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Abstract

In this paper we propose an extension of a multi-criteria majority-rule sorting
model that allows the handling of problems where the decision alternatives
contain imprecise or even missing evaluations. Due to the imprecise nature of
the evaluations we offer the possibility of assigning an alternative to one or
more neighboring categories, both as input for inferring the model parameters
as well as the output of the classification. Our contribution also contains an
algorithmic approach for extracting the parameters of this model during an
elicitation process, which is validated across a wide range of generated datasets.

Keywords: multi-criteria decision aiding, majority-rule sorting, missing
values, intervals of categories

1. Introduction

We consider in this article a decision situation in which a finite set of al-
ternatives is evaluated on a finite set of criteria. When comparing two alterna-
tives from a preferential point of view, a decision maker (DM) uses a majority-
rule in accordance with the Multi-criteria Decision Aiding (MCDA) outranking
paradigm [33]. This means that (s)he considers that an alternative a outranks
an alternative b when a weighted majority of criteria validates the fact that a is
performing at least as good as b and there is no criterion where b seriously out-
performs a. The first condition is called concordance or majority rule, whereas
the second condition is called discordance or veto rule. Various implementations
of these conditions, and their combination, have been proposed in the literature
(see for example [37]), together with additional concepts such as “reinforced
preference”, “counter-veto” (see [38]) or “dictator” (see [24]).

In this paper, we restrict our discourse to a specific type of decision prob-
lems, called sorting, which aims to assign the decision alternatives into a set
of predefined ordered categories or classes, according to the preferences of the

∗Corresponding author (alexandru.olteanu@univ-ubs.fr)

Preprint submitted to Elsevier April 13, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0305054819301480
Manuscript_af6446cb4cbe85e97eabba006ee0ac33

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054819301480
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0305054819301480


DM, represented by a majority rule model. The work in this article is based
on a simplified version of the classical Electre Tri method [16; 30; 35], called
MR-Sort [21], which is close to the version axiomatized in [3; 4], and which
does not consider the previously mentioned discordance or veto principle. The
MR-Sort procedure takes thus into account the preferences of the DM, which
are represented through the following preferential parameters :

• weights, which give the relative importance of criteria;

• a majority threshold, which indicates the weight of a coalition of criteria
in order to be considered sufficient;

• category limits, which are used to segment the evaluations scales into
performance ranges appropriate for assignment into each category.

In this context, we focus on the problem raised by imprecise and incomplete
evaluations in the performances of the alternatives on the criteria. We therefore
propose an extension of the MR-Sort procedure, which handles both this impre-
cision and the lack of evaluations, and which possibly provides assignments into
one or several neighboring categories. In order to determine the parameters of
the model, the DM is asked to assign some alternatives, which may also contain
missing or imprecise evaluations, to one or more contiguous categories. The
proposed elicitation method then determines the preferential parameters of the
model via an approximative approach.

The rest of the article is structured as follows. In Section 2 we start this paper
by presenting an overview of sorting techniques in the outranking paradigm
and related work on imprecise and missing evaluations in MCDA. Section 3
details the sorting model that we propose, whereas Section 4 shows how its
parameters can be determined from assignment examples. In Section 5 we test
this learning algorithm on artificially generated benchmarks . Finally, we draw
some conclusions in Section 6 and present perspectives for future work.

2. State of the art

2.1. Majority-rule sorting

In this section, we introduce formally the MR-Sort assignment procedure, on
which the work of this article is based. It is a simplified version of the classical
Electre Tri method [16; 30; 35] and close to the version axiomatized in [3; 4].

Let us consider a finite set of alternatives A, a finite set of criteria indexes
J and a set of category limits separating profiles B = {b1, . . . bk−1}. Each
alternative and each category limit is a vector of evaluations with respect to
all criteria. The evaluation with respect to criterion j can be viewed as a
function gj : A ∪ B → R, where gj(a) denotes the evaluation of alternative
a ∈ A on criterion j and gj(bh) denotes the evaluation of category limit bh,∀h ∈
{1, . . . , k − 1}, on criterion j. The set of category limits are used to define a
set of k categories {c1, . . . , ck}, ordered by their desirability, from c1 being the
worst category to ck being the best one. Each category ch is defined through
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its upper limit, bh, and its lower limit, bh−1, with the exception of the worst
and best categories, which have only one limit. We assume, without loss of
generality, that the performances are supposed to be such that a higher value
denotes a better performance. Furthermore the performances of the category
limits are non-decreasing, i.e. ∀j ∈ J, 1 < h < k : gj(bh−1) ≤ gj(bh).

MR-Sort uses two assignment rules for placing the alternatives into cate-
gories: the pessimistic and the optimistic assignment rules [37; 5]. The pes-
simistic rule assigns an alternative a to the highest possible category ch such
that a outranks the category’s lower frontier bh−1. The optimistic rule assigns
a to the lowest possible category ch such that the category’s upper frontier bh
outranks a. The pessimistic rule is the most commonly used in practice.

An alternative a is said to outrank a frontier bh−1 if and only if there is a
sufficient coalition of criteria supporting the assertion “a is at least as good as
bh−1”. To measure this, we define for each criterion j a function Cj : A×B →
{0, 1} which assesses whether criterion j supports that statement or not:

∀j ∈ J, a ∈ A, 1 ≤ h ≤ k : Cj(a, bh−1) =

{
1, if gj(a) ≥ gj(bh−1),
0, otherwise.

(1)

To assess whether a coalition of criteria is in favor of the outranking or not,
∀a ∈ A, 1 ≤ h ≤ k, we first define the overall concordance as:

C(a, bh−1) =
∑
j∈J

wjCj(a, bh−1), (2)

where wj is the weight of criterion j. The weights are defined so that they
are positive (wj > 0,∀j ∈ J) and sum up to one (

∑
j∈J wj = 1). This overall

concordance is then compared to a majority threshold λ ∈ [0.5, 1] extracted
from the decision-maker’s preferences along with the weights. As we do not
consider any veto rule here, the outranking relation S is then defined as:

a S bh−1 ⇐⇒ C(a, bh−1) > λ. (3)

If C(a, bh−1) < λ, the coalition of criteria is not sufficient, the alternative
does not outrank the frontier bh−1 and will therefore be assigned in a category
lower than ch.

Alternative a is assigned to the highest category it outranks, hence this rule
can be written as:

a ∈ ch ⇐⇒ aS bh−1 and a 6S bh. (4)

In order for this assignment rule to be used for the limit categories, two
dummy profiles b0 and bk need to be added to B, the first holding the lowest
possible evaluations on all criteria, while the second holding the highest possible
ones.

In Table 1 we provide a simple illustrative example for this assignment rule.
At the top we observe the parameters of the sorting model, involving 5

criteria and 3 classes. The first parameter (λ) is the majority threshold, followed
by the vector of the criteria weights (w) and two category separating profiles (b1

3



Table 1: Illustrative example for the MR-Sort assignment procedure.

