4D Anisotropic Diffusion Framework with PDEs for Light Field Regularization and Inverse Problems - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Computational Imaging Année : 2019

4D Anisotropic Diffusion Framework with PDEs for Light Field Regularization and Inverse Problems

Résumé

In this paper, we consider the problem of vector-valued regularization of light fields based on PDEs. We propose a regularization method operating in the 4D ray space that does not require prior estimation of disparity maps. The method performs a PDE-based anisotropic diffusion along directions defined by local structures in the 4D ray space. We analyze light field regularization in the 4D ray space using the proposed 4D anisotropic diffusion framework by first considering a light field toy example, i.e., a tesseract. This simple light field example allows an in-depth analysis of how each eigenvector influences the diffusion process. We then illustrate the diffusion effect for several light field processing applications: denoising, angular and spatial interpolation, regularization for enhancing disparity estimation as well as inpainting.
Fichier principal
Vignette du fichier
4Ddiffusion_journal.pdf (53.62 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02135541 , version 1 (21-05-2019)

Identifiants

Citer

Pierre Allain, Laurent Guillo, Christine Guillemot. 4D Anisotropic Diffusion Framework with PDEs for Light Field Regularization and Inverse Problems. IEEE Transactions on Computational Imaging, 2019, pp.1-16. ⟨10.1109/TCI.2019.2919229⟩. ⟨hal-02135541⟩
135 Consultations
58 Téléchargements

Altmetric

Partager

More