation of the center of a particle in a frame, two pos-

sible 3D candidates are computed via the Pythagorean

theorem. In a second step, we cluster all candidates be-

longing to the same particle.
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Creation of the candidates This procedure relies on the

assumption that the radius a of the particles is known.

Focussing on a single particle, assuming we have esti-

mated its center (xe, ye) and the radius re of its circu-

lar profile in the z–th frame. The distance d between

the true center and the considered frame is easily com-

puted by d =
√
a2 − (re)2 (cfr. Figure 3.5(a)). Hence,

the two candidates for the third coordinate are zdz− d
and zdz + d (with dz the vertical discretization, equal

to the separation between acquisition planes). At this

point, no prior information is known about where the

true center is located. A single particle can be spanned

z–th frame

a

d

r
e

Estimate 2D center

candidate

candidate

true center

z–th frame

(a) Computation of the center candi-
dates .

Frames

Estimated 2D centers

Relative candidates

(b) A cluster (in the blue region).

Fig. 3.5 Panel (a): a vertical section of a particle. The hor-
izontal line represent the z–th frame, on which an estimated
center (xe, ye) (blue point) and estimated radius (re) are
computed. The information on the true radius a allows to
compute the distance d of the true center (black +) from
the z–th frame, leading to two different candidates (red and
yellow points). Panel (b): the procedure is repeated for each
estimated center: in this case there are 7 frames intersect-
ing the particle, hence 14 candidates are created. The correct
ones cluster around the true center, in the highlighted circular
region.

by Z frames, namely: hence in the ideal case Z esti-

mation for the 2D centers are available, one for each

frame intersecting the particle, leading thus to have 2Z

candidates for the true center (Figure 3.5(b)). Due to

the geometric properties, Z candidates will cluster in

a region around the true center (blue enlighten region

in Figure 3.5(b)): the next step consists in finding this

cluster.

Finding the clusters and compute the center For each

center in each frame two candidates are created: once

all the frames are processed, the situation in Figure 3.6

occurs. For the sake of clarity, we call R the set of

centers found in the frames and call C the set of pos-

sible candidates computed as described in the previous

paragraph (namely, the points in Figure 3.6(a)). It is

expected that there should be a clustering around the

true centers of the particles. One strategy could consist

-1

0

80

1

2

3

60 80

4

z

5

60

y

6

40

7

x
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8
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0 0

(a) Clusters .

0

80

1

2

3

60 80

z

4

5

60

y

40

6

x

40

7

20
20

0 0

(b) Isolated clusters around the centers.

Fig. 3.6 Up: after processing of all the frames of the vol-
ume, the clustering of the candidates around the true centers
becomes evident. Bottom: the Z candidates which have to
be used for the estimation of the center. On both figures the
colors are displayed only for the sake of clarity.

of searching for the Z nearest neighbours [28] lying in
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a ball of radius ρrawa, 0 < ρraw < 1 (recall that Z is

the maximum number of frames spanned by a particle),

but a different approach is adopted here:

1. a first raw estimation of the center of the particles

is computed, using the set R;

2. the Z nearest neighbours to these approximated cen-

ter are found within the candidates in C.
The first step groups the points in R that belong to

the same particle. Once these clusters are detected and

labelled, the corresponding profiles are considered and

used in a LS sphere fit, in order to get a first raw estima-

tion of the center of the particles (see Figure 3.7(a) for a

visual inspection of this procedure). Let {Ri}i=1,...,q be

the set of these raw estimations; focus on one of these,

namely the k–th one. The Z nearest neighbours to Rk
are searched within a range ρesta, 0 < ρest < 1: let{(
xek,i, z

e
k,i, z

e
k,i

)}
i=1,...,Z

be these neighbours (ideally,

these are the points lying in the small highlighted cir-

cle of Figure 3.5(a)). The estimation of the k–th center

xek = (xek, y
e
k, z

e
k)is computed as

xek =
1

A

Z∑
i=1

aix
e
k,i

yek =
1

A

Z∑
i=1

aiy
e
k,i

zek =
1

A

Z∑
i=1

aiz
e
k,i

(3.3)

where ai is the area of the connected component

related to the center (xeki, y
e
ki) (see Subsection 3.1) and

A =

Z∑
i=1

ai. A weighted mean is employed in order to

lower the influence on the final estimation of unreliable

2D estimations: e.g. the ones coming from frames which

intersects a particle near its top or its bottom, leading

to high uncertainty.

