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PENALIZATION VERSUS GOLDENSHLUGER-LEPSKI STRATEGIES IN

WARPED BASES REGRESSION

GAËLLE CHAGNY(∗)

Abstract. This paper deals with the problem of estimating a regression function f , in a
random design framework. We build and study two adaptive estimators based on model selec-
tion, applied with warped bases. We start with a collection of �nite dimensional linear spaces,
spanned by orthonormal bases. Instead of expanding directly the target function f on these
bases, we rather consider the expansion of h = f ◦G−1, where G is the cumulative distribution
function of the design, following Kerkyacharian and Picard [24]. The data-driven selection of
the (best) space is done with two strategies: we use both a penalization version of a "warped
contrast", and a model selection device in the spirit of Goldenshluger and Lepski [21]. We
propose by these methods two functions, ĥl (l = 1, 2), easier to compute than least-squares
estimators. We establish nonasymptotic mean-squared integrated risk bounds for the resulting
estimators, f̂l = ĥl ◦G if G is known, or f̂l = ĥl ◦Ĝ (l = 1, 2) otherwise, where Ĝ is the empirical
distribution function. We study also adaptive properties, in case the regression function belongs
to a Besov or Sobolev space, and compare the theoretical and practical performances of the two
selection rules.

Keywords: Adaptive estimator. Model selection. Nonparametric regression estimation. Warped
bases.
AMS Subject Classi�cation 2010: 62G05-62G08.

October 2011

1. Introduction

1.1. Statistical framework. Consider the observation sample (Xi, Yi)i∈{1,...,n} (n ∈ N\{0}) of
couples of real random variables following the regression setting,

(1) Yi = f(Xi) + εi, 1 ≤ i ≤ n,

where f : (a; b) ⊂ R → R is the unknown function that we aim at recovering. The random
variables (εi)i∈{1,...,n} are unobserved, centered, admitting a �nite variance σ2, and independent
of the design (Xi)i∈{1,...,n}. We assume that the latter are distributed with a density g > 0 with
respect to the Lebesgue measure, supported on an interval (a; b), −∞ ≤ a < b ≤ +∞. We
denote by G the associated cumulative distribution function (c.d.f. in the sequel), and G−1 its
inverse, which exists thanks to the assumption g > 0.
The aim of this paper is twofold: �rst, taking advantage of warped bases, we want to provide an
adaptive non parametric strategy to recover the regression function f . Secondly, considering a
new development of model selection theory, we are interested in the comparison of two selection
strategies, from both theoretical and practical points of view: a classical penalization method
and a recent selection device in the spirit of Goldenshluger and Lepski (2011) [21] (shortened by
"GL method" in the sequel), applied in an original way to a projection estimator.

(∗): MAP5 UMR CNRS 8145, University Paris Descartes, France
email: gaelle.chagny@parisdescartes.fr.
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2 GAËLLE CHAGNY

1.2. Motivation. Adaptive estimation of the regression function is a well-developed problem,
and several procedures have been set. Historical methods are kernel strategies, initiated by
Nadaraya (1964) [28] and Watson (1964) [31] who proposed kernel-type estimators, built as the
ratio of an estimator of the product fg divided by an estimator of the density g. The data-driven
choice of the bandwidth, leading to adaptive estimators, is studied more accurately for example
by Fan and Gijbels (1992) [19] and Hardle and Tsybakov (1997) [23], who provide asymptotic
results (for methods also involving local polynomials). Nevertheless, estimators resulting of this
strategy have the drawback of involving a ratio, with a denominator that can be small: this
implies di�culties to study the risk and to implement the method.
In a di�erent direction, estimators based on the expansion of the target function into bases,
especially orthogonal-bases, have been proposed: spline bases (Golubev and Nussbaum (1992)
[22]), wavelet bases (Donoho et al. (1995) [15], Cai and Brown (1998) [13] in the �xed design
case, Antoniadis et al. (1997) [1] in the random-design case), and also trigonometric bases (Efro-
movich [18] (1999)). Wavelet thresholding strategies o�er a degree of localization leading to
almost minimax but asymptotic rate of convergence. To obtain non-asymptotic risk bounds, all
these estimators can be studied from the model selection point of view, initiated among others
by Barron et al. (1999) [5]. The problem is to select a "best" estimator among a collection
of projection estimators, for example least-squares estimators, to prove oracle inequalities for
the risk. The selection is standardly done by the minimization of a penalized criterion (see for
example Kohler and Krzyzack (2001) [26], Wegkamp (2003) [32], Birgé (2004) [7], and Baraud
(2002) [4]). But procedures based on the minimization of a least-squares contrast do not provide
explicit estimators without matrix invertibility requirements (most of the time implicitly).

1.3. Estimation strategy. Adopting this model selection point of view, and using warped bases
developed for building wavelet thresholding estimators by Kerkyacharian and Picard (2004) [24],
we provide in this paper adaptive estimators. These estimates still satisfy non asymptotic oracle-
bounds and reach the exact optimal rate under mild assumptions while being easier to compute
and more stable, even in case the amount of data can vary in the estimation domain. More
precisely, denoting by u ◦ v the composition of functions u and v, we de�ne

(2) h = f ◦G−1 = f
(
G−1

)
.

We assume that h is squared integrable, we provide estimators for h of the form

ĥD =

D∑
j=1

âjϕj ,

for a collection of possible D, with (ϕj)j a classical orthonormal family, and âj estimator of
scalar product 〈h, ϕj〉. Then we de�ne

f̂D = ĥD ◦G or f̂D = ĥD ◦ Ĝ,

as estimators of f , depending on whether we assume that G is known or not (in this last case,

Ĝ is the empirical distribution function). We get thus a development of the estimator in warped
bases, that is,

f̂D =
D∑
j=1

âj (ϕj ◦G) , or f̂D =
D∑
j=1

âj

(
ϕj ◦ Ĝ

)
.

The warping strategy brings a procedure computationally simple, without any matrix inversion
(which are costly from practical point of view). The selection of "best" index D̂ among all
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possible D is done in a second time with two strategies. First, we use a penalized version of
a "warped contrast". Next, recent works of Goldenshluger and Lepski (2011) [21], in case of
density estimation can be explored to propose a new selection strategy. Thus we have at hand
two data-driven estimators of the unknown function.
We prove that they both automatically realize the usual squared-bias/variance compromise,
provide non asymptotic oracle-inequalities for each estimator. We give also asymptotic rate of
convergence on functional spaces, of Besov or Sobolev type. We �nd the classical non-parametric
estimation rate, that is n−2α/(2α+1) where α is the regularity index. Thus, the equivalence
between the two adaptive estimators - one based on penalization, the other on GL method -
is obtained from theoretical point of view. However, on our practical examples, the new GL
strategy outperforms the penalization device.

1.4. Organization of the paper. We begin with the case of known design c.d.f in Section 2.
In this simpler framework, we can easily explain how the estimators are built and state their
adaptivity, while the general case of unknown design distribution is the subject of Section 3: it
requires further technicalities, but similar results are proved. They are illustrated via simulations
in Section 4. The proofs are gathered in Section 5.

2. Case of known design c.d.f.

To have a better understanding of the de�nition and properties of the estimators in the general
case, we �rst focus on the simpler situation of known design distribution. This "toy-case", used
also by other authors (see for example Pham Ngoc [29]) allows us to derive very simple results,
with few assumptions and short proofs.
We deal �rst with the estimation of the function h de�ned by (2). We consider a family of
approximation spaces. In a �rst step, we estimate h or more precisely its projection on these
spaces. The second step is to ensure an automatic selection of the space, without any knowledge
on f . Finally, we warp the function to estimate f (and not h).

2.1. Assumptions on the models. The models are linear spaces of functions included in
L2([0; 1]), the set of square-integrable real-valued functions on the interval [0; 1]. We denote the
collection {Sm, m ∈ Mn}, where Mn is a �nite set of indexes, with cardinality depending on
the number of observations n. The assumptions and notations are the following:

[M1 ] All the linear spaces Sm are �nite-dimensional. For all m ∈Mn, we denote by Dm the
dimension of the space Sm and assume 1 ≤ Dm ≤ n.

[M2 ] The models are nested, that is, for all (m1,m2) ∈ M2
n, such that Dm1 ≤ Dm2 , Sm1 ⊂

Sm2 .We denote by (ϕj)j∈{1,...,Dm} an orthonormal basis which spans Sm (m ∈Mn), and
by mmax the index of the largest model in the collection.

[M3 ] There exists a positive constant φ0 such that for all indexes m ∈ Mn and all function
t ∈ Sm, ‖t‖∞ ≤ φ0

√
Dm‖t‖. This useful link between the L2 norm and the in�nite norm

is equivalent to a property of the basis (ϕj)j∈{1,...,Dm}: ‖
∑Dm

j=1 ϕ
2
j‖∞ ≤ φ20Dm. See Birgé

and Massart [8] for the proof of the equivalence.

