Penalization versus Goldenshluger − Lepski strategies in warped bases regression - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2013

Penalization versus Goldenshluger − Lepski strategies in warped bases regression

Gaëlle Chagny

Résumé

This paper deals with the problem of estimating a regression function f , in a random design framework. We build and study two adaptive estimators based on model selection , applied with warped bases. We start with a collection of nite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function f on these bases, we rather consider the expansion of an intermediate function, the convolution product of f with the inverse of the cumulative distribution function of the design, following Kerkyacharian and Picard (2004). The data-driven selection of the (best) space is done with two strategies: we use both a penalization version of a "warped contrast", and a model selection device in the spirit of Goldenshluger and Lepski (2011). We propose by these methods two functions, easier to compute than least-squares estimators. We establish nonasymptotic mean-squared integrated risk bounds for the resulting estimators. We study also adaptive properties, in case the regression function belongs to a Besov or Sobolev space, and compare the theoretical and practical performances of the two selection rules.
Fichier principal
Vignette du fichier
ArticlRegRevision.pdf (510.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02132877 , version 1 (17-05-2019)

Identifiants

Citer

Gaëlle Chagny. Penalization versus Goldenshluger − Lepski strategies in warped bases regression. ESAIM: Probability and Statistics, 2013, 17, pp.328-358. ⟨10.1051/ps/2011165⟩. ⟨hal-02132877⟩
24 Consultations
69 Téléchargements

Altmetric

Partager

More