Remark 3 It could happen that the nearest neighbours

to Rk are less than Z: this can be due to low quality

images, because the procedure fails to recover the 2D

center in some frames or because the particle has moved

during acquisition.

Remark 4 The perceptive reader may wonder why the

3D procedure does not accept the LS sphere fit as final

estimation of the center. Numerical experiments show

that taking the LS center as final estimation leads to

a total error T of ∼20% of a voxel, which is not suffi-

ciently precise in any real–life application, while adopt-

ing our proposed procedure yields significantly better re-

sults. See Section 4 for the details about error measure-

ments, performance and results.

4 Numerical Tests

Two different experiments are carried on to validate

the performance of the proposed algorithm. The first

is devoted to evaluating the performance on synthetic

datasets. Dataset construction is described in Section 2,

with two different noise realization (Gaussian plus Pois-

son noise and pure Poisson). The evaluation is done

by using three different error measurements, described

in the subsequent paragraph. A large number of sim-

ulation are carried out, aiming to produce a sufficient

amount of data to draw reliable conclusions. Moreover,

the performance of the algorithm is also evaluated on

the vertical resolution, since this is an important is-

sue in real–life application. The second experiment con-

cerns real 3D data: it consists of considering a scanned

volume of particles with a diameter of 3µm suspended

in a glycerol/water mixture. Both experiments are car-

ried on a MacBookPro, equipped with 16GB RAM and

an Intelr CoreTM i7 CPU (2.2GHz), on MatLab 2015a.

The MatLab code is available at http://www-syscom.

univ-mlv.fr/~benfenat/Software.html.

Error Measurements In order to evaluate the perfor-

mance of our algorithm, inspired by [13,35], three dif-

ferent error measurements are adopted. Denote with

c = (cx, cy, cz)
>

the true coordinates of a center and

with e = (ex, ey, ez)
>

the coordinate of the relative es-

timation.

The total error T as

T =

√
(c− e)

>
D−2 (c− e), D =

dx 0 0

0 dy 0

0 0 dz


(4.1)

which aims to measure the error w.r.t. voxel precisions.

The in–plane error P and the out–of–plane error V are

defined as

P =

√(
cx − ex

dx

)2

+

(
cy − ey

dy

)2

, V =
|cz − ez|

dz
.

(4.2)

The former aims to measure the error on the estima-

tion of the particles’ position in the single frames w.r.t.

pixel precision, while the latter focuses on the vertical

displacement.

First synthetic test: Gaussian and Poisson noise Fol-

lowing the notation of Section 2, the synthetic dataset

is generated using the following settings: Dx = Dy =

76.8µm, Dz = 7µm, the number N of particles is 100

of radius a = 1µm; the volume is discretized into a 3D

http://www-syscom.univ-mlv.fr/~benfenat/Software.html
http://www-syscom.univ-mlv.fr/~benfenat/Software.html
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(a) Profiles for LS fit.
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(e) yz view.

Fig. 3.7 Up left: overlay of the estimated center and of the circle profile of a particle over the spanned frame. The highlighted
profiles are used in a LS fit to get a raw estimation of the center of the particle, indicated with the red plus in Figure 3.7(b).
Up right: the red plus is the raw estimation of the center, the dots are the possible candidates in C, the orange one are the
Z nearest neighbours to the raw estimation within a range of 0.1: these points are employed in Equation (3.3). The reader
should pay attention to the different scale of the axis. Bottom: xy, xz and yz view of the estimated center, of the candidates
and of the selected candidates.

array of dimension Nx = Ny = 512, Nz = 22, lead-

ing to voxels’ dimension dx = dy = 0.15, dz = 0.3182.

Two types of noise are affecting the frames: Gaussian

(σn = 0.2) and Poisson (see Section 2 for the details on

how the Poisson noise is added).

Algorithm 1 is applied: the chosen denoising tech-

nique (Line 2) consists simply of filtering via a Gaussian

filter of dimension 5 pixels and variance 1. The window

of interest is chosen as described in Subsection 3.1. Due

to the discretization of the 3D volume, the maximum

number Z of frames that can be spanned by a particle is

7, hence the estimation of the centers (Subsection 3.2)

is achieved by

1. clustering the points in R within a distance equal to

0.2a followed by estimating the raw center {Rk}k=1,...,q

and then

2. search the Z nearest neighbours to each Rk within

a distance 0.2a and apply (3.3).

