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Abstract—In this paper, we consider the problem of vector-
valued regularization of light fields based on PDEs. We propose
a regularization method operating in the 4D ray space that does
not require prior estimation of disparity maps. The method
performs a PDE-based anisotropic diffusion along directions
defined by local structures in the 4D ray space. We analyze light
field regularization in the 4D ray space using the proposed 4D
anisotropic diffusion framework by first considering a light field
toy example, i.e., a tesseract. This simple light field example
allows an in-depth analysis of how each eigenvector influences
the diffusion process. We then illustrate the diffusion effect for
several light field processing applications: denoising, angular
and spatial interpolation, regularization for enhancing disparity
estimation as well as inpainting.

Index Terms—Light Field, regularization, anisotropic diffusion,
inverse problems

I. INTRODUCTION

INVERSE problems appear in a plethora of image pro-
cessing and computer vision applications. Many image

processing problems can indeed be formalized as the recovery
of an image given noisy or incomplete observations. This
is for example the case of image denoising, inpainting or
super-resolution. A common strategy for dealing with ill-posed
inverse problems consists in introducing some prior knowledge
on the kind of typical images we try to restore, which helps
restricting the class of admissible solutions. The smoothness
prior has been one of the most widely used assumptions in
computer vision together with regularization schemes using
a variational regularization or partial differential equations
(PDEs). To preserve edges in images, the regularization is
often performed with some anisotropy, i.e. along privileged
directions defined by structure tensors giving information on
local image structures. These regularization schemes turned
out to be very powerful tools for solving a number of inverse
problems in 2D imaging.

As the capture of 4D light fields from real scenes grows
in popularity, the need for solving similar inverse problems
with these 4D data is expected to rise. However, the very
large volume of data with angular consistency that needs to
be preserved along the processing chain makes the above
problems quite challenging. The authors in [1] propose a
regularization scheme, leveraging the variational structure in
light fields, for denoising and super-resolution. They use 2D
structure tensors computed in epipolar plane images (EPI) to
estimate disparity between light field views. With the help
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of the estimated disparity, they project all the views on a
target viewpoint and solve the regularization using a global
optimization framework with total variation (TV) priors. The
final regularizer is written as the contributions of regularizers
on vector fields in EPI 2D spaces, with user-defined constants
which adjust the amount of smoothing on the different views
or EPIs. Errors in disparity maps may however translate into
annoying artefacts in particular along edges.

In this paper, we propose instead a regularization method
operating directly in the 4D ray space that does not require
prior estimation of disparity maps. The method performs a
PDE-based diffusion with anisotropy steered by a tensor field
based on local structures in the 4D ray space that we extract
using a 4D tensor structure. To enhance coherent structures,
the smoothing along directions, surfaces, or volumes in the
4D ray space is performed along the eigenvectors directions.
Although anisotropic diffusion is well understood for 2D
imaging, its interpretation and understanding in the 4D space is
far from being straightforward. We first analyse the behaviour
of the diffusion process on a light field toy example, i.e. a
tesseract (a 4D cube). We particularly illustrate the effect of
the diffusion along each of the 4 eigenvectors forming the
diffusion tensors.

The proposed ray space regularizer is a tool enabling us
to tackle a variety of inverse problems in the ray space. We
first illustrate the potential of the proposed 4D anisotropic
diffusion for light field denoising. This led us to introduce a
novel denoising method that we called Anisotropic Diffusion
Denoising 4D (ADD4D). Denoising results show that the pro-
posed method compares well to the best state of the art method
[2], even outperforming it at high noise levels, while being
considerably faster. Preliminary light field denoising results
with ADD4D have been presented in [3]. However, in this
paper, in addition to the in-depth analysis on the tesseract toy
example, we further revise the tuning of the model parameters
aiming at a more intuitive use. We then demonstrate the ability
of the presented approach to perform both angular and spatial
light field interpolation. The use of the proposed anisotropic
diffusion framework as a 4D regularization of the light field, by
removing inter-view inconsistencies and noise, is also shown
to improve disparity estimation in epipolar plane images. We
finally illustrate the effect of the proposed framework in the
context of inpainting.

II. RELATED WORK

In this section, we give a brief review of methods related to
our work, starting with the main regularization and diffusion
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methods widely used in 2D image processing. We then review
the few papers of the litterature dealing with regularization for
inverse problems in light field processing.

2D regularization. The goal here is not to give a complete
review of the numerous methods for 2D regularization, but
instead to briefly remind the principles of those related to
this work. This section therefore focuses on PDE based
regularization. The framework of diffusion based on PDEs
has been widely used for image regularization, going from
classical isotropic diffusion, to non linear diffusion [4] and
anisotropic smoothing [5]. Although sometimes referred to as
anisotropic diffusion, non linear diffusion locally adapts the
response of the smoothing filter so that the diffusion process is
lessened near edges and is stronger in homogenous areas. One
step further has been to introduce locally adapted filters for
performing truly anisotropic diffusion close to image structures
such as edges [5]. Anisotropic regularization (or diffusion)
refers to a smoothing in privileged spatial directions with
different weights. The author in [5] uses a field of diffusion
tensors to find privileged directions of diffusion. The diffusion
tensor T (symmetric and positive-definite matrix) is derived in
each point p = (x, y) of the image from the spectral elements
of the structure tensor as:

T = λ+θ+θ
T
+ + λ−θ−θ

T
− , (1)

where θ− and θ+ are the eigenvectors, and λ− and λ+ the
corresponding eigenvalues, of the 2× 2 symmetric and semi-
positive-definite matrix called structure tensor (also called the
Di Zenzo tensor [6]) defined as T = ∇I∇IT . Note also that
the tensor can be regularized with Gaussian kernels, in order
to have increased coherency in the retrieved geometry.

A number of anisotropic diffusion methods have then been
proposed, whose main differences lie first on the definition of
the diffusion tensor defining the smoothing geometry, and on
the PDE used to perform the smoothing. To give an example,
coherence-enhancing anisotropic diffusion is proposed in [7],
which increases the diffusivity along the direction given by
θ− when the coherence measured by (λ+ − λ−)2 increases.
The PDE performing the smoothing can also take several
forms, using a divergence-based formulation [5], a trace-based
formulation [8]. In [9], [10], the smoothing is modelled as
the juxtaposition of two oriented 1D Gaussian smoothing
processes along orthonormal directions with different weights.
The link between these three formulations is established in [8].
The author in [11] further introduces a curvature-preserving
PDE that aims at respecting specific curvature constraints, by
adding to the trace-based PDE a term taking curvatures of
integral curves of the diffusion tensor field into account. A
graph Laplacian regularizer is proposed in [12] for 2D image
denoising, assuming that the original image (patch) is smooth
with respect to a defined graph in which vertices correspond to
pixels on a 2D grid connected via edges. However, with high
dimensional data as light fields, the dimension of the graph
can rapidly become an issue.