The above assumptions are not too restrictive. Indeed, they are veri�ed by the spaces spanned
by usual bases: trigonometric basis, regular compactly supported wavelet basis, regular histogram
basis and regular polynomial basis (with dyadic subdivisions in the last two examples). We refer
to section 3.2.1 for a description of trigonometric models, and to Barron et al. [5], and Brunel
and Comte [10] for the other examples.

2.2. Estimation on a �xed model.
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2.2.1. Contrast and estimator on one model. We de�ne the contrast function:

(3) ∀t ∈ L2([0; 1]) 7→ γn(t, G) := ‖t‖2 − 2

n

n∑
i=1

Yi (t ◦G(Xi)) ,

where ‖.‖ is the usual Hilbert norm on the space L2([0; 1]), associated to the scalar-product
denoted by 〈., .〉. Notice that γn(., G) represents an empirical counterpart for the quadratic risk:
for all t ∈ L2([0; 1]),

E [γn(t, G)]− E [γn(h,G)] = ‖t‖2 − ‖h‖2 − 2E [f(X1) {(t− h) ◦G} (X1)] ,

= ‖t‖2 − ‖h‖2 − 2

∫
[a;b]

f(x) {(t− h) ◦G} (x)g(x)dx,

= ‖t‖2 − ‖h‖2 − 2

∫
[0;1]

h(u)(t− h)(u)du,

= ‖t‖2 − ‖h‖2 − 2〈h, t− h〉,
= ‖t− h‖2,

so that h minimizes t 7→ E[γn(t, G)] over L2([0; 1]). This explains why a relevant strategy to
estimate h consists in minimizing γn(., G) over each set Sm:

(4) ĥGm = arg min
t∈Sm

γn(t, G).

The unique resulting estimator (for each index m) has a particularly simple expression,

(5) ĥGm =

Dm∑
j=1

âGj ϕj , with ∀j ∈ {1, . . . , Dm}, âGj =
1

n

n∑
i=1

Yiϕj(G(Xi)).

Finally, we set

f̂G,Gm = ĥGm ◦G
as an estimator of f . The explicit formula (5) is an unbiased estimator of the orthogonal projec-
tion of h onto Sm. Compare for example to the classical least-squares estimator, which involves
a matrix inversion (see Baraud [4] and Section 4 for details). Notice also that our notation for
the estimator involves two super-indexes G to underline the dependence on the c.d.f. G through
both the coe�cient âGj and the composition by G.

2.2.2. Risk on one model. In this section, we �x a model Sm and brie�y study the quadratic

risk of the estimator f̂G,Gm . As for all the results stated in the sequel, we evaluate the risk with
respect to the norm ‖.‖g naturally associated to our estimation procedure:

‖v‖2g =

∫
(a;b)

v2(x)g(x)dx, 〈v, w〉g =

∫
(a;b)

v(x)w(x)g(x)dx,

for any functions v, w ∈ L2((a; b), g), the space of squared-integrable functions on (a; b) with
respect to the Lebesgue measure weighted by the density g. However, it is also possible to
control the classical L2 norm on (a; b), under the assumption that g is bounded from below by
a strictly positive constant: if, for any x ∈ (a; b), g(x) > g0 > 0, then

‖v‖2g ≥ g0
∫
(a;b)

v2(x)dx.
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Notice besides that the following links hold between this weighted norm and the classical norm
on L2([0; 1]) previously de�ned: for t, s ∈ L2([0; 1]), we compute, using G′ = g,

‖t ◦G‖g = ‖t‖, 〈t ◦G, s ◦G〉g = 〈t, s〉.

Thus, the quadratic risk of f̂G,Gm is given by

E
[∥∥∥f̂G,Gm − f

∥∥∥2
g

]
=

∥∥f − fGm∥∥2g + E
[∥∥∥fGm − f̂G,Gm

∥∥∥2
g

]
,

= ‖h− hm‖2 + E
[∥∥∥hm − ĥGm∥∥∥2] ,(6)

where

(7) fGm = hm ◦G and hm is the orthogonal projection of h onto Sm, with respect to 〈., .〉.
Hence, we recover the usual decomposition into two terms: a squared bias term, which decreases
when the dimension of the model Sm grows (roughly, it is at most of order D−2αm , where α is the
index of smoothness of h), and a variance term, proportional to the dimension of the model Sm:

(8) E
[∥∥∥fGm − f̂G,Gm

∥∥∥2
g

]
=

Dm∑
j=1

Var
(
âGj
)

=

Dm∑
j=1

1

n
Var (Y1 (ϕj ◦G) (X1)) ≤ E

[
Y 2
1

]
φ20
Dm

n
,

where φ20 is de�ned in Assumption [M3] (see section 2.1).

Consequently, the best estimator among the family (f̂G,Gm )m∈Mn (in the sense that it achieves
the smallest risk among the collection) is the one which realizes the trade-o� between the two
terms, without any knowledge of the index of smoothness α.

2.3. Selection rules and main results.

2.3.1. Selection rules. The aim is to realize a data-driven selection of the space Sm. For that

purpose, we give a strategy to choose an estimator among the collection (f̂G,Gm )m∈Mn . We
propose two di�erent strategies and build consequently two estimators.
First, the selection can be standardly done by

m̂(1),G = arg min
m∈Mn

[
γn(ĥGm, G) + penG(m)

]
,

with penG(.) a function to be properly chosen. As, γn(ĥGm, G) = −‖ĥGm‖2 = −‖f̂G,Gm ‖2g, and
‖h−hm‖2 = ‖h‖2−‖hm‖2, we can say that γn(ĥGm, G) estimates the bias term, up to an additive
constant. This explains why the order of the penalty can be the upper bound on the variance
term, that is

(9) penG : m 7→ c1φ
2
0E[Y 2

1 ]
Dm

n
,

with c1 a purely numerical constant. In practice, we use a method inspired by the slope heuristic
to �nd the value of this constant (see Section 4).
The second method follows the scheme developed by Goldenshluger and Lepski [21] for density
estimation. The adaptive index is also chosen as the value which minimizes a sum of two terms:

m̂(2),G = arg min
m∈Mn

[
AG(m) + V G(m)

]
,

where V G is also the order of the variance term:

(10) V G : m 7→ c2φ
2
0E[Y 2

1 ]
Dm

n
,
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where c2 is a purely numerical constant (adjusted in practice by simulations). Here the function
AG does not depend on the contrast: it is rather based on the comparison of the estimators built
in the �rst stage:

AG(m) = max
m′∈Mn

(∥∥∥ĥGm′ − ĥGm∧m′∥∥∥2 − V G(m′)

)
+

,

where x+ = max(x, 0), x ∈ R. We will prove besides that AG(m) has the order of the bias term
(see Lemma 6). Thus we get two estimators, explicitly expressed in a warped basis:

f̃G1 = ĥG
m̂(1),G ◦G, f̃G2 = ĥG

m̂(2),G ◦G.

We stress out the fact that these estimators are simple to compute: their coe�cients âGj are

empirical means, and even if the "penalties" (penG and V G) contain the unknown expectation
E[Y 2

1 ], this term can be easily replaced in practice or theory by the empirical mean (1/n)
∑n

i=1 Y
2
i

(see Brunel and Comte [10], proof of Theorem 3.4 p.465).
In addition to the advantage of the warped basis, the comparison of these two estimators, from
both theoretical and practical point of view is new, and is of interest also for other statistical
estimation problems.

2.3.2. Oracle-inequality. The �rst theorem provides non-asymptotic bounds for the risk of each
estimator.

Theorem 1. We assume that the regression function f is bounded on the interval [a; b]. We
consider models satisfying properties [M1], [M2] and [M3], and �nally suppose that there exists
a real-number p > 4 such that E

[
|ε1|2+p

]
<∞.

Then, the following inequality holds:

E
[∥∥∥f̃Gi − f∥∥∥2

g

]
≤ min

m∈Mn

{
ki
∥∥f − fGm∥∥2g + k′iφ

2
0E
[
Y 2
1

] Dm

n

}
+
Ci
n
, i = 1, 2,(11)

where fGm is de�ned by (7), ki and k
′
i, (i = 1, 2) are numerical constants, and Ci i = 1, 2 are

constants independent of n and m, but depending on E[Y 2
1 ], φ20, σ

2, E[|ε1|2+p] and ‖f‖∞, where
‖f‖∞ = sup(a;b) |f(x)|.

Let us comment this result.

• These non-asymptotic risk bounds, also called oracle-inequalities prove that both es-
timators automatically realize the squared bias/variance trade-o� under few weak as-
sumptions, up to some multiplicative constants (which are precised in the proof). This
enhances the interest of warped bases: the risk of the estimators is smaller (up to the

constant) than the risk of the best estimator in the family (f̂G,Gm )m. Moreover, the two
estimators (the one selected by the GL method and the one selected by penalization) are
theoretically equivalent in this context.
• Note that the assumptions for this result are particularly weak, compared to usual hy-
potheses in other statistical framework (Dm in only supposed bounded by n). Moreover
the proof is short, following the general setting of model selection methods (see for exam-
ple [8]): it is mainly based on a concentration inequality due to Talagrand. The details
can be found in Section 5. Remark also that the choice of p = 4 for the integrability of
ε1 (instead of p > 4) leads to the same inequality with a remainder of order ln4(n)/n
(instead of 1/n). We can still relax this assumption: a moment of order 2+p, p > 2 for ε1
is enough, if we suppose in compensation Dm = O(

√
n). These moment conditions may

probably be improved, but we do not go further in this direction, to avoid additional
technicalities. We also point out the fact that other results in regression model hold
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under weak conditions on the noise term (in the sense that no exponential moment for
the εi are required, contrary to the conditions in [5]): see for example recent works of
Audibert and Catoni [2] and [3], in a prediction framework, and works of Wegkamp [32]
or Baraud [4] for model selection point of view.