λ = 3
5

w = ( 1
5
, 1
5
, 1
5
, 1
5
, 1
5
) b1 = (1, 1, 1, 1, 1) b2 = (2, 2, 2, 2, 2)

A g1 g2 g3 g4 g5 ai S b0 ai 6S b1 ai S b1 ai 6S b2 ai S b2 ai 6S b3 assignment

a1 2 2 2 0 0 3 7 3 7 3 3 c3
a2 2 2 1 0 0 3 7 3 3 7 3 c2
a3 2 2 0 0 0 3 3 7 3 3 3 c1

and b2). Each criterion is defined on a scale from 0 to 2. Below the parameters
we illustrate the assignment of three alternatives using the assignment rule from
Equation (4). In the case of the first and last categories we have added two fictive
limits in order to simplify the example. The lower category limit of the worst
category (b0) is considered to be always worse than all the alternatives in A on
each criterion, while the upper profile of the best category (b3) is considered to
be always better than all alternatives in A on each criterion. The first alternative
outranks both b1 and b2, as it is at least as good as these profiles on the first three
criteria, hence it is assigned to the highest category. The second alternative is
at least as good as b1 on the first three criteria, but it is at least as good as b2
on only the first two, therefore it is assigned to the second category. Finally, the
last alternative is not at least as good as b1, nor b2, since it is at least as good
as them on only two out of the 5 criteria, therefore it is placed in the lowest
category.

The parameters of this model (and similar Electre Tri -like sorting pro-
cedures) may be both directly and indirectly elicited. However, in order to
overcome the difficulties of eliciting these parameters directly from the decision-
maker, several works have focused on the indirect approach. Mousseau and
S lowiński [29] have proposed to find the entire model through the use of assign-
ment examples. Mousseau et al. [28] only sought to find the criteria importance
weights with the other parameters being supposedly known, while Ngo The and
Mousseau [31] only looked for the category limits. Other more robust approaches
compute for each alternative a range of possible categories to which they may
be assigned when the parameters of the model are not completely determined
[9; 10; 12]. Approaches that deal with inconsistent sets of assignment examples
leading to non existing preference model solutions have also been explored in
[27; 26].

In most cases, the approaches of inferring the parameters of majority-rule
sorting models use mathematical programming techniques involving binary vari-
ables, such as in Leroy et al. [21]. As these approaches find the optimal solution,
they may also require large amounts of computational resources and time, mak-
ing their use limited when large sets of assignment examples are considered.
Sobrie et al. [40] have suggested to use a technique based on a metaheuristic
to learn the parameters of the sorting model, which has been adapted and ex-
tended by Olteanu and Meyer [32] in order to additionally take into account
veto thresholds. More recently, population-based metaheuristics have also been
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proposed in order to learn MR-Sort models with coalitional veto [41].
In most cases, the assignments take the form of a single category in which

the DM places each alternative. An approach that extends these assignments
to include multiple categories, in order to account for the possible hesitation of
the DM, has been explored by Dias and Mousseau [11].

2.2. Imprecision and incompleteness

Some of the earliest detailed studies on data or information imperfection
may be found in [14; 25]. Tacnet [43] borrows from these sources and proposes
a taxonomy of data or information imperfection. Based on the literature, he
considers that this imperfection can take four main forms : inconsistency, impre-
cision, incompleteness and uncertainty. Inconsistency is a type of imperfection
which originates in conflicting information, and usually produces incoherent
conclusions. Imprecision is related to information which is not sufficient for an
agent (in this context a decision maker or a model of his/her preferences) to
answer the question at hand. Either the numerical values are poorly known
due to a flaw in the observation, or because natural language is used to vaguely
describe the problem. Incompleteness corresponds to an absence of information
on the underlying problem. Uncertainty is related to the knowledge that the
agent has about an information, and more specifically it’s validity or truth.

In most of the scientific disciplines, incompleteness or imprecision on the
data occur very regularly. Very often, they are approached in a very simple and
convenient way, by, e.g., excluding incomplete cases or replacing (imputing)
missing values with the mean. Similarly, imprecision is also handled simply by
considering that an imprecise evaluation can be represented by an average or
median value of the possible evaluations.

More evolved techniques however exist, and they can be found in seminal
books on incomplete (or missing) data analyses, as, e.g., [22; 39] : maximum
likelihood estimation and multiple imputation. Regarding imprecision, classi-
cally such information is expressed as either a set of possible values, an interval
of values, or as fuzzy numbers in case of a linguistic variable [43].

In MCDA, Roy [34] analyzes the main sources of difficulties linked to im-
precision and uncertainty. In summary, these various types of imperfection
can either be found in the performances of the alternatives on the criteria, in
the values of the preferential parameters (weights of the criteria, discrimination
thresholds, utility functions, . . .), or in the recommendation that is proposed
to the decision maker. As stated in [36], many approaches have been proposed
to tackle imperfection issues in MCDA. Without being exhaustive, they make
use of probability theory as in Multi-Attribute Utility Theory (see, e.g., [15]
for a detailed overview), possibility theory [13], multi-valued logic, discrimina-
tion thresholds mainly used in outranking methods [16], fuzzy or valued binary
relations, fuzzy numbers, or rough sets [18].

When it comes more specifically to missing (or incomplete) data in the eval-
uation of the alternatives, to our knowledge, this topic has only been poorly
explored. Bisdorff et al. [2] propose an outranking-based method which allows
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to take into account missing values for the choice problem. The validation of
an outranking relation is extended to a three value logic by adding a second
majority threshold. The first threshold is used in order to validate whether
an alternative outranks another, while the second threshold is used in order to
invalidate this statement. If the value of the coalition of criteria that support
the outranking statement falls within these two thresholds then it cannot be as-
serted whether the first alternative outranks the second one (indetermination).
These two majority thresholds are constrained so that they are symmetrical
with respect to the 50% support level. Greco et al. [17] deal with the same
issue, using however a rough sets-based approach for the sorting problem. In
both cases, no assumption is made on the values of the missing data. Brans and
Mareschal [6] handle the missing data issue by considering that in the pairwise
comparison, in case of a missing value on a criterion, both alternatives have
equal evaluations on that criterion. Corrente et al. [8] handle imprecise evalua-
tions using n-point intervals consisting of nested interval evaluations and their
associated increasing levels of plausibility. Finally, dominance-based rough set
approaches [42] have also recently explored the topic of handling incomplete
information in classification.

In this article we wish to tackle more specifically the problem of imprecise
performances of alternatives on the criteria, represented by interval evaluations,
as well as missing performances. This latter case can in this framework be seen
as a special case of interval evaluations, where the lower and upper bounds of the
intervals correspond to the lowest and highest possible values of the evaluation
scale of the considered criterion.

