Handling imprecise and missing evaluations in multi-criteria majority-rule sorting - Archive ouverte HAL
Article Dans Une Revue Computers and Operations Research Année : 2019

Handling imprecise and missing evaluations in multi-criteria majority-rule sorting

Résumé

In this paper we propose an extension of a multi-criteria majority-rule sorting model that allows the handling of problems where the decision alternatives contain imprecise or even missing evaluations. Due to the imprecise nature of the evaluations we offer the possibility of assigning an alternative to one or more neighboring categories, both as input for inferring the model parameters as well as the output of the classification. Our contribution also contains an algorithmic approach for extracting the parameters of this model during an elicitation process, which is validated across a wide range of generated datasets.
Fichier principal
Vignette du fichier
S0305054819301480.pdf (777.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02147997 , version 1 (25-10-2021)

Licence

Identifiants

Citer

Patrick Meyer, Alexandru-Liviu Olteanu. Handling imprecise and missing evaluations in multi-criteria majority-rule sorting. Computers and Operations Research, 2019, 110, pp.135-147. ⟨10.1016/j.cor.2019.05.027⟩. ⟨hal-02147997⟩
71 Consultations
87 Téléchargements

Altmetric

Partager

More