2.3.3. Rate of convergence for the risk. Even if the novelty of our results is their non-asymptotic
characters (compared to other warped-bases estimators in this framework, see for example Kerky-
acharian and Picard [24] and Pham Ngoc [29]), we can also deduce from Theorem 1 the rate of
convergence of the risk. For that purpose, assume that h = f ◦G−1 belongs to the Besov space
Bα2,∞, for α a positive number.
Let us recall the de�nition of this space. First, for r a positive integer and v a positive number,
the r−th order di�erence of a real-valued function t on the interval [0; 1] is de�ned by

∆r
vt(x) =

r∑
k=0

(
r

k

)
(−1)r−kt(x+ kv),

where x is such that the x + kv belongs to [0; 1], k ∈ {0, . . . r}. Next, for u > 0, the modulus
of smoothness is given by ωr(t, u)2 = sup0<v≤u ‖∆r

vt‖. We say that the function t belongs to the

Besov space Bα2,∞ if t belongs to the space L2([0; 1]) and if, for r = [α] + 1 ([.] is the integer part

function), |t|Bα2,∞ = supu>0 u
−αωr(t, u)2 < ∞. We refer to DeVore and Lorentz [16] for general

de�nitions and properties of this space. Finally, for all L > 0, we denote by Bα2,∞(L) the space

of functions t which satis�es: |t|Bα2,∞ ≤ L.
It is well known that for all collections of models described in section 2.1 (trigonometric models,
regular polynomial bases, regular and compactly supported wavelet bases), the projection hm of
h on the subspace Sm achieves the rate of approximation for the Besov class of functions Bα2,∞(L)

(see Lemma 12 from Barron et al. [5]):

(12) ‖h− hm‖2 ≤ C(α)L2D−2αm ,

where C(α) is a constant depending on α and also on the basis. Therefore, the minimization of
the left side of inequality (11) leads to the following corollary:

Corollary 1. We suppose that the function h = f ◦ G−1 belongs to the Besov space Bα2,∞(L),

for some �xed α > 0 and L > 0. We assume also that h is bounded over the interval [0; 1].
We consider one of the models de�ned in Section 2.1: trigonometric model, dyadic piecewise
polynomials (with a regularity r such that r ≥ α − 1) or compactly supported regular wavelets.
Then, under the assumptions of Theorem 1,

E
[∥∥∥f̃Gi − f∥∥∥2

g

]
≤ C(L,α)n

−2α
2α+1 , i = 1, 2,

with C(L,α) a numerical constant which depends only on L and α.

Thus, the model selection procedure leads not only to a non-asymptotic squared bias/variance
trade-o� but also to an adaptive estimator: indeed, it automatically reaches the asymptotic rate
of order n−2α/(2α+1), the minimax rate, in regression setting.
Theorem 2 in Kerkyacharian and Picard [24] states a rate (n/ ln(n))−2α/(2α+1) for an estimator
obtained in the same framework (G known, warped basis) by a thresholding algorithm on wavelet
coe�cients: thus, the rate we get does not su�er from a loss of a ln(n) factor. Therefore, our
method provides an improvement. Moreover, Theorem 1 and Corollary 1 are valid for several
models (wavelets models, but also trigonometric models...) and, contrary to [24], for a noise ε1
not necessarily gaussian (only weak integrability assumptions are required).
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Notice also that the assumptions in Corollary 1 are set on function h = f ◦G−1, like Proposition
2 of [24]. Proper regularity conditions on function f can also be used to get the same asymptotic
result, by de�ning "weighted" Besov spaces. We refer to Section 4.3 in [24] in which such spaces
are precisely described and their properties stated.

3. Case of unknown design c.d.f.

3.1. The estimators. The obvious question resulting of Section 2 is: what is to be done if the
c.d.f. is not known? To adapt the previous estimation procedure, we replace G by its empirical
counterpart. But instead of estimating G over the whole sample, we assume that we observe
(X−i)i∈{1,...,n}, a sample of random variables distributed as the (Xi)i, and independent of them,
and we de�ne,

Ĝn : x 7→ 1

n

n∑
i=1

1X−i≤x.

The aim is to simplify the proofs. We just set a simple "plug-in" strategy to de�ne the estimators.
First, for each index m ∈Mn, we set

(13) ĥĜm =

Dm∑
j=1

âĜj ϕj , with ∀j ∈ {1, . . . , Dm}, âĜj =
1

n

n∑
i=1

Yiϕj

(
Ĝn(Xi)

)
,

which is the minimizer of the contrast function t 7→ γn(t, Ĝn) on Sm (see (3)). Note that the ĥĜm,

m ∈ Mn, are still easily available for the statistician, like the estimators of f : f̂ Ĝ,Ĝm = ĥĜm ◦ Ĝn.
Then, the selection rules follow exactly the same scheme as previously, and allow us to build two
estimators. De�ne, for each m ∈Mn,

(14)

pen : m 7→ c′1φ
2
0E[Y 2

1 ]Dm/n,

V : m 7→ c′2φ
2
0E[Y 2

1 ]Dm/n,A(m) = maxm′∈Mn

(∥∥∥ĥĜm′ − ĥĜm∧m′∥∥∥2 − V (m′)

)
+

,

with c′1 and c
′
2 purely numerical constants (adjusted in practice, see Section 4), and set

(15) m̂(1) = arg min
m∈Mn

[
γn(ĥĜm, Ĝn) + pen(m)

]
, m̂(2) = arg min

m∈Mn

[A(m) + 2V (m)] .

Finally, the selected estimators are

(16) f̃ Ĝ1 = ĥĜ
m̂(1) ◦ Ĝn, f̃ Ĝ2 = ĥĜ

m̂(2) ◦ Ĝn.

3.2. Main results.

3.2.1. Framework. The goal of this section is to establish adaptive properties for both estimators

f̃ Ĝi , i = 1, 2. As already said, they depend on the empirical c.d.f. Ĝn at two stages, which leads

to complexity in the proof. For instance, it requires control of terms of the form ϕj(Ĝn)−ϕj(G).
That is why we select one of the bases only, and not any of the ones used in Section 2. Following
the example of Efromovich [18], we use models based on the trigonometric basis, that is Sm =
Span{ϕ1, . . . , ϕDm}, with Dm = 2m+1, m ∈Mn = {1, . . . , [n/2]−1}, and for all j ∈ {1, . . . ,m}
and all x ∈ [0; 1],

ϕ1(x) = 1, ϕ2j(x) =
√

2 cos(2πjx), ϕ2j+1(x) =
√

2 sin(2πjx).

Notice that the assumption [M3] is satis�ed with φ0 = 1. This choice is guided among other
things by the following property: let h be a function continuously derivable on the interval [0; 1],
such that h(0) = h(1). The orthogonal projection of the derivative h′ of h onto Sm coincides
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with the derivative of the projection of h onto Sm. Formally, if we denote by ΠSm the operator
of orthogonal projection onto Sm, ΠSm(h′) = (ΠSm(h))′ .

In this framework, we get a similar result to the one obtained when G was supposed to be
known.

Theorem 2. We assume that the regression function f and the density g admit both continuous
derivative on [a; b] (respectively [0; 1]). We assume also that ‖f‖g ≤ L (L > 0) and that f(a) =
f(b). We consider the trigonometric models, and suppose that there exists a real-number p > 8/3

such that E
[
|ε1|2+p

]
<∞, and that for any m ∈Mn, Dm = O(n1/3/ ln(n)).

Then, the following inequality holds: for all n ≥ n0 = exp(‖h′‖2),

E
[∥∥∥f̃ Ĝi − f∥∥∥2

g

]
≤ min

m∈Mn

{
ki
∥∥f − fGm∥∥2g + k′iφ

2
0E
[
Y 2
1

] Dm

n

}
+
Ci ln(n)

n
, i = 1, 2,(17)

where fGm is de�ned by (7), ki and k
′
i, (i = 1, 2) are numerical constants, and Ci (i = 1, 2) are

constants independent on n and m, but depending on ‖ϕ(l)
2 ‖ (l = 1, 3), ‖h‖, ‖h′‖, and E[Y 2

1 ].

The theorem proves that warped-bases selected estimators have exactly the same behaviour as
least-squares estimator (see for instance Inequality (15), in Baraud [4]): both estimators realize
the squared bias/variance compromise. Consequently, a model selection strategy with warped-
bases has the advantage of providing estimators easier to compute than least-squares estimators
and with analogous theoretical properties.
Notice that the upper bound we provide for the risk holds for any n ≥ n0 so it can still be
considered as a non-asymptotic result. This is an advantage compared to other procedures based
on the thresholding of the estimated coe�cients in wavelet bases, even if the bases are also
warped (see for example Kerkyacharian and Picard [24]).