3. Handling imprecise or missing evaluations

3.1. The proposed MR-Sort extension

In order to express the imprecision of the evaluations of the alternatives, we
propose to define two new performance functions for each criterion : gmin

j , gmax
j :

A → R. These functions correspond to the minimum, respectively maximum
evaluations that an alternative may take on criterion j. This leads to the def-
inition of two versions of alternative a: an optimistic version evaluated using
gmin and an optimistic version evaluated using gmax.

The initially defined gj functions are still used to give the evaluations of the
category limits, as we do not introduce any imprecision in their evaluations.

Like in the case of the MR-Sort method, we will be using outranking rela-
tions in order to assess whether an alternative is at least as good as a category
separating profile bh−1. However, as we are now considering two versions of
the same alternative, i.e. a pessimistic version evaluated using gmin and an
optimistic version evaluated using gmax, we also define two corresponding out-
ranking relations. These relations may ultimately be identical, however they
may also differ in order to illustrate the potential change in the perspective of
the DM when considering the worst and best possible versions of the decision
alternative.
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We define the pessimistic and optimistic local concordance indexes between
an alternative a and a category profile bh,∀h ∈ {1, . . . , k} on any criterion j ∈ J ,
as:

Cpes
j (a, bh) =

{
1 , if gmin

j (a) ≥ gj(bh),
0 , otherwise.

(5)

Copt
j (a, bh) =

{
1 , if gmax

j (a) ≥ gj(bh),
0 , otherwise.

(6)

We define the overall support of a outranking a category profile bh in the
pessimistic and optimistic cases respectively as:

Cpes(a, bh) =
∑
j∈J

wjC
pes
j (a, bh) (7)

Copt(a, bh) =
∑
j∈J

wjC
opt
j (a, bh) (8)

We say that a outranks the category profile bh in the pessimistic case, i.e.
a Spes bh, when Cpes(a, bh) > λpes. We also say that a outranks the category
profile bh in the optimistic case, i.e. aSopt bh, when Copt(a, bh) > λopt.

The λpes and λopt thresholds are used to determine when a coalition of
criteria is sufficient in order to validate their corresponding outranking relation.
We relax the constraint that λ > 0.5, which usually accompanies MR-Sort,
making λpes, λopt ∈]0, 1]. In this way, the two relations are now governed by a
generalized qualified weak majority rule (a term proposed in [23]).

The assignment rule that we propose computes a lower bound and an upper
bound for the assignment of a using its pessimistic and its optimistic versions
respectively.:

• the lower bound chpes corresponds to the highest category whose lower
profile is outranked by a in the pessimistic case;

• the upper bound chopt corresponds to the lowest category whose upper
profile is not outranked by a in the optimistic case.

3.2. Additional considerations

Based on the definition of a pessimistic and optimistic versions of an alter-
native containing imprecise evaluations, as well as two associated outranking
relations, we find the following potential situations when comparing it to a pre-
cisely defined category profile:

• aSpes bh and a Sopt bh
In this situation a is considered to be globally at least as good as bh, despite
any imprecise evaluations it may have. In this case a can be assigned only
to category ch+1 or above.
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• a 6Spesbh and a 6Soptbh
In this case a is globally not at least as good as bh, despite any imprecise
evaluations it may have. In this case a can be assigned only to category
ch or below.

• (a 6Spesbh and aSopt bh) or (a Spesbh and a 6Soptbh)
This situation corresponds to a state of indetermination, since one version
of a (pessimistic or optimistic) is not considered at least as good as bh
while at the same time the other version (optimistic or pessimistic) is. In
this case a can be assigned to both categories ch and ch+1, as well as to
any other categories above or below them based on how a compares to the
other profiles.

In order to better illustrate the range of problems that our proposed exten-
sion is able to model, we present the following scenarios as described through
the choice of the λpes and λopt thresholds:

• 0.5 6 λopt = λpes:

This scenario is identical to the classical MR-Sort method when alterna-
tives do not have imprecise evaluations. Multi-category assignments only
occur when imprecision in alternatives’ evaluations is considered;

• λopt < 0.5 6 λpes:

A strong coalition of criteria is needed for validating the pessimistic out-
ranking relation while a weak one is needed to validate the optimistic
outranking relation, leading to potentially many situations of indetermi-
nation (a particular case where λopt > 0.5 and λpes = 1 − λopt is very
similar to the β-cut polarization described by Bisdorff in [1]);

• λpes 6 λopt:

The DM is imprecision averse and requires a higher level of support for
validating the outranking relations of the optimistic version of an alter-
native as opposed to its pessimistic version. It is possible, in this case,
to have an alternative outrank in the pessimistic case a category profile,
while at the same time not outrank in the optimistic case the same profile;

• λopt < λpes:

The DM is less imprecision averse and accepts a lower level of support
for validating the outranking relations of the optimistic version of an al-
ternative as opposed to its pessimistic version. The range between λopt

and λpes may be seen as levels of support for which the DM is hesitant to
either validate or invalidate an assignment;

It is also worth noting that missing evaluations may be easily handled as
they are a special case of handling imprecise evaluations. A missing evaluation
of a on criterion j may be summarized by gpes

j (a) taking the smallest possible

value on the scale of criterion j and gopt
j (a) taking the highest possible value on

the scale of criterion j.
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3.3. Illustrative example

We illustrate the proposed MR-Sort extension when considering precisely
defined alternatives as well as several containing imprecision in their evaluations,
as depicted in Table 2.

Table 2: Illustrative example for the extended MR-Sort assignment procedure.

λopt = λpes = 3
5

w = ( 1
5
, 1
5
, 1
5
, 1
5
, 1
5
) b1 = (1, 1, 1, 1, 1) b2 = (2, 2, 2, 2, 2)

ai S
pes bh ai S

opt bh
A g1 g2 g3 g4 g5 h 0 1 2 3 0 1 2 3 hpes hopt

a1 2 2 2 0 0 3 3 3 7 3 3 3 7 3 3
a2 2 2 1 0 0 3 3 7 7 3 3 7 7 2 2
a3 2 2 0 0 0 3 7 7 7 3 7 7 7 1 1
a4 2 2 [0, 1] 0 0 3 7 7 7 3 3 7 7 1 2
a5 2 2 ? 0 0 3 7 7 7 3 3 3 7 1 3
a6 2 2 2 0 ? 3 3 3 7 3 3 3 7 3 3

This example is similar to the example from Table 1, depicting a model with
5 equally weighted criteria and three categories defined using the category limits
b1 and b2. The evaluations on each criterion can vary between 0 and 2, while
the majority thresholds of the pessimistic and optimistic outranking relations
are equal to 3

5 . This model is identical to the MR-Sort model from the previous
example, as seen through the first three alternatives, which are classified in the
same way. We have indicated here the indexes of the lower and upper bound
category assignments through hpes and hopt. This extended MR-Sort model,
however, is also able to properly handle imprecise or missing evaluations, as
seen through the following three alternatives.

