Variational methods for the kinetic Fokker-Planck equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Variational methods for the kinetic Fokker-Planck equation

Résumé

We develop a functional analytic approach to the study of the Kramers and kinetic Fokker-Planck equations which parallels the classical $H^1$ theory of uniformly elliptic equations. In particular, we identify a function space analogous to $H^1$ and develop a well-posedness theory for weak solutions of the Dirichlet problem in this space. In the case of a conservative force, we identify the weak solution as the minimizer of a uniformly convex functional. We prove new functional inequalities of Poincar\'e and H\"ormander type and combine them with basic energy estimates (analogous to the Caccioppoli inequality) in an iteration procedure to obtain the $C^\infty$ regularity of weak solutions. We also use the Poincar\'e-type inequality to give an elementary proof of the exponential convergence to equilibrium for solutions of the kinetic Fokker-Planck equation which mirrors the classic dissipative estimate for the heat equation.
Fichier principal
Vignette du fichier
hypo.pdf (659.46 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02144896 , version 1 (31-05-2019)

Identifiants

Citer

Scott Armstrong, Jean-Christophe Mourrat. Variational methods for the kinetic Fokker-Planck equation. 2019. ⟨hal-02144896⟩
228 Consultations
506 Téléchargements

Altmetric

Partager

More