3.2.2. Rate of convergence for the risk. As a consequence of the choice of trigonometric models,
it is natural to consider spaces of periodic functions, that is Sobolev spaces. Following Tsybakov
[30], we de�ne �rst, for α a positive integer and L a positive number, the space Wα

2 (L) of

real-valued functions h on the interval [0; 1] such that h(α−1) is absolutely continuous and∥∥∥h(α)∥∥∥2 =

∫ 1

0

(
h(α)(x)

)2
dx ≤ L2.

Then, we say that a function h belongs to the space W 2,α
per (L) if it belongs to Wα

2 (L) and

∀j = 0, 1, . . . , α− 1, h(j)(0) = h(j)(1).

This de�nition can be extended to positive real-number α (see [30] for details).
The standard rate of convergence is then achieved if smoothness properties are supposed for h.
In fact, the approximation error orders can also be bounded in the case of Sobolev spaces. If
h belongs to the space W 2,α

per (L) for α ≥ 1 and L > 0, and if we denote by hm its orthogonal
projection (for the usal sclar product of L2([0; 1])) on the trigonometric model Sm, then Tsybakov
[30] (see Lemma A.3 [30]) proves the following inequality:

‖h− hm‖2 ≤
L2

π2α
D−2αm .

Consequently, we state the following result, which is similar to Corollary 1:
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Corollary 2. We suppose that the function h = f ◦G−1 belongs to the Sobolev space W 2,α
per (L),

for some �xed α ≥ 1 and L > 0. Then, under the assumptions of Theorem 2,

E
[∥∥∥f̃ Ĝi − f∥∥∥2

g

]
≤ C(L,α)n

−2α
2α+1 , i = 1, 2,

where C(L,α) is a constant which depends on L and α.

Most of the comments following Corollary 1 also apply to this result. The order of the rate,
n(−2α)/(2α+1) in place of the rate (n/ ln(n))(−2α)/(2α+1) achieved by the estimator f̂@ in Kerky-
acharian and Picard [24] is a consequence of model selection strategy, by penalization or GL
method. But the assumptions for their result are di�erent of ours. We decide to concentrate on
the trigonometric models (instead of the wavelet setting of [24]). Consequently, the estimators
are adaptive for Sobolev regularities. This, and the fact that the index α of regularity has to be
larger than 1 can seem to be a little more restrictive than the assumptions of Theorem 2 in [24]:
h is there assumed to belong to a Besov space with index α ≥ 1/2, and to a Hölder space (with
regularity 1/2), and these spaces are larger than the one we use. But contrary to them, and in
addition to the convergence rate improvement (no additional ln(n)), our methods allow general
noise and not only Gaussian noise. Moreover, trigonometric basis enables us to consider other
regularities, and to get faster rates. For example, if h belongs to an analytic space, its Fourier's
coe�cients decrease with exponential rate: ‖h − hm‖ ≤ C exp(−εDm), for some ε > 0 and C a
positive constant, leading to the rate ln(n)/n.
Finally, let us notice that assumptions can probably be stated with regularity conditions directly
on f instead of h, by de�ning "weighted" spaces. But, as our main contribution is to provide non
asymptotic results which do not require the control of the bias term (and thus, the regularity
assumption), this construction is be beyond the scope of the paper.

4. Simulations

4.1. Implementation. The simulation study is mainly conducted in order to compare from

practical point of view the penalized estimator f̃ Ĝ1 and the one de�ned with the GL method

f̃ Ĝ2 , when using the trigonometric basis (ϕj)j . This comparison is new and beyond the classical
regression setting: the study would be of interest in many other contexts.
We also compute the adaptive least-squares estimator, denoted by f̃LS , to investigate the di�er-
ence between classical orthonormal bases and warped-bases. Let us recall brie�y its de�nition.
First, we set, for t ∈ L2([0; 1]), and m ∈Mn:

(18) γLSn (t) =
1

n

n∑
i=1

(Yi − t(Xi))
2 and penLS(m) = Cσ2

Dm

n
,

with C a numerical constant. We set for each m, f̂LSm = argmint∈Sm γ
LS
n (t), and select m̂LS =

argmint∈Sm γ
LS
n (t) + penLS(m). Then we have f̂LS

m̂LS
=
∑D

m̂LS

j=1 âLSj ϕj , where â
LS = (âLSj )j is

computed by inverting the matrix Mm̂ = (Mm̂,j,k)j,k∈{1,...,Dm̂}, that is â
LS = M−1m̂ b, with

(19) Mm,j,k =
1

n

n∑
i=1

ϕj(Xi)ϕk(Xi), and b = (bj)j∈{1,...,Dm}, bj =
1

n

n∑
i=1

Yiϕj(Xi).

We refer to Baraud [4] for theory and to Comte and Rozenholc [14] for practical computation.
We have thus three estimators to compute, from data (Xi, Yi)i∈{1,...,n}. We �rst notice that their
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common expression is:

f̂m̂ =

Dm̂∑
j=1

âjψj ,

with, for f̃ Ĝ1 and f̃ Ĝ2 , âj = âĜj de�ned by equation (13) and ψj = ϕj ◦ Ĝn, and for f̃LS , âj = âLSj
and ψj = ϕj . In the �rst case, we generate another sample (X−i)i∈{1,...,n}, to �nd the empirical

c.d.f Ĝn, and to compute the coe�cients âĜj . Concretely, choosingmmax = 8, we use the following
steps:
• For each m ∈ {1, . . . ,mmax}, compute crit(m), for the three following de�nitions:

• crit(m) = γn(ĥĜm, Ĝn) +pen(m) in the warped-bases case, with penalization. Notice that

γn(ĥĜm) = −
∑D̂m

j=1(â
Ĝ
j )2.

• crit(m) = A(m) + 2V (m) in the warped-bases case, with the GL method. Notice that

A(m) = maxm′>m{
∑Dm′

j=Dm+1(a
Ĝ
j )2 − V (m′)}+.

• crit(m) = γLSn (f̂LSm ) + penLS(m) in the least-squares case. The least-squares contrast is
computed like the warped-bases criterion. The penalty de�ned by (18) is implemented,
with σ2 replaced by the unbiased estimator,

σ̂2 =
1

n− (2mm+ 1)

n∑
i=1

(Yi − f̂LSmm(Xi))
2, with mm = [

√
n].

• In the three cases, select m̂ (that is m̂ = m̂(1), m̂(2), m̂LS) such that crit(m) is minimum.

• Compute then the three estimators f̃l =
∑D

m̂(l)

j=1 âĜj (ϕj◦Ĝn), l = 1, 2 and f̃LS =
∑D

m̂LS

j=1 âLSj ϕj ,

at a sequence of equispaced points in [a; b].

Remark: To implement crit(m), the numerical constants c′1 (of pen), C (of penLS), and c′2
(of V ) have to be calibrated. The constant C is chosen equal to 2.5, which is a value often
found in the literature (constants of the Cp criterion of Mallows, for example). We decide to
concentrate on the data-driven calibration of the constants involved in the de�nition of the new
estimators, that is c′1 and c

′
2. The constant c

′
1 is useful for the penalized warped bases estimator

f̃ Ĝ1 : it can thus be carried out for each simulated sample using a method inspired by the slope
heuristic (developed �rst by Birgé and Massart [9]). But this data-driven solution can not be

used for the recent method of GL, leading to the estimator f̃ Ĝ2 . So, to compare in the same
way the two estimators, we choose to experiment it with �xed constants, previously stated. The
constant c′1 is adjusted prior to the comparison, using however the slope heuristic: we use the
graphical interface CAPUSHE developed by Baudry et al. [6], to conduct an experimentation
over 100 samples (see our examples, Section 4.2), with the so-called "dimension-jump" method.
We choose then the largest constant over all attempts proposed by the software, that is c′1 = 4
(recall that in penality calibration, it is more secure to overpenalize). For the constant of the
GL method, we looked at the quadratic risk with respect to its value c′2, and chose one of the
�rst values leading to reasonable risk and complexity of the selected model, c′2 = 0.5 (for the
computation of the risk, see Section 4.2 below). Notice �nally that the speci�c factor 2 involved

in the de�nition of m̂(2) (see de�nition (15)) could be also adjusted: it plays a technical role in
the proof but might have been replaced by any other constant larger than 1.