Alternative a4 is identical to the first three alternatives with the exception
that its evaluation on the third criterion is not precisely defined, potentially
falling anywhere between 0 and 1. As in the pessimistic scenario a4 could be
identical to a3, while in the optimistic scenario it could be identical to a2, it
appears natural that this alternative should be classified in either c1 or c2. The
illustrated model achieves this exact result. The following alternative adds even
more imprecision to its evaluation on the third criterion. As this evaluation
may fall anywhere within our evaluation scale from 0 to 2, the pessimistic ver-
sion of this alternative does not outrank any of the category profiles (except
the fictitious bottom profile), while its pessimistic version outranks all of them
(except the fictitious top profile). Hence, this alternative may be assigned to
any of the three categories. Finally, alternative a6 is similar to alternative a1,
except that the value for g5 is missing. Still, this last example illustrates that
even when imprecision within an alternative’s evaluations is present, it’s precise
evaluations may still be sufficient in order to allow its assignment to a single
category.
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4. Inferring the parameters of the sorting model

In order to use the model presented in Section 3, the preferences of the DM
need to be elicited. In particular, the criteria importance parameters, the ma-
jority thresholds, and the profiles separating the categories on each criterion
have to be determined. These parameters can either be obtained directly from
the DM (which in most practical situations is not realistic), or learned from
assignment examples provided by the DM for each of the categories. When
assignment examples are employed, algorithms are used to find a set of param-
eters such that the classification accuracy over the set of assignment examples
is maximized.

4.1. The fitness measure

We denote a classical MR-Sort model instance, represented by its parame-
ters, with Ω =

(
λ,w = (wj , j ∈ J), B

)
. Let a ∈ A be an alternative which is

used by the DM as an assignment example. Let assigΩ(a) be the category to
which a is assigned by Ω and assigDM(a) the category to which the DM assigns
it.

We remind below the definition of the classification accuracy:

CA =
1

|A|
∑
a∈A

CA(a), CA(a) =

{
1 , if assigΩ(a) = assigDM(a)

0 , if assigΩ(a) 6= assigDM(a).
(9)

The MR-Sort model for handling missing and imprecise evaluations allows
the assignment of alternatives to more than one category. Furthermore, in the
preference elicitation process, the DM may also wish to assign examples to more
than one category, especially when the alternative contains missing evaluations.
Therefore the classification accuracy, which simply gives the percentage of alter-
natives in the assignment examples which were correctly assigned to the single
category expressed by the DM needs to be extended to this case.

Let Ω∗ =
(
λpes, λopt, w = (wj , j ∈ J), B

)
be an extended MR-Sort model.

We expand the definition of assigΩ∗(a) and assigDM(a) to sets of categories to
which the DM, respectively the MR-Sort model, assigns an alternative a.

The classification accuracy defined in Equation (9) could still be used in this
context if we replaced the equality and inequality operations with set operations.
Nevertheless, this may be seen as too strict, as only missing one category from
a multi-category assignment would immediately lower this measure to 0. We
may therefore consider the following modification to this measure:

CA
′

=
1

|A|
∑
a∈A

CA
′
(a), CA

′
(a) =

{
1 , if assigΩ∗(a) ∩ assigDM(a) 6= ∅
0 , if assigΩ∗(a) ∩ assigDM(a) = ∅.

(10)
This measure, on the other hand, may be considered not strict enough, as

even a slight overlap in the two sets of assignments will maximize it.
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We present below several properties that we consider our fitness measure
should hold, so that it can effectively discriminate between a multi-category
assignment of an alternative by the DM and the multi-category assignment
provided by an inferred model.

Property 1 (Maximality). The fitness measure for an alternative a reaches its
maximum value only when two corresponding sets of category assignments are
identical, i.e. assigΩ∗(a) = assigDM(a).

Property 2 (Minimality). The fitness measure for an alternative a reaches its
minimum value only when two corresponding sets of category assignments are
exclusive, i.e. assigΩ∗(a) ∩ assigDM(a) = ∅.

Property 3 (Monotonicity w.r.t. model assignments). Let a and b be two
alternatives with the same DM assignments (assigDM(a) = assigDM(b)) and
with assigΩ∗(b) ⊂ assigΩ∗(a) and cl = assigΩ∗(a)\assigΩ∗(b). If cl ∈ assigDM(a)
than the fitness of a is strictly lower than that of b, while if cl 6∈ assigDM(a)
than the fitness of a is strictly higher than that of b.

Property 4 (Monotonicity w.r.t. DM assignments). Let a and b be two al-
ternatives with the same model assignments (assigΩ∗(a) = assigΩ∗(b)) and with
assigDM(b) ⊂ assigDM(a) and cl = assigDM(a)\assigDM(b). If cl ∈ assigDM(a)
than the fitness of a is strictly lower than that of b, while if cl 6∈ assigDM(a)
than the fitness of a is strictly higher than that of b.

In order to illustrate how different fitness measures satisfy these properties,
we refer to Table 3.

The measure from Equation (9) satisfies Property 1 since it is equal to 1
only when the assignment of the model is identical to that of the DM (examples
1 and 3 from Table 3). However it does not satisfy Property 2, as it is 0 for
overlapping assignments (examples 5 to 10). The measure from Equation (10)
satisfies Property 2 since it is 0 only when the two assignments are completely
disjoint (examples 2 and 4). It does not, however, satisfy Property 1 as it is 1
for partially overlapping assignments (examples 5 to 10). Both these measures
do not satisfy Property 3 (examples 5 to 7), nor Property 4 (examples 6, 8 and
9).

In order to construct a measure satisfying all four properties, we borrow
several concepts from statistical analysis, such as precision and recall [19], and
adapt them to our problem:

Pr(a) =
|assigΩ∗(a) ∩ assigDM(a)|

|assigΩ∗(a)|
, Re(a) =

|assigΩ∗(a) ∩ assigDM(a)|
|assigDM(a)|

(11)

In this case, Precision corresponds to the percentage of correctly identified
categories among all assignments proposed by Ω∗, while Recall corresponds to
the percentage of correctly identified categories among all assignments proposed
by the DM.
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Table 3: Illustrative example of assignment scenarios and associated fitness measures.