Light field inverse problems and regularization. Al-
though, at an early stage, inverse problems in light field
imaging have naturally arised with the emergence of real light
field cameras. Research effort has in particular been dedicated

to denoising and super-resolution, in particular for overcoming
technological limitations of plenoptic cameras. The authors in
[13] use a Gaussian mixture model (GMM) prior for light field
patches, and then exploit this prior within a Bayesian inference
framework for light field denoising. In [14], the light field is
denoised by stacking EPIs in a 3D volume using the VBM4D
video denoising method [15], while the authors in [16] apply
a hyper-fan shaped filter in a 4D discrete Fourier transform
domain. The BM3D denoising algorithm [17] is extended
in [2] to light fields. The only approach of regularization
proposed so far for light field denoising is the one of [1]
using a global variational framework integrating contributions
of regularizers on vector fields computed in EPI 2D spaces.
Regularization based on anisotropic total variation is also used
in [18] for light field deblurring. A regularization term is used
to enforce the equiparallax constraint, hence to enforce valid
light field geometry.

Light field spatial and angular super-resolution has also
received a lot of attention [19], [20], [13], [21] using either
Gaussian priors in Bayesian inference frameworks or learning
methods as in [21] and [22]. In a similar manner as in [1],
the authors in [23] first estimate disparity maps for each view
and project all the views into the target one within a global
variational optimization framework. Errors in disparity maps
may however translate into annoying artefacts in the super-
resolved light field.

Another important light field processing problem that can
benefit from the proposed regularization framework is light
field view interpolation. Existing approaches for view inter-
polation can be broadly divided into two main categories.
A first category of methods relying on depth image based
rendering techniques makes explicit use of geometric or depth
information to warp source views onto target viewpoints. The
various existing methods differ in the way scene geometry is
estimated, e.g. using optical flows between the input views as
in [24] or using structure tensors computed in epipolar plane
images as in [25] where the authors cast the view synthesis
problem in a variational framework. However, the quality
of the synthesized views obtained by the above approaches
in general very much depend on the quality of the depth
or disparity information which is difficult to estimate in
textureless and occluded regions. The quality of depth maps
can also be enhanced thanks to anisotropic regularization as
in [26] where the authors proposed a method based on active
wave-font sampling and the variational principle to regularize
the depth map of the center view.

A second category of methods based on deep learning
techniques have also recently appeared either explicitly or
implicitly exploiting depth information. An architecture is
proposed in [27] based on first deep convolutional neural
network (CNN) to perform spatial super-resolution followed
by a second CNN to synthesize intermediate views. The
authors in [28] use a convolutional neural network to estimate
novel views from a set of input views with wide baseline. An
architecture based on a cascade of two convolutional neural
networks is proposed in [29] to estimate both the disparity
maps and color of synthesized views from the four corner
views of a dense light field with small disparity.
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In this paper, we propose instead a regularization scheme
directly operating in the 4D ray space that can be applied to
solve inverse problems in light field processing. The method
does not require prior depth estimation. We first demonstrate
the interest of the proposed approach for three applications:
denoising, angular super-resolution or view interpolation, and
spatial interpolation. We further illustrate the potential for light
field inpainting as well as for regularizing light fields in order
to improve the quality of estimated depth maps.

III. 4D ANISOTROPIC DIFFUSION

Let L(x, y, u, v) denote the 4D representation of a light
field, describing the radiance of a light ray parameterized by
its intersection with two parallel planes [30], and where (u, v)
denote the angular (view) coordinates and (x, y) the spatial
(pixel) coordinates.

A. 4D structure tensor

To perform light field regularization along pre-defined direc-
tions which would preserve edges, one has to first characterize
local structures in the image, or here the light field. While
light field regularization methods are usually applied per
Epipolar Plane Image (EPI) of the light field with directions
given by 2D structure tensors often smoothed with a 2D
Gaussian kernel, we consider instead a direct computation of
4D structure tensors in the 4D ray space, which is defined as
the symmetric and semipositive definite 4× 4 matrix [31]:

T =
1

C

C∑
c=1

∇Lc ⊗∇Lᵀ
c , (2)

where C is the number of color channels. The notation ∇Lc
denotes the gradient or partial derivatives in the 4 dimensions
of the color channel Lc. A smoothed version Tω = T ∗
Gω(x, y, u, v) of the structure tensor is in practice computed
to retrieve a more coherent geometry, where Gω(x, y, u, v) is
a Gaussian kernel smoothing along the four light field dimen-
sions, with ω = [ωx, ωy, ωu, ωv]. Its spectral elements, i.e. the
eigenvectors νi, i = 1 . . . 4 and the eigenvalues λi, i = 1 . . . 4
of the 4D structure tensor T respectively give the orientations
of the local structures in the 4D ray space and the vector-
valued variations along these structures. We therefore have:

Tω =

4∑
i=1

λiνiν
T
i (3)

The eigenvector ν1 with the largest eigenvalue λ1 gives the
dominant orientation of the local structures in the 4D ray
space. The ratios between the eigenvalues gives information
on the type of structure present in the local neighborhood.

B. Trace-based PDE Diffusion

To be adapted to the local structures in the 4D ray space
of the light field, the diffusion process must be driven by a
specific tensor, called diffusion tensor chosen so that it has the

same set of eigenvectors νi, i = 1 . . . 4 as the structure tensor
T. A diffusion tensor is therefore constructed as:

D =

4∑
i=1

βiνiν
T
i , (4)

where the coefficients βi set the smoothing strength along the
direction given by νi, and are chosen according to the goal of
the diffusion.

The diffusion is thus formulated by the trace-based PDE:

∂Lc
∂t

= trace(DHc) , (5)

where Hc is the 4D Hessian matrix of the c channel of L,
defined as:

Hc =


∂2Lc
∂x2

∂2Lc
∂x∂y

∂2Lc
∂x∂u

∂2Lc
∂x∂v

∂2Lc
∂y∂x

∂2Lc
∂y2

∂2Lc
∂y∂u

∂2Lc
∂y∂v

∂2Lc
∂u∂x

∂2Lc
∂u∂y

∂2Lc
∂u2

∂2Lc
∂u∂v

∂2Lc
∂v∂x

∂2Lc
∂v∂y

∂2Lc
∂v∂u

∂2Lc
∂v2

 , (6)

and D is a diffusion tensor to be defined according to the reg-
ularization goals. This formulation extends the 2D anisotropic
diffusion [4] to 4D light fields.

Each eigenvector νi in (4) is responsible for setting a
direction for the diffusion process. Since these vectors are
eigenvectors of the 4D light field structure tensor, these ori-
entations depend on the local structure properties. In order to
best preserve the structures in the 4D ray space, when running
the diffusion, it is very important to understand how these
orientations capture anisotropy in the 4D ray space, which is
much less straightforward than in 2D.