4.2. Examples. The procedure is applied for di�erent regression functions, design and noise. To
concentrate on the comparison of the three methods, we decide to present the estimation results
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for two very smooth functions, on the interval [0; 1]: a polynomial function, f1 : x 7→ x(x −
1)(x− 0.6), and an exponential function, f2 : x 7→ − exp(−200(x− 0.1)2)− exp(−200(x− 0.9)2).
The sensibility of the method to the underlying design is tested with the following densities, all
supported by [0; 1]. In the de�nitions, c is a constant adjusted to obtain density function in each
case:
− U[0;1], the classical uniform distribution,
− DU [0;1], probability distribution with density x 7→ cx1[0;1],

− Ec(1), a truncated exponential distribution with mean 1 that is with density x 7→ ce−x1[0;1],

−Nc(0.5, 0.01), a truncated Gaussian distribution with density x 7→ c exp(−(x−0.5)2/0.02)1[0;1](x),

−NBMt, a truncated bimodal Gaussian distribution, with density x 7→ c(exp(−200(x−0.05)2)+
exp(−200(x− 0.95)2))1[0;1](x),
− CM, a distribution with piecewise constant density 2.4851[0;0.2] + 0.011]0.1;0.8] + 2.4851]0.8;1],
Finally, the variables εi are generated following either a Gaussian distribution, or a Laplace dis-
tribution, with mean 0. They are denoted respectively by N (0, v) (v the variance) and by L(0, b)
(b a positive real such that the Laplace density is x 7→ 1/(2b) exp(−|x|/b)). The parameters b
and v are adjusted for each of the functions f1 and f2: it is natural to choose cases in which
there is a little more signal than noise. Precisely, the values are chosen such that the ratio of the
variance of the signal (Var(f(X1))) over the variance of the noise (Var(ε1)) belongs to [1.6; 2.4],
whatever the design distribution. This ratio, denoted by "s2n", will be precised in Tables 1 and
2.

We compare �rst the visual quality of the reconstruction, for the three estimators. Figure
1 shows beams of estimated functions versus true functions in four cases. Precisely, for each
�gure, we plot 20 estimators of each kind, built from i.i.d samples of data of size n = 500.
The three �rst plots show that the results are quite good for all the estimators. The noise
distribution does not seem to a�ect signi�cantly the results. Notice that the computation of the
estimators f̃LS requires much more time than the others. It is due to the computation of the
inverse of the matrix Mm̂, while the warped-bases methods are simpler. So one can easily use
warped bases for estimation problems with large data samples sizes (see for example domains as
�uorescence, physics, neuronal models...). The last plot of Figure 1 shows that the warped-bases
estimators behave still correctly if the design density is very inhomogeneous (we obtain the same
type of plots when the Xi is distributed with CM). In fact, if we implement the least-squares
method without taking additionnal precautions and without numerical approximation for the
computation of M−1m̂ , the estimator can not adapt to a design density which nearly vanishes on
a long interval. This highlights the interest for warping the bases: this method seems to be very
stable, whatever the design distribution, and even if it is very inhomogeneous: it tends to detect
better the hole which can occur in the design density. Let us notice that speci�c methods exist,
taking into account the inhomogeneity of the data to obtain upper bounds for the quadratic
pointwise risk, see for example Gaï�as [20].
The beams of estimators seem to enhance the equivalence we found in the theory between the GL
method and the penalization method. For more precise results concerning these selection rules,
we compare L2 risk, in the di�erent models (the two functions estimated, the possible design and

noise). The ISE (Integrated Squared Error) for one estimator f̃ is ISE =
∫ b
a (f(x)− f̃(x))2dx. It
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X ∼ U[0;1], ε ∼ N (0, 0.01) X ∼ U[0;1], ε ∼ L(0,
√

2/20)

X ∼ Et(1), ε ∼ N (0, 0.01) X ∼ NBMt, ε ∼ N (0, 0.01)

Figure 1. Plots of 20 estimators f̃ Ĝ1 (Warped bases 1), f̃ Ĝ2 (Warped bases 2) and

f̃LS (Least-squares) of function f1 or f2, built from i.i.d. sample in trigonometric
bases. Bold line: True function, Thin lines: Estimators.

is computed as follows:

ISE =
b− a
K

K∑
k=0

[
f̃

(
a+ k

b− a
K

)
− f

(
a+ k

b− a
K

)]2
,

where K is an integer (we choose K = 1000). The mean ISE (MISE) is the mean of those values
over N = 100 independent simulated samples.

The risks (multiplied by 1000) displayed in Table 1 (estimation of f1) and 2 (estimation of

f2) for the estimators f̃ Ĝ1 (WB1) and f̃ Ĝ2 (WB2) are computed for di�erent sample sizes going
from n = 100 to 2000. Notice �rst that the di�erence of order of size between the values of
the two tabulars is explained by the di�erence of amplitude between the two functions (f1 takes
its values in the interval [−0.04; 0.07] and f2 in [−1; 0]). As expected, the values of MISE get
smaller when the sample size increases, and they are similar for both estimators, in most cases.
The GL method gives slightly smaller risks in 59% of the cases (in bold-blue in the tables). But
it seems that the values are better than those of the penalized estimator in 76% of the cases for
the large sample sizes (n = 500 to 2000). We have to put this result into perspective: larger
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ε X n=100 200 500 1000 1500 2000 Estimator

N (0, 0.0006) U[0;1] 0.238 0.116 0.058 0.029 0.017 0.017 WB1
s2n=2.07 0.462 0.227 0.087 0.045 0.028 0.024 WB2
DU [0;1] 0.407 0.254 0.144 0.09 0.069 0.058 WB1
s2n=1.74 0.55 0.276 0.141 0.084 0.064 0.054 WB2
Et(1) 0.231 0.152 0.052 0.032 0.021 0.018 WB1
s2n=1.9 0.501 0.248 0.09 0.042 0.027 0.024 WB2

Nt(0.5, 0.1) 0.473 0.181 0.089 0.052 0.036 0.028 WB1
s2n=1.98 0.68 0.243 0.097 0.053 0.036 0.027 WB2
NBMt 0.957 0.788 0.561 0.448 0.436 0.395 WB1
s2n=1.94 1.037 0.785 0.537 0.436 0.433 0.393 WB2
CM 1.012 0.943 0.775 0.718 0.692 0.68 WB1

s2n=2.07 1.267 0.968 0.773 0.711 0.688 0.679 WB2

L(0, 0.0173) U[0;1] 0.235 0.102 0.051 0.026 0.02 0.016 WB1
0.44 0.215 0.085 0.04 0.031 0.023 WB2

DU [0;1] 0.352 0.268 0.13 0.084 0.069 0.059 WB1
0.494 0.28 0.122 0.074 0.062 0.054 WB2

Et(1) 0.278 0.133 0.065 0.031 0.024 0.018 WB1
0.576 0.244 0.099 0.043 0.033 0.023 WB2

Nt(0.5, 0.1) 0.338 0.2 0.092 0.05 0.036 0.03 WB1
0.539 0.254 0.101 0.052 0.036 0.028 WB2

NBMt 1.104 0.699 0.562 0.453 0.425 0.412 WB1
1.221 0.662 0.532 0.442 0.418 0.406 WB2

CM 1.078 0.889 0.801 0.716 0.688 0.683 WB1
1.207 0.919 0.797 0.707 0.686 0.682 WB2

Table 1. Values of MISE ×1000 averaged over 100 samples, for the estimation of f1

classes of functions and models would have to be studied to con�rm this and we keep in mind
that the methods are equivalent from the theoretical point of view.

5. Proofs of the main results

5.1. A key result. One of the main argument of the proof of Theorem 1 and Theorem 2 is the
control of the centered empirical process de�ned by

(20) νn(t) =
1

n

n∑
i=1

Yi (t ◦G) (Xi)− 〈(t ◦G) , f〉g, t ∈ L2([0; 1]),

on the unit sphere

S(m) = {t ∈ Sm, ‖t‖ = 1}
of a �xed model Sm. Let us �rst state the following result, which we use for both theorems.

Proposition 3. Under the assumptions of Theorem 1, with p(m′) = 6(1 + 2δ)φ20E[Y 2
1 ]

Dm′
n ,

(δ > 0) for any m′ ∈ Mn, there exists a constant C depending on φ20, ‖f‖∞, E[f2(X1)], σ
2,



REGRESSION ESTIMATION WITH WARPED BASES 15

ε X n=100 200 500 1000 1500 2000 Estimator

N (0, 0.05) U[0;1] 73.979 37.574 13.557 6.606 4.088 3.126 WB1
s2n=2.33 72.02 34.761 13.32 6.506 3.975 3.109 WB2
DU [0;1] 65.367 54.668 43.972 36.923 32.499 29.707 WB1
s2n=2.33 73.101 53.149 39.232 32.683 29.873 28.252 WB2
Et(1) 74.224 41.907 17.365 9.384 6.925 5.187 WB1

s2n=2.37 76.55 37.431 16.401 9.074 6.842 5.307 WB2
Nt(0.5, 0.1) 75.906 53.158 30.022 16.046 13.3 12.119 WB1
s2n=1.76 88.46 54.046 27.695 15.861 13.21 12.119 WB2
NBMt 86.712 29.374 14.892 6.949 4.368 3.502 WB1
s2n=2.06 73.514 32.237 12.609 6.529 4.054 2.935 WB2
CM 125.098 47.224 29.851 20.533 20.016 17.296 WB1

s2n=1.69 111.872 53.719 31.766 20.593 18.595 16.1 WB2

L(0, 0.1581) U[0;1] 77.489 35.98 13.657 6.47 3.808 3.032 WB1
73.596 32.823 13.667 6.392 3.772 3.026 WB2

DU [0;1] 70.605 55.9 43.65 37.967 33.642 30.021 WB1
80.886 54.544 38.695 32.008 29.473 27.925 WB2

Et(1) 64.881 44.879 17.774 10.31 6.987 5.856 WB1
71.622 38.003 16.928 9.897 6.761 5.689 WB1

Nt(0.5, 0.1) 82.315 50.384 27.537 15.931 13.474 12.523 WB1
90.932 48.743 25.119 16.24 13.403 12.523 WB2

NBMt 98.027 33.034 13.593 7.472 4.697 3.604 WB1
83.533 32.761 12.162 6.437 4.484 3.119 WB2

CM 113.635 48.175 25.483 21.765 18.833 18.229 WB1
95.868 49.138 24.812 18.662 16.717 16.011 WB2

Table 2. Values of MISE ×1000 averaged over 100 samples, for the estimation of f2

E[|ε1|p] and δ such that,

E

 ∑
m′∈Mn

(
sup

t∈S(m′)
(νn(t))2 − p(m′)

)
+

 ≤ C

n
.