In Figure 4.1 the three type of errors are depicted; the

proposed procedure recognizes 99 particles (out of 100).

The plots in Figure 4.1 show that the mean of each

error (yellow dashed line) type stays below the 1/10

of a pixel/voxel (red line), which is the baseline of the

state–of–the–art methods [13,15]. In fact, the in–plane

error is 0.0596, the out–of–plane error is 0.0371. The

total error, given by (4.1), is 0.0777, below the state–

of–the–art baseline.

In order to study the behaviour of the procedure

on large numbers of particles, the above simulation is

repeated 20 times (for a total of 2000 particles), stor-

ing the errors V,P,T for each run. The histograms of

the total error T is shown in Figure 4.2(a), together

with its distribution estimation. The histogram is fit

with a Γ distribution with parameters (k, θ),where k is

the shape parameter and θ is the scale parameter. The

mean of T is 0.0811. The behaviour of the total error is

presented alone: the histogram of the in–plane error has
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(a) out–of–plane error.
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(b) In–plane error.

10 20 30 40 50 60 70 80 90 100

Particle

0

0.05

0.1

0.15

0.2

0.25

Total error

Benchmark

Error Mean

(c) Total error.

Fig. 4.1 From left to right: V,P and T errors. Each performance stays below the state–of–art baseline, which is 10% of a
pixel/voxel. The medians of the errors are 0.0289, 0.0483, and 0.0712 for V,P and T, respectively.

the same appearance, with mean 0.0643, while the his-

togram of the out–of–plane error has also a Γ behaviour

but much more concentrate towards zero, with a mean

of 0.0387. All the three errors stay below the expected

baseline of 10% [13]. Our proposed procedure is based

(a) Distribution of T. (b) Distribution of a− re.

Fig. 4.2 (a): Histogram of the total error T: its mean is
0.0811, its median is 0.0781. The out–of–plane and the in–
plane error has very similar behaviour and can be fitted to
the same distribution. (b): histogram of the signed difference
a − re together with its t–location scale fit. There are more
outliers on the left than on the right, and in addition to the
fact that the mean is circa -0.014 this tells that the proposed
procedure tends to slightly overestimate the radius of the par-
ticles.

on the assumption that the true radius is known: this

is a valid assumption in many applications, but with

a certain degree of uncertainty (e.g., the radius can be

known within an error of the 10%). In order to check if

the estimation re of the radii of the particles is reliable,

in Figure 4.2(b) the histogram of the signed difference

a − re is shown, aiming to evaluate the performance

of the algorithm (re is computed by simple geometric

properties). The chosen distribution for the fit is the t–

location scale fit, due to the heavy tail on the left: this

distribution is able to capture also the highest error (in

absolute value). In this case, there are actually some

outliers on the left of the histogram, as it is evident

from Figure 4.2(b). The mean given by this distribu-

tion is -0.0142: this means that overall the radii of the

particles are overestimated by 1.5%. A first justification

of this behaviour can be given by the blur effect given

by the PSF (see Section 2 for the detail) combined with

the denoising technique adopted, but the next experi-

ment will neglect the influence of the PSF and it will

show how the denoising technique influences the radius

estimation.

The last part is devoted to study the performance

w.r.t. the vertical resolution, i.e. the number Nz of

frames in which the volume is discretized (Nx and Ny
are unchanged, since most modern microscopes have a

high resolution in both x and y axis). In Section 4 the

behaviour of the three kinds of error are depicted for

increasing vertical resolution. For each dimension, 20

different simulations were performed, hence 20 differ-

ent runs of the procedure has been done: the numbers

appearing in Section 4 are the means of the results of

these simulations. One would expect that the estima-

tion would improve with the number of frames: actu-

ally, the procedure reveals itself to be very robust w.r.t.

the vertical resolution, even with only a few (10 or 12)

frames. The difference a − re is depicted in the 4–th

row: for each resolution, this difference is around -0.013,

meaning that, regardless the number of vertical frames,

the radius of the particles is overestimated by 1.3%.