C. Influence of eigenvectors on the diffusion tensor

(a) (b)

Fig. 1: Tesseract as a 4D light field toy example: (a) Set of 25 × 25 light
field views; (b) Subaperture image of 25x25 pixels image containing a square
at the center of 21x21 pixels for the central views (fully black image at the
periphery of the light field).

To understand how each eigenvector influences the diffusion
process, we first consider a 4D cube, i.e., a tesseract, as
illustrated in Fig. 1, where we show its 2D projection. Because
of its symmetry and of the fact that such shape contains
faces, edges, and corners, it provides a good example to
illustrate how the eigenvector oriented diffusion behaves on
4D structures. Fig. 2 shows the effect of the diffusion process
when the diffusion tensor is based on a single eigenvector. In
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Fig. 2a, the diffusion tensor is based on the fourth eigenvector
ν4, hence follows a direction corresponding to the highest
degree of singularity in the 4D space. For the tesseract, these
degrees of singularity are located at the hyper-corners, i.e.,
at the corners of corners in the 2D projection. The diffusion
process therefore smoothes these hyper-corners, i.e., rounds
the squares at angular corners of the tesseract. In Fig. 2d,
the diffusion tensor is based on the third eigenvector ν3 that
defines a direction corresponding either to the corners of the
edges, or to the edges of the corners. In Fig. 2g, the second
eigenvector ν2 has a direction corresponding to any 2D corner
in the 4D space or to edges of edges. We can see that the
diffusion along ν2 leads to a more global smoothing of the
original structure as compared to the diffusion along ν3. The
same applies for ν1 regarding ν2. One can note that diffusing
along ν2, ν3 and ν4 using D = ν2ν

T
2 + ν3ν

T
3 + ν4ν

T
4 tends to

create a 4D hypersphere, i.e., a glome.

D. Setting the diffusion tensor parameters

The diffusivity coefficients βi introduced in (4) control
the strength of the diffusion in the eigenvectors orientations,
hence the amount of anisotropy. Therefore, their definition is
mostly responsible of the diffusion steering, regarding both its
intensity and its direction. Indeed, the inequality of the βi co-
efficients produces the anisotropy that is needed to strengthen
the structures in most of the inverse problems applications we
consider here. In some cases, as in the following section, it is
relevant to express these coefficients as functions fi depending
on the quantity of structure ψ. This means the diffusion
steering, in addition of being expressed on a basis defined by
structures (the eigenvectors), is also driven by the structures

intensity. We define this intensity such as: ψ =
√∑4

i=1 λi,
which is considered to be a good measure of local variation
[32].

In the end, depending on the application, the diffusion can
be either driven by constants: βi = Ai as for spatial and
angular interpolation as we will see later, or by the local
structures: βi = fi(ψ), as we will detail next.

IV. DENOISING

In order to preserve the coherence of the light field struc-
tures, while removing incoherent information such as noise,
the function fi must verify certain properties. First, the diffu-
sion should be isotropic in regions where there is no strong
apparent direction, i.e.:

lim D
ψ→0

= aI⇒ f1(0) = f2(0) = f3(0) = f4(0). (7)

Conversely, in regions where structures are clearly appearing,
no diffusion should be performed in order to preserve geom-
etry, i.e.:

lim D
ψ→inf

= 0⇒ f1(ψ) = f2(ψ) = f3(ψ) = f4(ψ) = 0. (8)

Also, the diffusion must be performed along directions de-
scribing the local structures. The singularity of structures is
described by the eigenvectors having the lowest eigenvalues.
The more structure there is, the more the lowest eigenvalued

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2: Tesseract diffusion. (a-c) Tensor is constructed using ν4. (d-f) Tensor
is constructed using ν3. (g-i) Tensor is constructed using ν2. (j-l) Tensor
is constructed using ν2. (a,d,g,j) Initialization and diffusion orientation in
red. (b,e,h,k) Diffusion at early iterations. (c,f,i,l) Close-up on (from top to
bottom) center view [u=12,v=12], edge view [u=22,v=12] and corner view
[u=22,v=22].

eigenvectors must drive the diffusion. When the structure is
clearly shaped, the diffusion should only correct structure
singularities with the highest degree. Applying such reasoning
to the eigenvectors, we obtain the condition:

f1(ψ) ≤ f2(ψ) ≤ f3(ψ) ≤ f4(ψ). (9)

We therefore propose the function fi meeting the conditions
of equations (7), (8) and, (9):

fi(ψ) = e
−
(
ψ
ρi

)γ
, with ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4 (10)

where ρi is a parameter related to a quantity of local vari-
ation ψ at which diffusion along νi will importantly change
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the intensity, and γ is a parameter defining the exponential
behaviour of the function. This parametrization allows tuning
the diffusion process on the basis of structure properties. The
parameters γ and ρi need however to be adjusted according
to the application. Below, we illustrate the effect of these
parameters in the context of light field denoising.

A. Model tuning

The best set of diffusion model parameters ρi may depend
on the light field and on the desired smoothing intensity.
Finding the best values for this set of parameters ρi may
therefore be a tedious task. Below, we propose a simplified
parametrization to facilitate the model tuning.

Instead of parameterizing independently each parameter ρi,
we propose the following expression:

ρi = ρrα
i−4 , (11)

which allows a simplification of the model, being left with
only two parameters. The first one, ρr, is related to a local
variation intensity. The second one, α, is related to the amount
of anisotropy for the diffusion. Fig. 3 plots different functions
fi(ψ) parameterized by ρi, taking ρr = 0.4 and α = 2. Below,
we study the influence of these parameters on the denoising
process. For each experiment, we set γ = 2, and the same
time step of 0.1 to better show the influence of the parameter
ρr on the denoising process.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

f
1
( )

f
2
( )

f
3
( )

f
4
( )

Fig. 3: Functions fi(ψ) controlling the smoothing strength of the diffusion
tensor along orientations defined by the four eigenvectors νi, with ρr = 0.4

and α = 2.

1) Model range and noise intensity: Fig. 4 shows the
evolution of the PSNR along the iterations of the model
integration, when varying the parameter ρr, with different
levels of noise. Note that the PSNR is the Peak Signal to
Noise Ratio computed as 10log10

1
MSE , where the MSE is the

mean square error between all the original (with no noise) and
all the denoised views over the three RGB color components.
The light field used in this experiment is Bike of the EPFL
dataset [33]. The integration time t is related to the number
of iterations n by the time step dt = 0.1 such as: t = ndt.
The integration carried out to solve (5) is performed using
the Runge-Kutta 4 scheme. Fig. 4a shows that when no noise
is applied to the light field, higher values of ρr yield higher
deterioration (smoothing) of the light field. Fig. 4b and 4c,
show that, for low noise (σ = 10

255 , σ = 40
255 ), a low value of

ρr (respectively 0.08 and 0.24) prevents the model to damage
the light field structures. On the other hand, a low value of ρr
is not suitable for high noise levels as shown in Fig. 4d, where
the model is unable to diffuse along the structures, hence many
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Fig. 4: Denoising behaviour for different noise levels applied to the Bikes

light field. Each curve represents the PSNR evolution along the diffusion
iterations, for different values of the parameter ρr , in the cases of (a) No
noise; (b) additive Gaussian noise with σ = 10

255
; (c) σ = 40

255
; and (d)

σ = 100
255

. The parameter α controlling the anisotropy is set to 2.

iterations are needed to remove the noise. For high values
of ρr, we can observe a more efficient behaviour regarding
noise reduction. But in this case, the model can damage the
structures (more than with low values of ρr), as we can see
when the number of iterations increases.
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Fig. 5: Denoising behaviour for different models applied to the Bike light
field of the EPFL dataset [33]. Each curve represents the PSNR evolution
along the diffusion iterations for different noise standard deviations σG, using
a model parameterized by (a) ρr = 0.16; (b) ρr = 0.32; (c) ρr = 0.48; (d)
and ρr = 0.80. The parameter α controlling the anisotropy is set to 2.