Proof of Proposition 3

We split the process νn into three parts, writing νn = ν
(1)
n + ν

(2,1)
n + ν

(2,2)
n , with

ν(1)n (t) =
1

n

n∑
i=1

f(Xi) (t ◦G) (Xi)− 〈(t ◦G) , f〉g,

ν(2,1)n (t) =
1

n

n∑
i=1

εi1|εi|≤κn (t ◦G) (Xi)− E
[
εi1|εi|≤κn (t ◦G) (Xi)

]
,

ν(2,2)n (t) =
1

n

n∑
i=1

εi1|εi|>κn (t ◦G) (Xi)− E
[
εi1|εi|>κn (t ◦G) (Xi)

]
,
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with c a constant depending on the collection of models and where we de�ne

(21) κn = c

√
n

ln(n)
.

We obtain, (
sup

t∈S(m′)
νn(t)2 − p(m′)

)
+

≤ 3

{(
sup

t∈S(m′)

(
ν(1)n (t)

)2
− p1(m

′)

3

)
+

(22)

+

(
sup

t∈S(m′)

(
ν(2,1)n (t)

)2
− p2(m

′)

3

)
+

+ sup
t∈S(m′)

(
ν(2,2)n (t)

)2}
with p1(.) + p2(.) = p(.).
We upper bound the �rst two terms by applying the following concentration inequality:

Lemma 4. Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne νn(r) = 1
n

∑n
i=1 r(ξi)−E[r(ξi)],

for r belonging to a countable class R of real-valued measurable functions. Then, for ε > 0,

E

[(
sup
r∈R

(νn (r))2 − 2(1 + 2ε)H2

)
+

]
≤ 4

K1

{
v

n
exp

(
−K1ε

nH2

v

)
(23)

+
49M2

1

K1C2(ε)n2
exp

(
−
√

2K1C(ε)
√
ε

7

nH

M1

)}
,

with C(ε) = (
√

1 + ε− 1) ∧ 1, K1 = 1/6, and

sup
r∈R
‖r‖∞ ≤M1, E

[
sup
r∈R
|νn(r)|

]
≤ H, and sup

r∈R
Var (r (ξ1)) ≤ v.

Inequality (23) is a classical consequence of Talagrand's inequality given in Klein and Rio [25],
see for example Lemma 5 (page 812) in Lacour [27]. Standard density arguments allow to apply
it to the unit sphere of a �nite dimensional linear space.
We apply Inequality (23) to the �rst term of equation (22), with function r replaced by rt :

x 7→ f(x)(t ◦ G)(x), t ∈ R = Sm′ , and ξi = Xi. Let us �rst compute the constants M
(1)
1 ,

H(1), and v(1). We observe �rst that ‖rt‖∞ ≤ ‖f‖∞‖t‖∞ and we use assumption [M3] to get

‖rt‖∞ ≤ φ0
√
Dm′‖t‖‖f‖∞ = φ0

√
Dm′‖f‖∞ := M

(1)
1 .

Then, noting that t ∈ S(m′) can be written t =
∑Dm′

j=1 bjϕj with
∑

j b
2
j = 1, we apply Cauchy-

Schwarz's inequality to get supt∈S(m′) ν
(1)
n (t)2 ≤

∑Dm′
j=1 ν

(1)
n (ϕj)

2. Since assumptions [M2] and

[M3] hold, we obtain

E

[
sup

t∈S(m′)
ν(1)n (t)2

]
≤

Dm′∑
j=1

1

n
Var(f(X1) (ϕj ◦G) (X1)) ≤ φ20E

[
f2(X1)

] Dm′

n
:=
(
H(1)

)2
.

Finally, Var(rt(X1)) ≤ E[f2t (X1)] ≤ ‖f‖2∞ := v(1). Replacing the quantities M
(1)
1 , H(1) and v(1)

by the values derived above, Inequality (23) becomes
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∑
m′∈Mn

E

[(
sup

t∈S(m′)

(
ν(1)n (t)

)2
− p1(m

′)

3

)
+

]

≤ 4

K1
‖f‖∞

 1

n

∑
m′∈Mn

exp
(
−k̄Dm′

)
+

49φ20‖f‖∞
K1C2(δ)

1

n2

∑
m′∈Mn

Dm′ exp
(
−¯̄k
√
n
) ,

with k̄ and ¯̄k two constants (independent of m′ and n) and p1(m
′) = 3 × 2(1 + 2δ)

(
H(1)

)2
.

Therefore, using that the cardinality of Mn is bounded by n and also that Dm′ ≤ n , the
following upper bound holds, for C1 a constant,

(24)
∑

m′∈Mn

E

[(
sup

t∈S(m′)

(
ν(1)n (t)

)2
− p1(m

′)

3

)
+

]
≤ C1

n
.

Similarly, we apply Inequality (23) to the second process ν
(2,1)
n . We replace r by rt : (ε, x) 7→

ε1ε≤κnt ◦G(x), and ξi = (εi, Xi). Thus we compute

M
(2)
1 = κnφ0

√
Dm′ , H(2) = φ0σ

√
Dm′

n
, v(2) = σ2.

With p2(m
′) = 3× 2(1 + 2δ)

(
H(2)

)2
, we get

(25) E

[(
sup

t∈S(m′)

(
ν(2,1)n (t)

)2
− p2(m

′)

3

)
+

]
≤ C2

n
,

for C2 a constant.

Finally, we look for an upper bound for the process ν
(2,2)
n . We can not apply the concentration

inequality, because it is not bounded. However, following the same line as in computations above,
we write

(26) E

[
sup

t∈S(m′)

(
ν(2,2)n (t)

)2]
≤

Dm′∑
j=1

E
[(
ν(2,2)n (ϕj)

2
)]
≤ 1

n
E
[
|ε1|2+p 1|ε1|>κn

]
φ20
κ−pn Dm′

n
≤ C3

n
,

since κn is de�ned by (21) and p > 4.
We conclude the proof of Proposition 3 by gathering in the equation (22) the three inequalities
(24), (25), and (26).

2

We also set the following technical lemma, which will be useful several times, with ν an
empirical process.

Lemma 5. Let ν : L2([0; 1]) 7→ R be a linear functional. Let also m be an index of the collection
Mn. Then,

sup
t∈S(m)

ν2(t) =

Dm∑
j=1

ν2(ϕj).

Proof of Lemma 5.

If t belongs to S(m), it can be written t =
∑Dm

j=1 bjϕj , with
∑Dm

j=1 b
2
j = 1. Thus, by the linearity

of ν and the Cauchy-Schwarz Inequality,

ν2(t) =

Dm∑
j=1

bjν(ϕj)

2

≤
Dm∑
j=1

ν2(ϕj).
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This leads to supt∈S(m) ν
2(t) ≤

∑Dm
j=1 ν

2(ϕj). The equality is obtained by choosing t =
∑Dm

j=1 bjϕj ∈
L2([0; 1]), with bj = ν(ϕj)/(

∑Dm
k=1 ν

2(ϕk)).

2

5.2. Proof of Theorem 1. We only study the estimator selected with the new GL method, that
is f̃G2 . However, the following proof gives all the ingredients to deal with the other estimator, f̃G1
(see a typical sketch in Brunel et al. [11], proof of Theorem 3.1 page 185). Moreover, one can
refer to [12] to get all the details.