# Assignments CA(a) CA
′
(a) Pr(a) Re(a) F1(a)

1 1 1 1 1 1

2 0 0 0 0 0

3 1 1 1 1 1

4 0 0 0 0 0

5 0 1 0.5 0.33 0.4

6 0 1 0.66 0.66 0.66

7 0 1 0.33 0.33 0.33

8 0 1 0.33 0.5 0.4

9 0 1 0.66 1 0.8

10 0 1 1 0.66 0.8

Precision satisfies Property 2, as it is 0 only when the assignments are disjoint
(examples 2 and 4). It also satisfies Property 3 since adding (removing) a
category cl to assigΩ∗(a) has an effect of raising (lowering) Precision when cl ∈
assigDM(a) as seen in examples 5 and 6, while when cl 6∈ assigDM(a) the effect
on Precision is reversed as seen in examples 5 and 7. However, Property 1 is
not satisfied since the measure is 1 also for partially overlapping assignments
(example 10), and neither is Property 4 as seen through examples 6 and 9.

Recall satisfies Property 2 (examples 2 and 4), while it also satisfies Prop-
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erty 4. The latter is due to the fact that adding (removing) a category cl to
assigDM(a) has an effect of raising (lowering) Recall when cl ∈ assigΩ∗(a) as seen
in examples 6 and 8 while when cl 6∈ assigΩ∗(a) the effect on Recall is reversed
as seen in examples 6 and 9. However, Property 1 is not satisfied since the
measure is 1 also for partially overlapping assignments (example 9), and neither
is Property 3 as seen through examples 5 and 7 (adding or removing a category
in the model assignment which does not correspond to the DM assignment has
no effect on the performance metric).

In order to overcome these issues, we propose to use the F-measure, which
combines both precision and recall as follows:

Fβ =
1

|A|
∑
a∈A

Fβ(a), Fβ(a) = (1 + β2)
Pr(a) ·Re(a)

β2 · Pr(a) +Re(a)
, β > 0 (12)

The special case in which β = 1 corresponds to the harmonic average between
Precision and Recall. The F1 score is illustrated together with all the other
presented measures in Table 3.

F1 = 2
|assigΩ∗ ∩ assigDM|
|assigΩ∗ |+ |assigDM |

(13)

We observe from these examples that the F1 measure satisfies all four proper-
ties. Property 1 is satisfied since the measure is maximal only when assigDM =
assigΩ∗ (examples 1 and 3). Property 2 is satisfied due to the measure being
minimal only when assigDM ∩ assigΩ∗ = ∅ (examples 2 and 4). Property 3
is satisfied since, for the same DM assignment, F1 increases (decreases) with
the inclusion (exclusion) of categories in the model assignment which also be-
long to assigDM (examples 5 and 6), while the effect is reversed for categories
not belonging to assigDM (examples 6 and 7). Finally, Property 4 is satisfied
since, for the same model assignment, F1 increases (decreases) with the inclu-
sion (exclusion) of categories to the DM assignment which also belong to assigΩ∗

(examples 6 and 8), while the effect is reversed for categories not belonging to
assigΩ∗ (examples 6 and 9).

The β parameter may be used in order to place more emphasis on finding
more of the correct assignments while allowing at the same time more incorrect
assignments (β > 1), or proposing fewer incorrect assignments while at the same
time also fewer correct ones (β < 1).

We also wish to note that the proposed fitness measure becomes identical to
the classification accuracy when both the assignments of the DM and those of
the inferred model become single-category.

4.2. The inference approach

Due to the Fβ measure containing fractions in its definition, mathematical
programs containing linear constraints may not be employed in order to solve the
problem of maximizing it over a set of assignment examples. As such programs
may not scale well with the size of the set of assignment examples, we propose
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to extend the mixed linear program and metaheuristic approach proposed in
[32]. The main structure of the algorithm is presented in Algorithm 1.

Algorithm 1 Proposed approach.

Input: Initial temperature T0 and temperature decrease dT .
1: λpes, λopt, w, b = Initialize();
2: best f = Fitness(λ,w, b, v);
3: while not StoppingCondition() do
4: /* Linear program for weights and majority threshold */
5: λpes′ , λopt′ , w

′
= LP();

6: /* Metaheuristic for category profiles */
7: b

′
= MH();

8: if best f < Fitness(λpes′ , λopt′ , w
′
, b
′
) then

9: best f = Fitness(λpes′ , λopt′ , w
′
, b
′
);

10: λpes, λopt, w, b = λpes′ , λopt′ , w
′
, b
′
;

11: dT = Update();
Output: λpes, λopt, w, b.

The algorithm starts by initializing the model parameters followed by sev-
eral iterations composed of a linear program and a metaheuristic. The fitness
corresponds to the average Fβ measure across all provided assignment examples.

4.2.1. The initialization step

The initialization step fixes the majority thresholds to 0.5 and sets the
weights for all criteria to be equal, which is a standard practice when no ad-
ditional preferential information is considered. The category profiles are con-
structed using a greedy heuristic which considers each criterion independently
from the rest and places the value of a profile bh so that it separates as much as
possible the values of the alternatives that are classified in categories above the
profile and the values of the alternatives that are classified in categories below:

gj(bh) = arg max
R

∑
a∈A

hinit(a, h),∀j ∈ J, ∀h ∈ {1, . . . , k − 1} ,where (14)

hinit(a, h) =


1 , if ∀l ∈ assigDM(a), l > h and gmin

j (a) > gj(bh)

or ∀l ∈ assigDM(a), l 6 h and gmax
j (a) < gj(bh)

0 , otherwise.

(15)

4.2.2. The linear programming step

By fixing the category profiles, a linear program may be employed in order
to find the optimal values of the majority thresholds and the criteria weights,
for the given category profiles. The program is presented in Fig. 1.

Since we try to fix the lower and upper limits of the category assignments
of each alternative a, we only require to impose constraints on the relations
between a and profiles bminh − 1, bminh , bmaxh − 1 and bmaxh . Cpes

j (a, bhmin−1),
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Figure 1: Linear program for the first step.

Parameters:

A,A
′
, A
′′
, J

Cpes
j (a, bhmin−1), Copt

j (a, bhmin−1), Cpes
j (a, bhmax), Copt

j (a, bhmax) ∀a ∈ A, ∀j ∈ J
Cpes
j (a, bhmin), Copt

j (a, bhmin ∀a ∈ A′ , ∀j ∈ J
Cpes
j (a, bhmax−1), Copt

j (a, bhmax−1) ∀a ∈ A′′ , ∀j ∈ J
γ ∈ [0, 1]

Variables:
λpes, λopt ∈]0, 1]
wj ∈ [0, 1] ∀j ∈ J
x(a), y(a) ∈ [0, 1] ∀a∈A
z(a), z1(a), z2(a) ∈ [0, 1] ∀a∈A′

t(a), t1(a), t2(a) ∈ [0, 1] ∀a∈A′′

Objective:
min

∑
a∈A

(
x(a) + y(a)

)
+
∑
a∈A′

z(a) +
∑

a∈A′′
t(a)

Constraints:
s.t.