Fig. 5 shows, in a symmetric manner compared with Fig. 4,
the evolution of the PSNR along the iterations, when varying
the levels of noise, with different values of the parameter ρr.
Fig. 5b-d show that, for different values of the parameter ρr,
when increasing the number of iterations, the model converges
to the same PSNR curve, at both low and high noise levels.
This shows that, even for very different initial noise intensities,
a same denoising model (with same parameters) will tend to
reshape the light field in almost the same fashion, provided
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ρr or the number of iterations is high enough. In other words,
the noise is cleaned more or less quickly while the model is
on its way to its inherent convergence state. In the following
denoising experiments, we chose to set the parameter ρr to 0.4,
which appeared to be a good trade-off between preserving data
structures and efficiency in terms of noise removal.

2) Anisotropy: We now study how the coefficient α control-
ling the amount of anisotropy influences the denoising process.
Fig. 6d-f shows denoising results for α set to 1 (isotropic), 2,
and 5, after 20 iterations, using the StonePillarsOutside light
field. Even if this number of iterations may not yield the best
reachable PSNR for each of the α values, it allows analyzing
the model behaviour when varying the parameter α. While the
isotropic denoising yields too blurry images (see Fig. 6d), a
high value of α tends to sharpen too much the details, even
to structure the noise instead of removing it (see Fig. 6f).

As the anisotropy increases (Fig. 6i), the best PSNR is
obtained for a higher number of iterations, as we can see in
Fig. 6c, highlighted by the red line. Increasing the time step
can lower the number of iterations, thus the computation time,
but can affect the stability of the model integration. Indeed,
the non-linearity of the model is likely to increase with its
anisotropy. In the end, a trade-off has to be found depending
on how fine one wants to recover texture details, and how
fast the denoising reaches the best result. We have observed
experimentally that setting ρr to 0.4 and α to 2 was yielding
a good compromise between efficiency, sharpness and number
of iterations.

B. Denoising results with the tesseract toy example

In order to illustrate the behaviour of the denoising model,
we propose to apply it on the tesseract toy example presented
above. The goal is to observe how the proposed denoising
model behaves on a light field containing both very high and
very low variations in the 4D space. Fig. 7 shows denoising
results, after 20 iterations, with both the 2D regularization
method described in [8] applied independently on each view,
and the proposed 4D anisotropic diffusion. One can observe
that the proposed diffusion performs well in terms of denoising
compared with the 2D approach of [8]. The 4D angularities
of the tesseract are being smoothed in every dimension.

C. Denoising results with real light fields

In order to assess the denoising performance of the 4D
anisotropic diffusion with the proposed model on real light
fields, in comparison with state of the art methods, e.g., with
[2], we considered the same 12 light fields of the EPFL dataset
[33]. The light fields have been extracted from the raw captures
using Dansereau’s Matlab light field toolbox [34] in the same
conditions as in [2].

Because of the strong irregularities in the angular dimension
resulting from the vignetting effect, we chose to denoise only
the subapertures that are not affected by the later and therefore
limit the size of light fields to 11× 11 central views. Indeed,
because of its regularization properties, we will show later
that our method also corrects artefacts at angular corners
(i.e., the vignetting effect), hence the measured PSNR, when

Method σ = 10
255

σ = 20
255

σ = 30
255

σ = 40
255

σ = 50
255

HF4D 31.07 25.80 22.61 20.34 18.59
BM3D 35.42 32.85 31.36 30.25 29.32

BM3D Epi 36.09 33.48 31.91 30.71 29.67
VBM4D 36.08 33.52 31.92 30.67 29.63

VBM4D Epi 36.13 33.51 31.93 30.72 29.72
LFMB5D 1st step 34.39 32.81 31.68 30.74 29.91
LFMB5D 2nd step 36.50 34.21 32.87 31.84 30.99
ρr = 0.4, α = 2 36.13 33.88 32.67 31.84 31.19

TABLE I: Comparison of light field denoising methods (courtesy of [2] for
the PSNR values in dB of the reference methods). A visual comparison can
be found in Fig. 10.

considering all the views, would not only reflect the denoising
performance.

In the experiments, we chose to use the same model param-
eterized by ρr = 0.4, α = γ = 2, and the tensor smoothing
is set to ω = 1.1 in the spatial and angular directions. This
parameterization gives a denoising model of relatively low
anisotropy, but allows the removal of noise in a reasonable
number of iterations. One iteration takes 7 minutes to compute
on a i7-6600U without any parallelization, and best PSNR
values are usually obtained from 4 iterations to 20 depending
on the light field and the model. Note that the computation
time for each iteration is not scene dependent and is the same
for light fields of same dimension. For comparison, LFBM5D
performs approximately in 7 hours on an octo core processor
(but on 15 × 15 light fields). On a 10 iterations basis, our
method gives an estimated 26 times faster result. Detailed
results can be found online1 to show angular consistency. In
Fig. 8, we observe that our model is able to remove low noise
while keeping fine original structures. Our model is also able
to deal with high levels of noise as shown in Fig. 9 and 10.
In Fig. 10, we can see that the results qualitatively match the
best existing denoising method. In Table I we can see that
the denoising model we used outperforms other methods for
a high level of noise, while comparing well for low levels of
noise.

Fig. 11 shows an example of denoising result with a
light field captured under low illumination conditions. In this
experiment, the denoising model is parameterized as a small
variant of the expression proposed in (11), i.e. by setting the
model parameters as ρi = ρi+1α

i−4. Our method is able to
remove noise due to poor capture conditions. We also provide
in Tab. II additional restoration results to show the efficiency
of the proposed approach in other conditions than additive
Gaussian noise. The restoration of light field quantized using
the Floyd–Steinberg dithering method yields particularly good
results, as presented in Fig. 12. Indeed, the dithering preserves
image structures and color gradients, thus allowing more
efficient reconstruction using the tensor diffusion approach.