5.2.1. Main part of the proof. In all the proofs, the letter C denotes a nonnegative real that
may change from line to line. For the sake of simplicity, we denote in this section by V = V G,
A = AG, m̂ = m̂(2),G. Let Sm be a �xed model in the collection indexed byMn. We decompose
the loss of the estimator as follows:∥∥∥f̃G2 − f∥∥∥2

g
=

∥∥∥ĥGm̂ − h∥∥∥2 ,
≤ 3

∥∥∥ĥGm̂ − ĥGm∧m̂∥∥∥2 + 3
∥∥∥ĥGm∧m̂ − ĥGm∥∥∥2 + 3

∥∥∥ĥGm − h∥∥∥2 .
By de�nition of A and m̂,∥∥∥f̃G2 − f∥∥∥2

g
≤ 3 (A(m) + V (m̂)) + 3 (A(m̂) + V (m)) + 3

∥∥∥ĥGm − h∥∥∥2 ,
≤ 6 (A(m) + V (m)) + 3

∥∥∥ĥGm − h∥∥∥2 .
We have already bounded the risk of the estimator on a �xed model (see Section 2.2.2, Inequalities

(6) and (8)): E[‖ĥGm − h‖2] ≤ φ20E[Y 2
1 ]Dm/n+ ‖hm − h‖2. Therefore we get

E
[∥∥∥f̃G2 − f∥∥∥2

g

]
≤ 6E [A(m)] + 6V (m) + 3φ20E

[
Y 2
1

] Dm

n
+ 3 ‖hm − h‖2 .

Next, we have to control the term A(m): we use the following lemma, proved just below, to
conclude.

Lemma 6. Under the assumptions of Theorem 1, there exists a constant C > 0 depending on
φ20, ‖f‖∞, E[f2(X1)], σ

2, E[|ε1|p] such that, for each index m ∈Mn,

E [A(m)] ≤ C

n
+ 12 ‖hm − h‖2 .

2

5.2.2. Proof of Lemma 6. For each index m ∈Mn, we decompose,∥∥∥ĥGm′ − ĥGm∧m′∥∥∥2 ≤ 3
∥∥∥ĥGm′ − hm′∥∥∥2 + 3 ‖hm′ − hm∧m′‖2 + 3

∥∥∥hm∧m′ − ĥGm∧m′∥∥∥2 .
Thus we have

A(m) ≤ 3 max
m′∈Mn

[∥∥∥ĥGm′ − hm′∥∥∥2 − V (m′)

6

]
+

+ 3 max
m′∈Mn

[∥∥∥hm∧m′ − ĥGm∧m′∥∥∥2 − V (m′)

6

]
+

+3 max
m′∈Mn

‖hm′ − hm∧m′‖2 ,

:= 3 (Ta + Tmb + Tmc ) ,(27)
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and study the terms of the above decomposition.
Upper-bound for Ta
We simplify roughly the problem by writing �rst

E [Ta] ≤
∑

m′∈Mn

E
[{∥∥∥ĥGm′ − hm′∥∥∥2 − V (m′)

6

}
+

]
.

Let us notice that

(28) ‖ĥGm′ − hm′‖2 =

Dm′∑
j=1

(âGj − aj)2 =

Dm′∑
j=1

ν2n(ϕj),

with νn the empirical process de�ned by (20). By Lemma 5, this last quantity is equal to

supt∈S(m′) ν
2
n(t). Consequently, E[Ta] ≤

∑
m′∈Mn

E[{supt∈S(m′) ν
2
n(t)− V (m′)

6 }+]. We apply then

Proposition 3: the latter is bounded by C/n, for the choice V (m′) = 6× p(m′), which means the
choice of c2 = 36(1 + 2δ) in the de�nition (10).

Upper-bound for Tmb
To study this term, we write, distinguish whether m′ ≤ m or m′ > m,

Tmb = max

 max
m′∈Mn
m′≤m

{∥∥∥hm′ − ĥGm′∥∥∥2 − V (m′)

6

}
+

, max
m′∈Mn
m′>m

{∥∥∥hm − ĥGm∥∥∥2 − V (m′)

6

}
+

 ,

≤ max

(
Ta,

{∥∥∥hm − ĥGm∥∥∥2 − V (m)

6

}
+

)
≤ Ta +

{∥∥∥hm − ĥGm∥∥∥2 − V (m)

6

}
+

,

using −V (m′) ≤ −V (m) for m′ > m. The last computation proves that E[Ta] ≤ C/n and the
same bound holds for the second term, as a consequence of Proposition 3. Finally, E[Tmb ] ≤ C/n.

Upper-bound for Tmc
This term is a bias term. We notice that

Tmc = max
m′∈Mn
m≤m′

‖hm′ − hm‖2 ≤ 2 max
m′∈Mn
m≤m′

‖hm′ − h‖2 + 2 ‖h− hm‖2 .

But assuming m ≤ m′, we have Sm ⊂ Sm′ , thus, the orthogonal projections hm and hm′ of h
onto Sm and Sm′ satisfy ‖hm′ − h‖2 ≤ ‖hm − h‖2 . So we have Tmc ≤ 4‖hm−h‖2, which conclude
the proof.

2

5.3. Proof of Theorem 2.

5.3.1. Notations, and properties of the empirical distribution function. Let us introduce some
useful tools for the sequel. Denoting by U−i = G(X−i) the uniform variable associated to X−i,
for any i ∈ {1, . . . , n}, we de�ne the empirical distribution function

(29) Ûn : u 7→ 1

n

n∑
i=1

1U−i≤u.

The following equality holds for any coe�cient âĜj of our estimator (see equation (5)):

(30) E
[
âĜj |(X−l)l

]
=

∫ 1

0

(
f ◦G−1

)
(u)
(
ϕj ◦ Ûn

)
(u)du.
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Moreover, we will use several inequalities to control the deviations of the empirical c.d.f. Ûn or
Ĝn. Recall that the random variable ‖Ĝn − G‖∞ has the same probability distribution as the

norm ‖Ûn − id‖∞ where we denote by ‖Ûn − id‖∞ = supu∈R |Ûn(u)− u|. The �rst inequality is
the one of Dvoretzky-Kiefer-Wolfowitz (see Dvoretzky et al. [17]):

(31) P
(∥∥∥Ûn − id∥∥∥

∞
≥ λ

)
≤ K exp

(
−2nλ2

)
,

for any λ > 0 and a constant K.
By integration, we deduce the following bounds:

• for any integer p > 0, there exists a constant Cp > 0 such that

(32) E
[∥∥∥Ûn − id∥∥∥p

∞

]
≤ Cp

np/2
,

• for any κ > 0, for any integer p ≥ 2, there exists a constant C such that

(33) E

[(∥∥∥Ûn − id∥∥∥p
∞
− κ lnp/2(n)

np/2

)
+

]
≤ Cn−c(p,κ), with c(p, κ) = 2

2−p
p κ2/p.

Moreover,

(34) E

[(∥∥∥Ûn − id∥∥∥2
∞
− κ ln(n)

n

)2
]
≤ Cn−2−2κ.

5.3.2. Preliminary lemmas. As we have done for Theorem 1, we prove the result for the most
original estimator, that is f̃2 (the proof for the other estimator can be found in [12]). The
proof follows almost the same line as the one of Theorem 1. However, further technicalities are
required, consequence of the replacement of G by Ĝn. Let us introduce some useful notations.
We denote by C a numerical constant, which may vary from line to line. In this section, we

denote also the estimator by f̂ Ĝ,Ĝm̂ = ĥĜm̂ ◦ Ĝn (with shortened m̂(2) in m̂), and coherently:

f̂ Ĝ,Gm̂ = ĥĜm̂ ◦G,

which is an intermediate between the two estimators f̂ Ĝ,Ĝm̂ and f̂G,Gm̂ . We will also use this
notation for �xed index m ∈ Mn. To bound the risk of the target estimator, the following
quantities are useful, for any index m:

(35)

Tm0 = ‖f − fGm‖2g + ‖fGm − f̂G,Gm ‖2g,

Tm1 =
∥∥∥f̂G,Gm − f̂ Ĝ,Gm − E

[
f̂G,Gm − f̂ Ĝ,Gm |(X−l)l

]∥∥∥2
g
,

Tm2 =
∥∥∥f̂ Ĝ,Gm − f̂ Ĝ,Ĝm − E

[
f̂ Ĝ,Gm − f̂ Ĝ,Ĝm |(X−l)l

]∥∥∥2
g
,

Tm3 =
∥∥∥E [f̂G,Gm − f̂ Ĝ,Gm |(X−l)l

]∥∥∥2
g
, Tm4 =

∥∥∥E [f̂ Ĝ,Gm − f̂ Ĝ,Ĝm |(X−l)l
]∥∥∥2

g
.

They are such that E[‖f̂ Ĝ,Ĝm − f‖2g] ≤
∑4

l=0 T
m
l . Let us remark that Tm0 is the bias-variance

decomposition for the risk of an estimator f̂G,Gm (on the �xed model Sm). The bound for its
expectation is given by Inequalities (6) and (8). The lemmas below give bounds for the other
terms.
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Lemma 7. Assuming that the models are trigonometric, there exists a constant C > 0 (depending
on ‖ϕ′2‖∞ and E[Y 2

1 ]) such that

E
[

max
m′∈Mn

Tm
′

1

]
≤ C

D3
mmax

n2

If Dmmax = O(n1/2) in particular,

E
[

max
m′∈Mn

Tm
′

1

]
≤ CDmmax

n
.