∑
j∈J

wj = 1∑
j∈J

(
wj · Cpes

j (a, bhmin−1)
)
+(1− x(a))>λpes ∀a∈A∑

j∈J

(
wj · Copt

j (a, bhmin−1)
)
+(1− x(a))>λopt ∀a∈A∑

j∈J

(
wj · Cpes

j (a, bhmax)
)
−(1− y(a))6λpes − γ ∀a∈A∑

j∈J

(
wj · Copt

j (a, bhmax)
)
−(1− y(a))6λopt − γ ∀a∈A∑

j∈J

(
wj · Cpes

j (a, bhmin)
)
+(1− z1(a))>λpes ∀a∈A′∑

j∈J

(
wj · Copt

j (a, bhmin)
)
−(1− z1(a))6λopt − γ ∀a∈A′∑

j∈J

(
wj · Copt

j (a, bhmin)
)
+(1− z2(a))>λopt ∀a∈A′∑

j∈J

(
wj · Cpes

j (a, bhmin)
)
−(1− z2(a))6λpes − γ ∀a∈A′

z(a)>z1(a) ∀a∈A′

z(a)>z2(a) ∀a∈A′

z(a)6z1(a) + z2(a) ∀a∈A′∑
j∈J

(
wj · Cpes

j (a, bhmax−1)
)
+(1− t1(a))>λpes ∀a∈A′′∑

j∈J

(
wj · Copt

j (a, bhmax−1)
)
−(1− t1(a))6λopt − γ ∀a∈A′′∑

j∈J

(
wj · Copt

j (a, bhmax−1)
)
+(1− t2(a))>λopt ∀a∈A′′∑

j∈J

(
wj · Cpes

j (a, bhmax−1)
)
−(1− t2(a))6λpes − γ ∀a∈A′′

t(a)> t1(a) ∀a∈A′′

t(a)> t2(a) ∀a∈A′′

t(a)6 t1(a) + t2(a) ∀a∈A′′
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Copt
j (a, bhmin−1), Cpes

j (a, bhmin), Copt
j (a, bhmin), Cpes

j (a, bhmax−1), Copt
j (a, bhmax−1),

Cpes
j (a, bhmax) and Copt

j (a, bhmax) are 0-1 flags corresponding to the result of the
pair-wise comparison between the pessimistic and optimistic versions of an al-
ternative and the profiles of it’s lower and upper-bound category assignments.
We have one flag per criterion, with 0 meaning that the alternative is strictly
worse than the profile on that criterion, and 1 meaning that it is at least as
good as the profile. These flags can be computed before executing the linear
program since both the alternatives and the category profiles evaluations are
fixed at this stage.

The linear program seeks to enforce that chmin is the lowest category in
which a is assigned (by making a outrank profile bhmin−1 in both optimistic and
pessimistic cases and not outrank bhmin either in the optimistic or the pessimistic
case) and that chmax is the highest one (by making a not outrank profile bhmax in
both optimistic and pessimistic cases and outrank profile bhmax−1 either in the
optimistic or the pessimistic case). The x and y variables are used to ensure the
limits with respect to the lower profile of the bottom category and respectively
the upper profile of the top category. These variables will be 1 when their
corresponding constraint is fulfilled and between 0 and 1 otherwise. Variables
z1 and z2 are used to determine whether an alternative outranks the upper
profile of its bottom category in the pessimistic case and at the same time does
not outrank it in the optimistic case, or vice-versa. The z variable computes
the logical OR operation between these statements. Variables t1, t2 and t do
exactly the same for the lower profile of the top category.

Notice that some variables and constraints are limited to sets A, A
′

and
A
′′
. Set A contains all of the alternatives, set A

′
contains those that have been

assigned to more than one category while A
′′

contains alternatives assigned to
more than two categories. This is done in order to properly apply the constraints
corresponding to intermediate category profiles.

4.2.3. The metaheuristic step

This step of the approach is used to find the category profiles while the
majority thresholds and the criteria weights are fixed. The algorithm corre-
sponds to a slight adaptation of the simulated annealing algorithm [20], as seen
in Algorithm 2.

The metaheuristic performs changes to the category profiles across several
iterations. Each iteration is linked to a temperature parameter which decreases
over time. In the beginning, at high temperatures, the algorithm may perform
more frequently changes to the profiles which would lead to a decrease of the
model fitness, while towards the end, as the temperature decreases, such changes
get less frequent. Every iteration gives the opportunity for each profile to have
each of its values on the set of criteria changed. The heuristic function is used to
determine the amount of increase or decrease in the fitness of the model given a
new value on a criterion for a category profile. This function would normally be
computed as the difference between the F-measures of each of the two models,
however, we propose a simplification. Having already computed the initial cat-
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Algorithm 2 Simulated annealing.

Input: Initial model parameters λpes, λopt, w, b and T0, dT and α.
1: T = T0;
2: while T > 0 do
3: for all j ∈ J do
4: for all h ∈ {1, . . . , k − 1} do
5: pick α random values X in the interval [gj(bh−1), gj(bh+1)]
6: x = arg max

x∈X
(Heuristic(x))

7: if Heuristic(x) > 0 or random < e
−1
T then

8: gj(bh) = x
9: T = T − dT ;

Output: b.

egory assignments of all alternatives a ∈ A as assigΩ∗(a) = {chmin , . . . , chmax},
we infer the new sets of assignments {ch′min , . . . , ch′max} as follows:

h
′min =



h+1, if
(
gj(bh)>gmax

j (a)>x and Cpes(a, bh)>λpes and Copt(a, bh)<λopt6Copt(a, bh)+wj
)

or
(
gj(bh)>gmin

j (a)>x and Copt(a, bh)>λopt and Cpes(a, bh)<λpes6Cpes(a, bh)+wj
)
;

h , if
(
x>gmax

j (a)>gj(bh) and Cpes(a, bh)>λpes and Copt(a, bh)−wj <λopt6Copt(a, bh)
)

or
(
x>gmin

j (a)>gj(bh) and Copt(a, bh)>λopt and Cpes(a, bh)−wj <λpes6Cpes(a, bh)
)
;

hmin, otherwise.

(16)

h
′max =


h+1, if

(
gj(bh)>gmax

j (a)>x and Cpes(a, bh)<λpes and Copt(a, bh)<λopt6Copt(a, bh)+wj
)

or
(
gj(bh)>gmin

j (a)>x and Copt(a, bh)<λopt and Cpes(a, bh)<λpes6Cpes(a, bh)+wj
)
;

or
(
x>gmin

j (a)>gj(bh) and Copt(a, bh)<λopt and Cpes(a, bh)−wj <λpes6Cpes(a, bh)
)
;

hmax, otherwise.

