Screening Sinkhorn Algorithm for Regularized Optimal Transport - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Screening Sinkhorn Algorithm for Regularized Optimal Transport

Résumé

We introduce in this paper a novel strategy for efficiently approximate the Sinkhorn distance between two discrete measures. After identifying neglectible components of the dual solution of the regularized Sinkhorn problem, we propose to screen those components by directly setting them at that value before entering the Sinkhorn problem. This allows us to solve a smaller Sinkhorn problem while ensuring approximation with provable guarantees. More formally, the approach is based on a reformulation of dual of Sinkhorn divergence problem and on the KKT optimality conditions of this problem, which enable identification of dual components to be screened. This new analysis leads to the Screenkhorn algorithm. We illustrate the efficiency of Screenkhorn on complex tasks such as dimensionality reduction or domain adaptation involving regularized optimal transport.
Fichier principal
Vignette du fichier
screenkhorn.pdf (779.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02142661 , version 1 (28-05-2019)
hal-02142661 , version 2 (21-10-2019)
hal-02142661 , version 3 (10-02-2020)

Identifiants

Citer

Mokhtar Z. Alaya, Maxime Berar, Gilles Gasso, Alain Rakotomamonjy. Screening Sinkhorn Algorithm for Regularized Optimal Transport. 2019. ⟨hal-02142661v1⟩
183 Consultations
553 Téléchargements

Altmetric

Partager

More