D. Influence of the number of views

It is interesting to study to which extent the light field
structure is retrieved when the number of light field views
increases. In the following experiments, we use the original
parameterization model proposed in (11), with ρr = 0.4 and
α = 2. Fig. 13 shows how the error evolves along the iterations

1http://clim.inria.fr/research/AD4D
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(a) Original (center view) (b) Noised, σ = 50
255

, overall PSNR 14.15 dB.
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(c) Overall PSNR evolution as function of α.

(d) α = 1, 20 iterations, PSNR 26.21 dB. (e) α = 2, 20 iterations, PSNR 28.69 dB. (f) α = 5, 20 iterations, PSNR 26.18 dB.

(g) α = 1, 6 iterations (best), PSNR 28.37 dB. (h) α = 2, 16 iterations (best), PSNR 30.31 dB. (i) α = 5, 50 iterations (best), PSNR 30.58 dB.

Fig. 6: Influence of the anisotropic coefficient α on light field denoising using StonePillarsOutside of the EPFL dataset [33]. (a) Original center view;
(b) center view with additive white Gaussian noise (σ = 50

255
); (c) Influence of the anisotropic coefficient α on denoising efficiency. (d-f) Denoising results

with parameter values on the blue line in Fig. (c): (d) Isotropic diffusion after 20 iterations. Structures are smoothed, no matter what their directions are.
(e) Important structures are preserved, while textures are flattened. (f) Structures are preserved, thus yielding finer textures. However, the noise is getting
structured in homogeneous areas (ground, sky, shades) instead of being isotropically smoothed, thus increasing error. (g-i) Best PSNR (red line in (c)).

Poisson noise Uniform quantization Dithering quantization K-means quantization
standard deviation ratio color levels per channel color levels per channel number of colors

0.1 0.01 0.001 8 16 32 2 4 8 16 32 64
Damaged 15.87 25.87 35.86 28.05 34.60 40.93 9.11 18.22 25.73 32.83 32.03 34.19
Restored 30.82 34.75 39.55 30.67 37.22 42.33 28.83 33.06 36.02 38.85 33.39 35.39
Iterations 20 5 1 5 2 1 39 9 4 2 2 2

TABLE II: Light field restoration with different types of noise. The PSNR values (in dB) are averaged over the 12 EPFL light fields [33]. We also give
the rounded number of iterations at which the maximum PSNR is reached. The denoising model is parameterized by ρr = 0.4 and α = 2.

for different numbers of views. In Fig. 13a, we can see that
the maximum overall PSNR increases with the number of
views (up to 9x9 views). Starting from 11x11 views, the error
increases because of the vignetting effect of the light-field
capturing device. Indeed, as mentioned in section IV-C, light
fields captured with Lytro Illum cameras are impacted by lens
deformations producing angular inconsistencies. For a high
number of views (higher than 11 × 11 in the case of Lytro
Illum captures), these irregularities are being corrected by the
denoising process, and tend to increase the difference with the

original light field.

For 13 × 13 views, the vignetting effect starts to clearly
appear (also see Fig. 14e,f and Fig. 15). The strong inten-
sity variations between vignetted (almost entirely black) and
inner views produce angular structures which are difficult to
properly smooth. Increasing the anisotropic coefficient α could
enhance these contours, but at the expense of sharpening the
noise in other regions. Such problem can also be viewed in
Fig. 7f (middle and bottom), where the denoising process
yields smoothing of structures at angular edges and corners.
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(a) PSNR 16.09 dB (b) (c) PSNR 22.56 dB (d)

(e) PSNR 30.92 dB (f)

Fig. 7: Denoising of the Tesseract toy example. (a,b) Gaussian noise added
to tesseract example (standard deviation σ = 40

255
). (c,d) After 20 iterations,

using the 2D denoising method proposed in [8]. (e,f) After 30 iterations using
the proposed 4D denoising model. PSNR computed over all images.

This side effect is further discussed in this section.
If we now consider only the central views of the light field,

we can see in Fig. 13b that the maximum PSNR value is
almost the same from 5x5 to 15x15 views. However, as the
number of views increases, this maximum is reached with
fewer iterations because of the larger distance to angular edges,
and consequently the lower angular boundary effect. On the
other hand, when the number of views increases, more angular
inconsistencies are corrected, and eventually propagated to the
center view, causing the PSNR to decrease.

To better see that effect, Fig. 14 shows the PSNR obtained
after denoising for each view of the light field. We can see
that, at the corner views, the PSNR decreases when the number
of views increases. One can also observe in Fig. 14d that
the values of PSNR are not symmetric around the angular
axes, values at the angular coordinates [0,0] being lower than
others. This can be explained by the vignetting effect and
inconsistencies between micro-lenses.

As mentioned above, for 13x13 views (see Fig. 14e), the
vignetting effect is clearly visible. The error on the corner
views of the light field becomes more important than in inner
views. Indeed, as we can observe in Fig. 15, the denoising
process yields structure smoothness likely to print scene
structures on vignetted views, thus increasing the error at this
angular location. This effect can be lowered by increasing the
anisotropic coefficient α, so the diffusion of the denoising
model can better fit the contrasted structures, such as the ones
the vignetting produces in the angular space. Eventually, for
15x15 views (see Fig. 14e), we observe a high PSNR rebound
for the angular corner views which are almost fully black with
no neighboring contrasted structures.

E. Sparsity

The proposed method can be challenged when the angular
consistency between views decreases. Indeed, sparse light

fields, with large baselines, do not always provide continuity
of structures in the angular dimension. Fig. 16a shows a
denoising example on a light field from the Stanford dataset
[36]. The foreground of the scene (highlighted by the bottom
white line) presents sharp structures in the angular space
because of the high disparity at this location. Indeed, in
the corresponding epipolar plane image, we can see that the
structures are strongly aliased, with little inter-view continuity.

During the denoising process (see Fig. 16c), the sharp
structures are difficult to preserve. Any smoothing of structures
in the angular space, also leads to significant blurriness of the
views. This effect is related to the toy experiment presented
in Fig. 7, and more specifically to the f-bottom view. Indeed,
spatial structures with high inter-view disparity corresponds
to hyper corners of the tesseract. These 4D singularities
are difficult to denoise while keeping intact their complex
structure.

F. Non-Lambertian surfaces

Light reflections during light field captures can produce
complex 4D geometries. We propose to apply our denoising
method on a light field containing non-Lambertian surfaces. In
Fig. 18, we can see that the reflected structures on the water
are correctly denoised.

V. MISCELLANEOUS APPLICATIONS

The proposed 4D tensor-based anisotropic diffusion can
be a useful tool for various applications, beyond denoising.
Here, we consider view (or angular) interpolation, as well
as spatial interpolation. The goal is to highlight the fact that
our approach deals with light fields as 4D volumes, and can
perform well in different application contexts.

