Extremes of branching Ornstein-Uhlenbeck processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Extremes of branching Ornstein-Uhlenbeck processes

Résumé

In this article, we focus on the asymptotic behaviour of extremal particles in a branching Ornstein-Uhlenbeck process: particles move according to an Ornstein-Uhlenbeck process, solution of dXs = −µXsds + dBs, and branch at rate 1. We make µ = µt depend on the time-horizon t at which we observe the particles positions and we suppose that µtt → γ ∈ (0, ∞]. We show that, properly centred and normalised, the extremal point process continuously interpolates between the extremal point process of the branching Brownian motion (case γ = 0) and the extremal point process of independent Gaussian random variables (case γ = ∞). Along the way, we obtain several results on standard branching Brownian motion of intrinsic interest. In particular, we give a probabilistic representation of the main object of study in [DMS16] which is the probability that the maximal position has an abnormally high velocity.
Fichier principal
Vignette du fichier
branchingou.pdf (593.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02133497 , version 1 (18-05-2019)
hal-02133497 , version 2 (17-11-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Julien Berestycki, Eric Brunet, Aser Cortines, Bastien Mallein. Extremes of branching Ornstein-Uhlenbeck processes. 2018. ⟨hal-02133497v1⟩

Collections

UNIV-PARIS7 USPC
164 Consultations
282 Téléchargements

Altmetric

Partager

More