(17)

The first line of the first term in Equation (16) considers the case where
a decrease in the evaluation of bh on criterion j, from gj(bh) to x, leads to a
change in the optimistic outranking relation between a and bh from false to
true. If at the same time the pessimistic outranking relation is also true, then
a becomes at least as good as profile bh both pessimistically and optimistically,
therefore category ch+1 becomes the lowest category to which a is assigned. The
second line of the first term considers the opposite case, where the change in
evaluation of the profile leads to a outranking the profile in the pessimistic case
when originally it was not, while also outranking the profile in the optimistic
case.

The second term from Equation (16) considers the case where an increase
in the evaluation of bh on criterion j invalidates either the optimistic or the
pessimistic outranking relation between a and the profile, when previously both
the optimistic and pessimistic relations were in effect. This means that while
profile bh was initially bounding a from below, it no longer does so, and therefore
the lower limit of categories to which a is assigned becomes category ch.
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In all other cases, the index of the lowest category to which a is assigned
does not change from the previous value of hmin.

Equation (17) illustrates similar situations where a change in the evaluation
of bh on one criterion leads to a change in the upper limit of the categories to
which a is assigned by the model.

Computing the difference between the fitness of the original extended MR-
Sort model and the new one using the previously computed ranges of categories
to which all alternatives in A are assigned, gives us the value of the heuristic
function used in Algorithm 2. When this value is positive, changing the evalua-
tion of profile bh on criterion j improves the fitness of the model, therefore the
metaheuristic would more likely choose to perform this operation. Conversely,
when the heuristic function is negative, the fitness of the model would decrease
as a result of this operation, therefore the metaheuristic would less likely choose
to perform this operation.

In the description of the heuristic we have made abstraction of the bottom
(resp. top) categories which do not have a lower (resp. top) profile.

Finally, we have included an adaptive parameter dT , which increases or
decreases based on each iteration improving or not the overall fitness of the best
found model. The increase and decrease ratios are extracted empirically, as well
as the initial temperature parameter.

5. Empirical validation

In order for the extended MR-Sort model and the proposed inference ap-
proach to be successfully used in practice, we address the following issues:

• The effect of adding missing evaluations on the range of categories to
which alternatives are assigned;

• The capacity of the proposed inference approach to restore the provided
assignment examples;

• The relation between the original model and the inferred one;

• The relation between problem size and required computational resources.

We will consider the most extreme case of imprecision with respect to the
evaluations of the alternatives, the case of missing evaluations.

5.1. Design of the experiments

In order to address the previously listed issues, the experimental design
presented in Fig. 2 was set up.

We begin by generating an initial extended MR-Sort model, denoted with Ωo.
We start by fixing the majority thresholds λpes and λopt, which are randomly
generated within the ]0, 1[ interval. The criteria weights wj ,∀j ∈ J are randomly
generated within a ]0, 1[ interval scale using the approach of [7]. In order to
construct the set of category profiles, bh,∀h ∈ {1, ..., k − 1}, for each criterion
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Figure 2: Design of experiments.

we generate k − 1 values within ]0, 1[ and assign them to each category profile
in ascending order.

The second step consists in generating a training set of alternatives (Atr) of
size ntr, with the evaluations on each of the m criteria generated randomly. A
given ratio r is used in order to randomly remove a part of these evaluations.
Using the previously generated extended MR-Sort model, the assignments of
the alternatives in Atr are generated.

The inferred extended MR-Sort model Ωi is constructed using the provided
assignment examples by applying the proposed elicitation approach.

The following step involves the generation of a larger set of alternatives,
Ate, constructed in the same way as Atr and using the same ratio r of included
missing evaluations. This set of alternatives is used in conjunction with both the
original model and the inferred one in order to construct two sets of assignments.

Throughout the experiments, we have used the F1 fitness measure, placing
equal emphasis on the precision and recall of a given set of category assignments.

5.2. Effect of including missing evaluations

In order to test the effect of including missing data within the alternatives’
evaluations, we generated 100 problem instances for each value of m = {5, 10},
with nte = 10, 000 and k = 5. For each problem instance, we removed evalu-
ations in proportion r, with r = {0.00, 0.15, 0.30, 0.45}. In Table 4 we present
the distribution of the extended MR-Sort model assignments with respect to
the number of categories of these assignments and the proportion r of removed
evaluations.

We observe that, for 5 criteria, when all the alternatives have precise evalu-
ations, the generated problem instances assign around 60% of the alternatives
to a single category. Nevertheless, due to allowing the majority thresholds of
the pessimistic and optimistic outranking relations to differ one from another,
we also find 15% of the alternatives assigned to two categories, 15% to three
categories, 5% to four categories and around one percent to all five. Similar
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Table 4: Percentage of alternatives assigned to one or more classes (average result with stan-
dard deviation between parentheses).

Missing data

0% 15% 30% 45%

m = 5

1 categ. 63.25 (31.61) 52.85 (21.23) 42.06 (16.70) 31.07 (15.39)
2 categ. 15.95 (12.85) 16.10 (8.52) 14.39 (5.59) 11.45 (4.24)
3 categ. 15.03 (14.52) 13.93 (8.91) 12.25 (4.88) 9.56 (2.69)
4 categ. 4.90 (6.11) 7.33 (4.72) 8.08 (3.80) 7.70 (3.32)
5 categ. 0.86 (1.45) 9.79 (7.42) 23.21 (12.08) 40.20 (14.24)

m = 10

1 categ. 60.61 (28.22) 49.85 (20.84) 38.21 (20.65) 26.27 (18.50)
2 categ. 24.64 (15.00) 22.39 (10.98) 16.99 (8.36) 11.24 (6.72)
3 categ. 12.27 (12.36) 15.22 (7.59) 15.80 (6.29) 14.01 (5.47)
4 categ. 2.39 (3.54) 6.48 (4.47) 9.86 (6.23) 10.42 (5.00)
5 categ. 0.08 (0.12) 0.61 (4.94) 19.13 (11.03) 38.05 (16.42)

values may be found for 10 criteria, with a slight increase in the percentage of
alternatives assigned to two categories.

When including missing evaluations in our data, we observe that more and
more alternatives are assigned to more than one category. When 15% of the
evaluations within the generated problem instances are removed (illustrated by
the white dots in the images from Table 4), around 10% of the alternatives
that were initially assigned to a single category are now assigned to more than
one. Reaching 45% missing values lowers the percentage of single category
assignments to around 30%. In addition it appears that the largest shift occurs
with respect to alternatives assigned to all categories, a trend which decreases in
strength when more criteria are involved. Nevertheless, considering the standard
deviations, the differences between problem instances with 5 or 10 criteria are
not significant.

5.3. Restoring the assignment examples

We continue by exploring the capacity of the proposed inference approach
to construct extended MR-Sort models that restore the assignment examples
provided as input. For this, we again use m = {5, 10} and k = {5}, but
also consider multiple sizes of the learning set, ntr = {100, 300, 500}. For each
combination of these parameters 20 problem instances were randomly generated.