A. View interpolation

We use instead the proposed anisotropic diffusion approach
to estimate intermediate views by strengthening structures
across views. While for the denoising application, isotropic
diffusion is required to remove noise in homogeneous areas,
the diffusion process for view interpolation is required to pre-
serve existing structures of original views, while creating new
intermediate views. By setting the values of the parameters βi
of (4) as β1 = 0, β2 = 0.25, β3 = 0.5, and β4 = 1, we obtain
a regularization model suitable for the angular interpolation
problem. The increasing values of beta are explained by the
goal of first propagating the strongest structures (hence with
a stronger diffusivity coefficient) and then the homogeneous
regions. The orientations of the strongest structures are given
by the 4th eigenvector and correspond in the view interpola-
tion problem to strong luminance variations in both angular
dimensions due to the missing views to be interpolated. Before
computing the tensor, and only for the purpose of the tensor
computation, we apply a convolution with a Gaussian kernel
on the light field as Lw = L∗Gw, with w = [wx, wy, wu, wv].
In the following experiments, we set wx = wy = 0 and
wu = wv = 0.8. For the view interpolation problem, the
structure tensor is used to find coherent orientations in the
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(a) Original. (b) Overall PSNR 28.13 dB. (c) Overall PSNR 35.10 dB.

Fig. 8: Denoising of Iso Chart 12 light field. Center views. (a) Original. (b) Gaussian noise of σ = 10
255

. (c) Using our method, 4 iterations.

(a) (b) (c) (d)

Fig. 9: 4D tensor driven diffusion is able to denoise highly damaged light fields. Center views for Vespa and DangerDeMort from the EPFL dataset [33].
(a,c) With Additive Gaussian noise (σ = 100

255
, overall PSNR 8.13 dB); (b,d) After denoising giving a PSNR of 29.31 dB (b) and 28.50 dB (d).

Light field
Integer magnification, factor 2 Integer magnification, factor 3

RGB Luminance RGB Luminance
Nearest Bicubic Diffusion Nearest Bicubic Diffusion Nearest Bicubic Diffusion Nearest Bicubic Diffusion

Bikes 24.54 26.98 28.43 25.32 28.25 29.58 23.08 24.03 26.05 23.81 24.79 26.80
Bench in Paris 20.71 22.97 23.70 21.10 23.55 24.16 19.45 20.08 21.22 19.83 20.48 21.56

Friends 1 25.98 27.52 29.17 26.79 28.26 30.03 24.44 25.14 27.75 25.16 25.83 28.63
Sphynx 24.83 26.65 28.54 25.40 27.29 29.30 23.53 23.92 26.31 24.05 24.43 26.95
Bee 2 25.62 28.20 29.17 28.02 31.65 32.52 24.50 25.51 27.14 26.80 28.06 29.83
Duck 21.67 24.66 24.91 22.78 25.81 26.19 20.49 21.09 22.43 21.56 22.21 23.55
Fruits 24.55 27.61 28.61 25.40 28.83 29.79 23.49 24.17 26.12 24.31 25.03 27.05
Rose 27.96 30.73 32.20 29.05 31.87 33.45 26.56 27.45 29.80 27.54 28.29 30.84
Mini 24.30 26.27 27.64 24.98 26.97 28.34 23.08 23.46 25.52 23.73 24.10 26.17

Buddha 29.90 33.19 33.55 30.07 33.37 33.72 28.51 29.47 30.88 28.66 29.63 31.03
Cone Head 33.11 36.64 35.54 35.57 39.12 38.51 32.03 32.59 33.63 34.51 35.16 36.29

Monas 29.28 32.94 32.92 30.05 33.49 34.03 28.15 28.90 30.54 29.91 29.58 31.44
Watch 30.16 37.35 36.18 30.16 37.35 36.18 28.96 30.77 32.11 28.96 30.77 32.11

Papillon 32.00 35.62 37.50 32.01 35.75 37.82 30.86 32.20 34.65 30.87 32.22 34.84
Still Life 22.61 24.79 25.41 22.72 24.87 25.50 21.01 21.20 22.75 21.10 21.27 22.82
Average 26.48 29.47 30.23 27.29 30.43 31.27 25.21 26.00 27.79 26.05 26.79 28.66

Average increment -2.99 0 +0.76 -3.14 0 +0.84 -0.79 0 +1.79 -0.74 0 +1.87from bicubic

TABLE III: PSNR using integer magnification setup, and for factor 2 and 3. High increment from nearest neighbor to bicubic for magnification factor 2

is due to the misalignment of the nearest neighbor method for even factors.

angular u and v dimensions, hence is smoothed only in these
dimensions.

Fig. 19 shows the results obtained with two light fields that
have been sub-sampled with a factor of 2. The figures show the
reconstructed views along the iterations, thus illustrating the
diffusion effect. Most contrasted structures appear first, and
homogeneous areas are progressively filled. A lower PSNR is
obtained for the Desktop light field due to angular inconsis-
tencies. The noise of the subaperture images is also corrected,
yielding a lower PSNR, when computed with respect to the
noisy input images. The computation can be speeded up by
increasing β2 to tend towards orthogonal isotropy, such that
β1 = 0 and β2 = β3 = β4 = 1. In this case, homogeneous

regions are reconstructed faster, but at the cost of smoothed
structures.

Let us point out the fact that we chose to initialize the views
to synthesize with black pixels. This choice is interesting to
observe the diffusion model behaviour. However, it penalizes
the computational time. Indeed, it takes a higher number of
iterations to diffuse the color information, compared to the
case where this initialization would be based on a combination
of neighboring views. The combination of neighboring views
would give initial views with blurry areas. Even if the model
is able to structure them, this initialization may introduce
slightly biased structures yielding local minima when running
the diffusion. In our experiments, the best results have been
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(a) Overall PSNR 14.15 dB. (b) Overall PSNR 29.91 dB. (c) Overall PSNR 30.10 dB, 19 iterations.

(d) Overall PSNR 14.15 dB. (e) Overall PSNR 28.47 dB. (f) Overall PSNR 30.54 dB, 17 iterations.

(g) Overall PSNR 14.15 dB. (h) Overall PSNR 30.22 dB. (i) Overall PSNR 30.82 dB, 23 iterations.

Fig. 10: Denoising of the Bikes, Flowers and Color Chart 1 light fields [33]. Center views. (a,d,g) Gaussian noise of σ = 50
255

. (b,e,h) Result obtained
using LFBM5D with parameterization provided by the authors [2]. (c,f,i) Using our method. An extended quantitative comparison with other methods can be
found in Table I.

obtained using a black initialization.