The last line of Section 4 refers to the (mean) number

of estimated particles: the results are very satisfying for

all the resolution but the first one (Nz = 10): this is due

to the fact that in this case a particle can span only 3

frames maximum (more likely just 2 frames), leading

to have a low number of candidates in C. Hence, it is a

problem linked to the relation between the dimension
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Table 4.1 Performance w.r.t. different vertical discretization. There is a faint decreasing behaviour in the vertical error, which
leads in a decrease on the total error. Notice that even for a low number of frames a low V is achieved. In the last row of the
table the error on the true radius is shown for each resolution. Despite the low resolution, even for Nz = 10 or Nz = 12 a good
estimation is achieved. The means of the differences a− re are obtained via a t–location scale distributio fit.

Nz: number of frames

10 12 15 20 22 25 30

P 0.0813 0.0774 0.0719 0.0713 0.0643 0.0630 0.0620

V 0.0259 0.0301 0.0318 0.0336 0.0387 0.0471 0.0436

T 0.0883 0.0870 0.0836 0.0844 0.0811 0.0855 0.0824

a− re -0.0117 -0.0129 -0.0141 -0.0138 -0.0142 -0.0133 -0.0137

Nrec 69.4 92.8 96.4 98.2 99.2 99.7 99.8

of the particles and the vertical resolution: for small

particles it is sufficient to slightly increase Nz (Nz = 12

in order to get very good results), while for larger par-

ticles (a = 1.1µm) 10 frames prove to be sufficient, as

it is evident in Table 4.2)

Table 4.2 Results of 20 runs of the procedure with a =
1.1µm, Nz = 10 and N = 50. It is evident that the poor
performance of the procedure when Nz = 10 in Section 4 is
due to the relation between the diameter of the particles and
the resolution. Such a low resolution is however enough for
slightly larger particles to get reliable results.

P V T a− re Nrec(%)

0.0624 0.0262 0.0712 -0.0099 47.3 (95.5%)

Second synthetic test: Poisson noise These tests aim

at checking whether the Gaussian filtering is the right

choice for denoising. Let consider the same setting of

the previous experiments: Dx = Dy = 76.8µm, Dz =

7µm, 100 particles of radius a = 1µm, Nx = Ny =

512, Nz = 22. The difference lies in the noise corrupting

the frames: no Gaussian noise is present (σn = 0) while

Poisson noise affects the data. Algorithm 1 is applied to

this dataset: satisfactory results, in line with the ones

in Section 4, are obtained (P = 0.0621,V = 0.0331,

and T = 0.0755, 98 particles recognized). Since simple

Gaussian filter is not always sufficient to deal with high

level Poisson noise, as suggested in Subsection 3.1 an

optimization approach is adopted, by using the algo-

rithm presented in [6]: on the one hand, this procedure

can be used to set the variational formulation for restor-

ing images corrupted by pure Poisson noise and on the

other to select edge–preserving regularization, aiming

to preserve sharp edges, which eases the entire proce-

dure of particles estimation. The Bregman procedure of

[6] has been chosen instead of possibly simpler proce-

dures (e.g., [9,10,12,16]) for its ability to increase con-

trast [7,3,8] in the restored images, which is a desirable

feature. A visual inspection on the difference between

the Gaussian filtering and the employed Bregman tech-

nique is depicted in Figure 4.3, where a zoom of the

4–th frame is shown. The Bregman procedure uses as

inner solver the AEM algorithm [11], with a maximum

of 1000 iterations maximum and stopped via the crite-

rion described in [6] with a tolerance of 10−4, the fixed

number of external iterations is 3, the regularization

parameter µ is set to 0.1. The fit–to–data function f0
is the generalized Kullback–Leibler and the regulariza-

tion functional is the Total Variation, which preserves

sharps edges.

Using this approach in line 2 of Algorithm 1, yields

the following results: P = 0.0627,V = 0.0316 and T =

0.0752, with 99 particles recognized. The most impor-

tant difference lies in the estimated radius: with Gaus-

sian filtering the mean error (obtained by a t–location

scale fit) is −0.0134, while the Bregman technique leads

to an error of −0.0018: hence, using the Gaussian fil-

tering leads to overestimate the radius of the particles.

