Modal sense classification with task-specific context embeddings
Résumé
Sense disambiguation of modal constructions is a crucial part of natural language understanding. Framed as a supervised learning task, this problem heavily depends on an adequate feature representation of the modal verb context. Inspired by recent work on general word sense disambiguation, we propose a simple approach of modal sense classification in which standard shallow features are enhanced with task-specific context embedding features. Comprehensive experiments show that these enriched contextual representations fed into a simple SVM model lead to significant classification gains over shallow feature sets.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...