B. Spatial interpolation

Tensor diffusion can also find applications in the field of
spatial interpolation. 2D anisotropic diffusion has already been
considered for image magnification. It is nevertheless interest-
ing to show how 4D anisotropic diffusion can extend structures
in the 4D ray space for light field spatial interpolation. For
this purpose, we spatially downsize all light field views and
then try to restore the resolution back to the original one,
as explained in Fig. 20. The spatial interpolation process is
initialized using nearest neighbor interpolation. Indeed, linear
and cubic interpolation can introduce a bias with respect
to real structures, due to their averaging effect. However,
for even magnification factors, the nearest neighbor method
can introduce a one pixel shift in the initialization. In the
following experiments, the model parameters are set as β1 = 0,
β2 = β3 = β4 = 1 and wu = wv = 0. For a magnification
factor 2, we set wx = wy = 0, and for a factor 3, because
it is necessary to help detecting structures orientation, we set
wx = wy = 0.8.

Tables III gives the PSNR obtained with the diffusion based
light field spatial interpolation method with two magnification
factors (2 and 3), in comparison with a nearest or a bicubic
interpolation. The table gives the PSNR values both for the
luminance only and for the three RGB color components.
The light fields are from the EPFL, INRIA [35], and HCI
[37] datasets. It is to be noted that our method yields lower
PSNR than bicubic interpolation for a magnification factor
of 2 for Cone Head, Monas Room and Watch light fields.
The reason comes from the repetition of small structures in
the scene which are sensitive to initial shifting of nearest
neighbor initialization. On average, the anisotropic diffusion
yields a 0.84 dB increment as compared to bicubic for factor
2 magnification, and a 1.87 dB increment for factor 3. These
numbers can be related to those obtained by state of the art
methods applied to spatial super-resolution, despite the differ-
ent experimental setups. That is, original low resolution pixels
are preserved in our case, whereas spatial super-resolution
methods produce blurring of low resolution images due to the
downsampling method (floating point magnification factors).
In [38], their method and the one proposed by [39] produce
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(a) Original center view.

(b) After 15 iterations.

Fig. 11: Denoising of light field under low illumination conditions (Low-

Light Flowers capture from the INRIA dataset [35]). The noise present in the
input image results only from the poor capture conditions (no synthetic noise
added). The denoising model is parameterized by ρ4 = 0.4, ρ3 = 1

2
ρ4,

ρ2 = 1
4
ρ3, and ρ1 = 1

8
ρ2.

a 1.43 dB increase as compared to bicubic reconstruction for
a magnification factor 3. We can therefore see that spatial
interpolation using anisotropic diffusion yields a coherent
increase as compared to spatial super-resolution methods.
Fig. 21 shows some visual results for the light field Papillon,
with a magnification factor of 3. The second row shows that
the proposed method enables a better recovery of fine details
(see e.g. legs of the butterfly). More visual comparisons can
be found on the project web site2.

C. Light field regularization and disparity estimate

Disparity estimation methods based on local structure ori-
entations in epipolar plane images [1] benefit from the ability
to easily compute disparity everywhere on the light field.
However, they suffer from inter-view inconsistencies and noise
(even low) in homogeneous area. These drawbacks can yield
noisy disparity estimate and poor confidence information φ,

2http://clim.inria.fr/research/AD4D

that we define empirically as a function of the quantity of
spatio-angular structure in the 2D epipolar plane images:
φ(λ+, λ−) = (λ+ + λ−)

0.2. One can refer to (1) for the
two dimensional context. We propose to apply our method
as a preprocessing of such disparity estimation methods. The
goal is to enforce a maximum regularization of structures with
minimum deformations. Using the denoising model introduced
in Section IV, the diffusion has to operate only on the fourth
eigenvector direction ν4. This parametrization is therefore the
same as setting ρr = ∞ and α = ∞. In Fig. 22a-b, we
observe that the regularization of the light field strengthens
the continuity of the confidence estimate. The application of
a same lower bound threshold on confidence highlights how
homogeneous areas without disparity information are more
easily detected. In Fig. 22e-f, we can see that the preprocessing
regularization yields a more robust disparity estimate. Of
course, the regularization of structures could also be enforced
using third or second order eigenvectors for the diffusion, but
at the cost of a greater structure smoothing. Such trade-off has
been discussed in Section IV.

D. Inpainting

Tensor diffusion has been used for reconstructing removed
parts of 2D images, such as in [8]. The idea is to diffuse
color information inside the masked area in the direction of
structures present at edges of the mask. This approach let the
information to fill in the inpainted area so that the continuity of
structures is preserved. In Fig. 17, we show that our method
is able fill the area of the three lines of text with coherent
information regarding the neighboring structures.

VI. CONCLUSION

Regularization of light fields in the 4D ray space provides
an efficient method for a wide range of applications. Using
structural properties in the four dimension space, we showed
that structural oriented diffusion can drastically reduce noise
while keeping most of the essential spatio-angular structures
of the light field. The denoising model we proposed offers
an easy parametrization and can be adapted according to the
purpose (smoothness, structures sharpness, process speed). We
believe that other models can be designed, to benefit even
more of the angular consistency of noised views, and to tackle
more efficiently the sparsity and its inherent 4D sharpness.
We have also shown promising results for spatial and angular
interpolation, as well as for inpainting. Indeed, by simply
tuning the weights of the tensors obtained by each eigen
component, it is possible to apply the method to a variety
of inverse problems associated to light fields.
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[11] D. Tschumperlé, “Fast Anisotropic Smoothing of Multi-Valued Images
using Curvature-Preserving PDE’s.” International Journal of Computer
Vision, vol. 68, no. 1, pp. 65–82, 2006.

[12] J. Pang and G. Cheung, “Graph laplacian regularization for image
denoising: Analysis in the continuous domain,” IEEE Trans. on Image
Processing, vol. 26, no. 4, pp. 1770–1785, April 2017.

[13] K. Mitra and A. Veeraraghavan, “Light field denoising, light field
superresolution and stereo camera based refocussing using a GMM light
field patch prior,” in Proc. CVPR Workshops, June 2012, pp. 22–28.

[14] A. Sepas-Moghaddam, P. L. Correia, and F. Pereia, “Light field denois-
ing: exploiting the redundancy of an epipolar sequence representation,”
in Proc. 3DTV-Con, Jul. 2016.

[15] G. Boracchi, A. Foi, and K. Egiazarian, “Video denoising, deblocking,
and enhancement through separable 4-D non local spatio-temporal
transforms,” IEEE Trans. on Image Processing, vol. 21, no. 9, pp. 3952–
3966, 2012.

[16] D. G. Dansereau, D. L. Bongiorno, O. Pizarro, and S. Williams, “Light
field image denoising using a linear 4D frequency-hyperfan all- in-focus
filter,” in Proc. SPIE, vol. 8657, Feb. 2013.

[17] K. Dabov, A. Foi, and K. Egiazarian, “Image denoising by sparse
3-d transform-domain collaborative filtering,” IEEE Trans. on Image
Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[18] D. G. Dansereau, A. Eriksson, and J. Leitner, “Richardson-lucy deblur-
ring for moving light field cameras,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR) workshop on Light Fields for Computer
Vision, July 2017.

[19] A. Levin, W. Freeman, and F. Durand, “Understanding camera trade-
offs through a bayesian analysis of light field projections,” in European
Conf. on Computer Vision (ECCV), Oct. 2008.

