Modal sense classification with task-specific context embeddings - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Modal sense classification with task-specific context embeddings

Résumé

Sense disambiguation of modal constructions is a crucial part of natural language understanding. Framed as a supervised learning task, this problem heavily depends on an adequate feature representation of the modal verb context. Inspired by recent work on general word sense disambiguation, we propose a simple approach of modal sense classification in which standard shallow features are enhanced with task-specific context embedding features. Comprehensive experiments show that these enriched contextual representations fed into a simple SVM model lead to significant classification gains over shallow feature sets.
Fichier principal
Vignette du fichier
ESANN-paper.pdf (255.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02143762 , version 1 (29-05-2019)

Identifiants

  • HAL Id : hal-02143762 , version 1

Citer

Bo Li, Mathieu Dehouck, Pascal Denis. Modal sense classification with task-specific context embeddings. ESANN 2019 - 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Apr 2019, Bruges, Belgium. ⟨hal-02143762⟩
138 Consultations
248 Téléchargements

Partager

More