We execute the proposed approach 50 times over each problem instance.
The parameters corresponding the temperature step of the simulated annealing
algorithm are extracted using a prior series of executions of the algorithm, giving
us an initial value for dT of 0.2, which decreases or increases by a factor of
20% following the improvement or non-improvement of the overall best solution
during each iteration. We present below a summary of our findings, while a
detailed presentation of the results, containing the number of iterations and time
needed for 05% and 95% of the algorithm executions to reach a solution fitness
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of 90% and 95% respectively, may be found in the Appendix, in Tables A.5
andA.6.

Throughout all of the experiments, we do not find a significant link between
the number of needed iterations / execution time and the percentage of missing
evaluations. This may be due to a high variability between the actual dis-
tributions of category assignments (alternatives assigned to one category, two,
etc.). Nevertheless, we find that as the size of the learning set increases, fewer
iterations of the algorithm are needed. We attribute this to the fact that one it-
eration makes use of more information as we increase the size of the assignment
examples, therefore fewer iterations are needed in total. Despite this decreasing
trend in the number of iterations, the execution time continues to increase with
the learning set size, as each iteration needs to consider more alternatives and
therefore takes longer to process.

When considering problem instances containing alternatives characterized by
fewer or more criteria, we find that the number of needed iterations is inversely
proportional to the size of the criteria set. This may also be due to the increased
amount of information present within a set of assignment examples. Because
of this, the execution time for problems with 10 criteria may be lower than for
problems with 5 criteria.

5.4. Restoring the original generated model

We have also tested the ability of the proposed approach to find back the
initially generated extended MR-Sort models. For every execution of the infer-
ence approach, we took the inferred preference model Ωi as well as the original
model Ωo and used the test set of alternatives Ate of size nte = 10, 000 in order
to compute the F1 fitness measure. This measure allows us to accurately com-
pare the two models by measuring the differences in their assignments of the
alternatives in Ate. The results are presented in Fig 3.

We observe that by increasing the size of the learning set we are able to more
accurately restore the original extended MR-Sort model, in some cases almost
reaching the maximum accuracy. Even with 100 assignment examples, we are
able to reach an overall high fitness of around 90%, while as we increase the
number of criteria, we notice that the effect of increasing the number of assign-
ment examples becomes slightly more significant. Adding missing evaluations
to each dataset generally has an effect of raising the overall values of the fitness
measure, which is understandable due to the fact that more and more alterna-
tives are assigned to multiple categories, and therefore raising the probability
of the final model matching some of them.

6. Conclusion and perspectives

The contributions of this paper consist in the proposal of a multi-criteria
sorting model which can handle both imprecise and missing evaluations, an
algorithmic solution for inferring its parameters from assignment examples given
by a DM, as well as a detailed analysis of both of them.
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Figure 3: Average F1 measure of the inferred model (at 95% fitness) over the test set of
alternatives as a factor of the size of the learning set.

The imprecision in the alternatives evaluations is modeled in this case through
intervals where all values within them are considered equally likely to occur if
the imprecision source were to be removed. The proposed MR-Sort extension
allows the alternatives to be assigned into one or several neighboring categories,
both as input during a preference elicitation process as well as output of the
classification. We furthermore consider more general assignment rules which
may lead to alternatives being assigned into more than one category despite
having precise evaluations on all criteria. Adding imprecision in the alterna-
tives’ evaluations has the effect of increasing the number of categories to which
they are assigned, however there is no significant difference when considering
problem instances characterized by fewer or more criteria.

The proposed algorithmic inference approach composed of two steps (a linear
program and a simulated annealing algorithm) builds on previous work and is
validated through experiments over a large set of generated problem instances.
The approach scales particularly well when increasing the number of criteria.
When increasing the number of assignment examples fewer iterations of the algo-
rithm are needed, and the computation time does not increase drastically. The
inferred models may also be seen to resemble well the original models, reaching
fitness values close to 100% when 500 assignment examples are considered.

We further wish to consider the practical application of this approach to
real-life scenarios, by extending this work in order to provide more readable
model parameters as well as the integration of confidence degrees with respect
to both the classification output and the assignments of the DM. We would
also like to address the topic of integrating large performance differences inside
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the model, such as vetoes and dictators, which may increase its expressiveness.
These issues will be explored in the future.

Appendix A. Experiments results

Table A.5: Minimum number of iterations and time needed to reach a given fitness value for
problem instances containing 5 criteria.

Learning
Fitness Missing data

90% algorithm executions 95% algorithm executions

set size iterations time (s) iterations time (s)

100

90%

0% 167 563.99 246 878.56

15% 726 2028.71 833 2145.43

30% 787 2145.02 1256 3246.32

45% 727 1536.67 921 1995.83

95%

0% 373 1157.42 428 1513.82

15% 677 1925.11 1108 3143.83

30% 1466 3264.23 1466 3264.23

45% 1356 3070.59 1356 3070.59

300

90%

0% 115 1189.96 150 1223.30

15% 321 2886.65 357 3115.58

30% 112 885.79 451 3554.13

45% 219 1410.42 385 2741.08

95%

0% 150 1463.26 171 1628.57

15% 313 2839.55 313 2839.55

30% 237 1639.50 237 1639.50

45% 509 3202.62 509 3202.62

500

90%

0% 108 1741.22 135 2526.64

15% 159 2502.02 202 3137.77

30% 212 2726.21 220 3153.58

45% 115 1267.79 123 1328.02

95%

0% 126 1926.71 158 2683.49

15% 214 3606.37 214 3606.37

30% 235 3074.14 235 3074.14

45% 216 2467.25 216 2467.25
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A. Tsoukiàs, editors, Algorithmic Decision Theory, volume 6992, pages
219–233. Springer, 2011.

[22] R.J. Little and D.B. Rubin. Statistical analysis with missing data (2nd ed.).
Hoboken, NJ: Wiley, 2002.

[23] T. Marchant. An axiomatic characterization of different majority concepts.
European Journal of Operational Research, 179(1):160–173, May 2007.

[24] P. Meyer and A-L. Olteanu. Integrating large positive and negative perfor-
mance differences in multicriteria majority-rule sorting models. Computers
& Operations Research, 81:216–230, 2017.

[25] A. Motro and Ph. Smets. Uncertainty Management in Information Sys-
tems: from Needs to Solutions. Kluwer, Boston, 1997.

[26] V. Mousseau, L.C. Dias, and J. Figueira. Dealing with inconsistent judg-
ments in multiple criteria sorting models. 4OR, 4(3):145–158, 2006.

[27] V. Mousseau, L.C. Dias, J. Figueira, C. Gomes, and J.N. Cĺımaco. Re-
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