Since just one single experiment is not sufficient to sup-

port this claim, further tests are carried on and pre-

sented in Table 4.3: one with a lower vertical resolution

(Nz = 10), where the dimension and the discretiza-

tion of the volume is the same, while the number of

particles is 50 and the radius is set to 1.1µm. The sec-

ond test is performed on a dataset with the same char-

acteristic of the first one presented in this paragraph:

Dx = Dy = 76.8µm, Dz = 7µm, 100 particles of radius

a = 1µm, Nx = Ny = 512, Nz = 22.

Table 4.3 shows that using the correct denoising pro-

cedure produces better results in terms of error estima-

tion and of number of recognized particles; moreover,

choosing the correct denoising technique allows to es-

timate more precisely the radius: in fact, for Nz = 10

using Gaussian filtering leads to an error of almost 1%,



12 Alessandro Benfenati et al.

(a) Blurred & noisy. (b) Clear image. (c) Gaussian filtering. (d) Bregman.

Fig. 4.3 From left to right: Blurred & noisy frame, original image (without blurring and noise), Gaussian filtering and
Bregman restoration. These images are examples from the 4–th frame, they are displayed in the range [0, 255]. The Bregman
technique is able to separate in a more reliable way the particles and at the same time is providing with more sharp edges,
due to the choice of regularization function. In this case, the regularization is given by the Total Variation functional. It could
happen that Gaussian filtering makes merge two or more particle in one big component, increasing the difficulties in recognized
different objects.

Table 4.3 Results obtained by 10 runs of the algorithm. The Bregman technique provides better results overall, both for
Nz = 10 and Nz = 22. The error on the estimated radius is given by the mean obtained by the t–location scale distribution fit,
as was done in Figure 4.2(b); for the case Nz = 10, looking at the simple arithmetic mean, the Bregman procedure shows to be
much more precise in the radius’ estimation, in fact it gives an error of −0.0028, while the Gaussin filtering results in an error
of −0.0119. For the case Nz = 22, the overall behaviour of the Bregman approach in terms of error measurements is slightly
better, but the number of found particles is closer to the maximum and the estimation of the radius improved, reaching an
error of 0.1%.

Nz Technique P V T a− re Nrec(%)

10
Gaussian Filter 0.0622 0.0271 0.0712 -0.0096 46.7 (93.4%)

Bregman 0.0628 0.0177 0.0677 -0.0013 47.6 (95.2%)

22
Gaussian Filter 0.0626 0.0380 0.0793 -0.0138 98.8 (98.8%)

Bregman 0.0637 0.0291 0.0746 -0.0019 99.4 (99.4%)

while the Bregman technique reduces the error to 0.1%.

For Nz = 22 the difference is more pronounced: classi-

cal filtering gives an error of ∼ 1.4%, while again the

proposed approach results in an error of only 0.1%. The

hypothesis that the overestimation of the radius actu-

ally depends on the denoising and deblurring techinque

is true: at a first sight, it seems from Section 4 that

this is a determinate error [13] of the algorithm, but

this last experiment tells the opposite. The procedure

used to improve the quality of the images influences the

performance of the particle estimation algorithm.

While on the one hand, the two denoising proce-

dures are similar, because both require parameters set-

ting (e.g., the Bregman technique requires the tuning

of the regularization parameter, of the tolerance for

the stopping criterion; the filtering techniques requires

to choose the type of filter and its parameters); on

the other hand, the optimization technique has draw-

backs as its computational cost and the time need to

restore each frame, while simple filtering is more or less

free in these terms. There is a trade–off (as it usually

occurs in cases such these) between performance and

time/computational cost.

Real 3D data This paragraph is devoted to applying

the proposed algorithm to real 3D data. The scanned

volume has Dx = Dy = 64µm, Dz = 4.1µm, discretized

into an array of dimension 512 × 512 × 10, leading to

dx = dy = 0.125µm, dz = 0.41µm; 50 scans of the

volume were recorded, with a dt = 0.5s. The diameter

of the particles is 3µm (a = 1.5µm) and they are sus-

pended in a ∼ 70%–30% glycerol/water mixture (vis-

cosity of ∼ 0.017 Pa s). The instrument used to ac-

quire this data is a confocal microscope (Zeiss LSM

700) with a 100×NA 1.4 oil immersion objective (Zeiss

Plan–APOCHROMAT). The frames are restored using

the Bregman procedure previously described with the

following settings: AEM as inner solver with a Total

Variation functional as regularization, maximum num-

ber of allowed iterations set to 1000 within a tolerance

of 10−4 for the stopping criterion described in [6] with
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α = 2, 3 external iteration are allowed. Since the images

are given without any information about their record-

ing, a Gaussian PSF1 with σ = 1 and zero mean is as-

sumed as blurring operator, a background term equal

to the minimum value of the image, and Poisson noise

affecting the frames. All these assumptions are consis-

tent with the type of the images produced by the afore-

mentioned instrument. Figure 4.4 shows in its first row

(a) Original. (b) Original, particular.