[20] T. E. Bishop and P. Favaro, “The light field camera: Extended depth
of field, aliasing, and superresolution,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 34, no. 5, pp. 972–986, May 2012.

[21] R. A. Farrugia, C. Galea, and C. Guillemot, “Super resolution of light
field images using linear subspace projection of patch-volumes,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 7, pp.
1058–1071, Oct 2017.

[22] Y. Yoon, H.-G. Jeon, D. Yoo, J.-Y. Lee, and I. S. Kweon, “Learning
a deep convolutional network for light-field image super-resolution,” in
IEEE International Conf. on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 57–65.

[23] S. Wanner and B. Goldluecke, “Variational light field analysis for dis-
parity estimation and super-resolution,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 36, no. 3, pp. 606–619, March 2014.

[24] T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and
C. Intwala, “Spatio-angular resolution tradeoff in integral photography,”
in In Eurographics Symposium on Rendering, 2006, pp. 263–272.

[25] S. Wanner and B. Goldluecke, “Variational light field analysis for dis-
parity estimation and super-resolution,” IEEE Trans. of Pattern analysis
and machine intelligence, vol. 36, no. 3, 2013.

[26] S. Heber, R. Ranftl, and T. Pock, “Variational shape from light field,”
in EMMCVPR, ser. Lecture Notes in Computer Science, vol. 8081.
Springer, 2013, pp. 66–79.

[27] Y. Yoon, H. Jeon, D. Yoo, J. Lee, and I. S. Kweon, “Learning a deep
convolutional network for light-field image super-resolution,” in IEEE
International Conf. on Computer Vision Workshop (ICCVW), Dec 2015,
pp. 57–65.

[28] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, “Deep stereo:
Learning to predict new views from the world’s imagery,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016, pp. 5515–5524.

[29] N. K. Kalantari, T.-C. Wang, and R. Ramamoorthi, “Learning-based
view synthesis for light field cameras,” ACM Trans. on Graphics
(Proceedings of SIGGRAPH Asia 2016), vol. 35, no. 6, 2016.

[30] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The lumigraph.”
23rd annual Conf. on Computer Graphics and Interactive Techniques,
ACM, pp. 43–54, 1996.

[31] J. Weickert, “Coherence-enhancing diffusion of colour images,” Image
and Vision Computing, vol. 17, no. 3, pp. 201 – 212, 1999.
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(a) 5x5 views
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(b) 7x7 views
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(c) 9x9 views
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(d) 11x11 views

14
12

10
8

u (angular)

622

24

4

26

14

28

P
S

N
R

12

v (angular)

30

210

32

8 6 04 2 0

(e) 13x13 views
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(f) 15x15 views

Fig. 14: Denoising PSNR values for each light field view, with different angular croppings, and after 20 iterations. Each PSNR value corresponds to the
average over the 12 Lytro Illum light fields of the EPFL dataset [33]. The added noise is Gaussian and of standard deviation σ = 50

255
.

(a) Added Gaussian noise, σ = 50
255

. (b) Denoised, 20 iterations. (c) Denoised, 50 iterations.

Fig. 15: Light field views of the Friends 1 light field of the EPFL dataset [33], cropped such that u, v ∈ [0, 4]. During the denoising process, the diffusion
tends to print views at the vignetted locations because of the aliasing.
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(a) Original. Disparity is lower than 1 at the top line location, and above 3 at
the bottom line’s.

(b) Noised, overall PSNR 14.15 dB

(c) Denoised, 15 iterations, overall PSNR 26.67 dB

Fig. 16: Denoising results with the Treasure Chest light field (spatially
cropped) of the Stanford dataset [36], with Gaussian noise (σ = 50

255
). The

model has difficulty coping with the high disparities at the foreground of
the scene (bottom horizontal white line). Epipolar plane images are vertically
stretched by a factor 4 for sake of clarity. Best viewed zoomed.

(a) Original. Center view. (b) Inpainted. Center view.

(c) Original. EPI at middle text. (d) Inpainted. EPI at middle text.

(e) Original. EPI at bottom text. (f) Inpainted. EPI at bottom text.

Fig. 17: Inpainting of the light field capture Leaves from the INRIA dataset.
Experiment parameterized by: β1 = 0, β2 = β3 = β4 = 1, ωx = ωy =

ωu = ωv = 1.1 and wx = wy = 2.9, wu = wv = 0.
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(a) Original. (b) Added Gaussian noise, σ = 50
255

. Overall
PSNR 14.15 dB.

(c) Overall PSNR 30.28 dB, 30 iterations.

Fig. 18: Denoising results with the Fountain Pool light field [33], containing non-Lambertian surfaces. The denoising model is parameterized by ρ4 = 0.4,
ρ3 = 1

2
ρ4, ρ2 = 1

4
ρ3, and ρ1 = 1

8
ρ2. Epipolar plane images are stretched in the angular direction by a factor 4 for sake of clarity. Best viewed zoomed.

(a) Initial (b) 15 iterations (c) 200 iterations, PSNR 33.57 dB

(d) Initial (e) 15 iterations (f) 150 iterations, PSNR 41.82 dB

Fig. 19: Angular interpolation for Desktop and Papillon light fields. The PSNR values are computed over all the synthesized views.

Fig. 20: Subsampling method for spatial interpolation. Only integer mag-
nification factors are allowed. For performance evaluation, if image size does
not match the partitionning, a cropping based on the corresponding modulo
is applied.
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(a) Original (b) Nearest neighbor interpolation.
PSNR 29.71 dB

(c) Bicubic interpolation. PSNR 32.22
dB

(d) Anisotropic tensor diffusion, 25
iterations. PSNR 34.92 dB

(e) Close-up of (a) (f) Close-up of (b) (g) Close-up of (c) (h) Close-up of (d)

Fig. 21: Spatial interpolation example. Original light field (a,e) is spatially down sampled by a factor 3 and reconstructed to original dimensions (b-d and
f-h). For this experiment, we set : ωx = ωy = 2.3 and ωu = ωv = 1.1, and wx = wy = wu = wv = 0.

(a) Original (center view) and epipolar spatio-angular confidence. (b) Regularized (center view) and epipolar spatio-angular confidence.

(c) Epipolar plane image of (a), left. (d) Epipolar plane image of (b), left.

(e) Disparity estimate, opacity indexed to confidence. (f) Disparity estimate, opacity indexed to confidence.

Fig. 22: Light field regularization for disparity estimation enhancement. Diffusion is performed only in the fourth eigenvector ν4 direction, and yields a
more robust epipolar disparity estimate. Left: using original light field. Right: using regularized light field. Epipolar spatio-angular confidence φ in (a) and (b)
is thresholded identically to filter out low confidence value, and used as alpha channel for disparity display in (e) and (f). The light field is BouquetFlower2

from the INRIA dataset.