(c) Bregman. (d) Bregman, particular.

(e) Gauss filter. (f) Gauss filter, particular.

Fig. 4.4 From left to right, from up to bottom. The images
have to be read in pairs: for the z–th slice, the left image
refers to the noisy and blurred frame, while the right image
refers to the restored one. It is clear that the contrast of the
image is significantly improved, reducing the diffuse areas,
mainly in the highest frames. All the images are displayed in
the range [0, 255].

1 fspecial(’gaussian’,512,1).

the 6–th acquired frame at time t = 1, the restored

version via Bregman technique and the filtered image

via a Gaussian filter. In the second row a particular of

these image is presented: the visual inspection makes

clear that the usage of the correct denoising technique

allows to reduce the glowing halo all among the frame

and moreover provides with more sharp edges, all this

contributes in making easier the recognition of the pro-

files.

Algorithm 1 is set with an initial WOI of width

2 × 0.1rk (see Subsection 3.1 for the details), with a

threshold which is 1.5 times the value given by Otsu’s

method, ρraw = 0.3, ρest = 0.3. The frames at time

t = 1 are shown in Figure 4.5(b)–Figure 4.5(k).

Figure 4.5(a) provides a visual inspection of the re-

constructed position of the particles at time t = 1: this

reconstruction faithfully respects the true position, as

it is clear by comparing the 3D plot with the frames

depicted from Figure 4.5(b) to Figure 4.5(k), where the

recovered profiles of the particles are superimposed on

the original images. In these images, the top left corner

corresponds to the point (0, 0, kdz) in the 3D space, be-

ing k the number of the frame. A closer inspection of

Figure 4.5 demonstrates that the proposed procedure

finds particles close to the boundaries of the frames,

as well as the ones near the top or the bottom of the

volume.

5 Conclusion

In this work, a particle segmentation and position esti-

mation methodology is presented. Assuming fixed spher-

ical particles with a known radius, this procedure on the

first hand applies a noise removal algorithm on each

frame of the 3D volume, then it uses the 2D gradient

information on the profiles of the particles and employs

a weighted regularized Least Square fit to find the 2D

center and the radius of the profile intersecting each

frame. Using geometric properties, the coordinates of

the 3D center are retrieved with an accuracy better

than 10% of a voxel, which is the state–of–the–art per-

formance of this type of algorithms. Furthermore, the

intermediate steps implemented for the 3D reconstruc-

tion allow also to recover the particles’ position within

each 2D frame, with a subpixel precision. Reliable re-

sults for the 3D positioning are achieved even for a low

vertical resolution: the total error is indeed under the

10% of a voxel. Moreover, the very low error on the

radius estimation suggests that this procedure improve

a priori information about the radius of particles of

uncertain dimension. This work demonstrate that the

preprocessing of the frames requires particularly tai-

lored techniques, depending on noise type: since Poisson
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 4.5 Panel (a) 3D recovering of the position of the particles at time t = 1.. Panel from (b) to (k) contain the original
images with the superposition of the recognized profiles (in red).

noise is the most common noise affecting the images,

simple Gaussian filtering is not sufficient. One of the

available image restoration techniques is then applied

in this context: although they are more demanding in

term of computational cost and time, the application

of this strategies leads to a general improvement of the

position estimation. Moreover, this tailored approach

significantly increases the precision on the radius es-

timation, and it provide deeper insights on the role

of Gaussian filtering in this task, proving that it in-

duces an overestimation. Future work will involve bet-

ter segmentation techniques for pathological cases, em-

ploying more tailored approaches such as regularized

approaches inspired by the Mumford-Shah functional.

The case of spherical particles with unknown radius will

be also handled. The reliable results in positioning di-

rectly suggest that the proposed technique can be em-

bedded in a more general procedure devoted to tracking

procedure, where the particles are no longer fixed but

may subjected to significant Brownian motion between

slice acquisition.
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