Lemma 8. Assuming that the models are trigonometric, that Dmmax = O(n1/3) and that there
exists a real-number p > 8/3 such that E

[
|ε1|2+p

]
<∞, there exists a constant C > 0 (depending

on ‖ϕ′2‖∞ and E[Y 2
1 ]) such that

E
[

max
m′∈Mn

(
Tm

′
2 − V2(m′)

)
+

]
≤ C ln(n)

n
,

with V2(m
′) = κκ′D4

m′ ln
2(n)/n2, and κ′ = 7/3, κ = 96φ20E[Y 2

1 ]‖ϕ′2‖2∞.

Assuming that Dm′ = O((n/ ln(n)2)1/3), we get

V2(m
′) ≤ κκ′Dm′

n
:= V bis

2 (m′).

The result of Lemma 8 holds with V bis
2 in place of V2.

Lemma 9. Assuming that the models are trigonometric, that Dmmax = O(n1/3/ ln(n)), and that

h ∈ C1([0; 1]), there exists a constant C > 0 (depending on ‖ϕ′2‖∞, ‖ϕ
(3)
2 ‖∞, ‖h‖, ‖h′‖, E[Y 2

1 ])
such that, for all m ∈Mn,

E[Tm3 ] ≤ C

(
Dm

n
+
D4
m

n2
+
D7
m

n3

)
.

Moreover, the following inequality holds, for pm′ = m′ or pm′ = m ∧m′:

E
[

max
m′∈Mn

(
T
pm′ ,b
3 − V3(m′)

)
+

]
≤ C

n
.

with V3(m
′) = k3Dm′/n, and k3 a numerical constant depending only (and linearly) on E[Y 2

1 ].

In particular, if Dm = O(n1/3), the �rst inequality leads to E[Tm3 ] ≤ CDm/n.

Lemma 10. Assuming that the models are trigonometric, that Dmmax = O(n1/3/ ln(n)), and

that h ∈ W 2,1
per(L) (L > 0), there exists a constant C > 0 (depending on ‖ϕ′2‖∞, ‖ϕ

(3)
2 ‖∞, ‖h‖,

‖h′‖, E[Y 2
1 ]) such that, for all m ∈Mn, n ≥ n0 = exp

(
‖h′‖2

)
,

E
[

max
m′∈Mn

(
Tm

′
4 − V4(m′)

)
+

]
≤ C ln(n)

n
,

with V4(m
′) = k4Dm′/n, and k4 a numerical constant depending only (and linearly) on E[Y 2

1 ].

Notice that it is also possible to obtain the result for any n ∈ N. But the price to pay is a
penalty V4 depending on ‖h′‖2.



22 GAËLLE CHAGNY

5.3.3. Main part of the proof. Let Sm be a �xed model in the collection indexed by Mn. To
recover the framework of the proof of Theorem 1, we begin with the decomposition∥∥∥f̂ Ĝ,Ĝm̂ − f

∥∥∥2
g
≤ 3

∥∥∥f̂ Ĝ,Ĝm̂ − f̂ Ĝ,Gm̂ − E
[
f̂ Ĝ,Ĝm̂ − f̂ Ĝ,Gm̂ |(X−l)l

]∥∥∥2
g

+3
∥∥∥E [f̂ Ĝ,Ĝm̂ − f̂ Ĝ,Gm̂ |(X−l)l

]∥∥∥2
g

+ 3
∥∥∥f̂ Ĝ,Gm̂ − f

∥∥∥2
g
,

= 3T m̂2 + 3T m̂4 + 3
∥∥∥ĥĜm̂ − h∥∥∥2 .

Thus, we can introduce A and V , in the last term, in a similar way as previously:∥∥∥ĥĜm̂ − h∥∥∥2
≤ 3

∥∥∥ĥĜm̂ − ĥĜm∧m̂∥∥∥2 + 3
∥∥∥ĥĜm∧m̂ − ĥĜm∥∥∥2 + 3

∥∥∥ĥĜm − h∥∥∥2 ,
≤ 3 (A(m) + V (m̂)) + 3 (A (m̂) + V (m̂)) + 3

∥∥∥ĥĜm − h∥∥∥2 ,
= 3 (A(m) + 2V (m)) + 3 (A (m̂) + 2V (m̂)) + 3

∥∥∥ĥĜm − h∥∥∥2 − 3V (m̂)− 3V (m) ,

≤ 6 (A(m) + 2V (m))− 2V (m̂) + 3
∥∥∥ĥĜm − h∥∥∥2 ,

using the de�nition of m̂. The last term of this decomposition is bounded by:∥∥∥ĥĜm − h∥∥∥2 =
∥∥∥f̂ Ĝ,Gm − f

∥∥∥2
g
≤ 3Tm1 + 3Tm3 + 3Tm0 ,

where Tml (l = 0, 1, 3) are de�ned by (35). As a result, we get∥∥∥f̂ Ĝ,Ĝm̂ − f
∥∥∥2
g
≤ 3T m̂2 + 3T m̂4 − 3× 2V (m̂) + 3× 6 (A(m) + V (m))

+3× 3× (3Tm1 + 3Tm3 + 3Tm0 ) .

Therefore, it follows from Inequalities (6) and (8) that

E
[∥∥∥f̂ Ĝ,Ĝm̂ − f

∥∥∥2
g

]
≤ 18 (E [A(m)] + V (m)) + 3E

[(
T m̂2 − V (m̂)

)
+

]
+ 3E

[(
T m̂4 − V (m̂)

)
+

]
+E [Tm1 ] + E [Tm3 ] + 27φ20E

[
Y 2
1

] Dm

n
+ 27

∥∥f − fGm∥∥2g .
A bound for A(m) is given by the following lemma, whose proof is deferred to Section 5.3.4.

Lemma 11. Under the assumptions of Theorem 1, there exists a constant C > 0 depending on

‖ϕ(l)
2 ‖ (l = 1, 3), ‖h‖, ‖h′‖, and E[Y 2

1 ], such that, for each index m ∈Mn,

E [A(m)] ≤ 12E
[

max
m′∈Mn

(
Tm

′
3 −

V (m′)

48

)
+

]
+ 12E

[
max
m′∈Mn

(
Tm∧m

′
3 − V (m′)

48

)
+

]
+12E

[
max
m′∈Mn

Tm
′

1

]
+ 12E

[
max
m′∈Mn

Tm∧m
′

1

]
+ 12

∥∥fGm − f∥∥2g +
C

n
.
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Then we get

E
[∥∥∥f̂ Ĝ,Ĝm̂ − f

∥∥∥2
g

]
≤ C

(
E
[

max
m′∈Mn

Tm
′

1

]
+ E

[
max
m′∈Mn

Tm∧m
′

1

]
+ E [Tm1 ]

+E
[

max
m′∈Mn

(
Tm

′
3 −

V (m′)

48

)
+

]
+ E

[
max
m′∈Mn

(
Tm∧m

′
3 − V (m′)

48

)
+

]
+E [Tm3 ] + E

[(
T m̂2 − V (m̂)

)
+

]
+ E

[(
T m̂4 − V (m̂)

)
+

])
+C

(
φ20E

[
Y 2
1

] Dm

n
+
∥∥f − fGm∥∥2g +

1

n

)
.

It remains to study the terms Tml , l = 1, . . . , 4. Bounding (T m̂l −V (m̂))+ ≤ maxm′(T
m′
l −V (m′))+

(l = 2, 4), it is enough to apply Lemmas 7 to 10 to conclude: we have just to choose the constant
in the de�nition of V larger than the ones of Vl (l = 2, 3, 4).

2

5.3.4. Proof of Lemma 11. The following proof is close to the proof of Lemma 6. Fix an index
m′ ∈Mn. We split∥∥∥ĥĜm′ − ĥĜm∧m′∥∥∥2 ≤ 3

∥∥∥ĥĜm′ − hm′∥∥∥2 + 3 ‖hm′ − hm∧m′‖2 + 3
∥∥∥hm∧m′ − ĥĜm∧m′∥∥∥2 .

Relation (28) still holds for an other empirical process, and by applying Lemma 5, we have, for

p = m′ or p = m ∧m′ ‖hp − ĥĜp ‖2 = supt∈S(p) ν̃n(t)2, with, for t ∈ L2([0; 1]),

ν̃n(t) =
1

n

n∑
i=1

Yi

(
t ◦ Ĝn

)
(Xi)− E [Yi (t ◦G) (Xi)] .

We split ν̃n into ν̃n = νn +Rn, with

Rn(t) =
1

n

n∑
i=1

Yit(Ĝn(Xi)−G(Xi)).

This yields to ν̃2n ≤ 2ν2n + 2R2
n. If t belongs to S(p), t =

∑Dp
j=1 θjϕj with

∑Dp
j=1 θ

2
j = 1, so that

sup
t∈S(p)

R2
n(t) = sup

θ∈Rp∑
j θ

2
j=1

 Dp∑
j=1

θj
1

n

n∑
i=1

Yiϕj(Ĝn(Xi)−G(Xi))

2

,

= sup
θ∈Rp∑
j θ

2
j=1

 Dp∑
j=1

θj

(
âĜj − âGj

)2

=

Dp∑
j=1

(
âĜj − âGj

)2
,

by using the same arguments as in the proof of Lemma 5. Introducing the conditional expectation

of âĜj − âGj , we note that supt∈S(p)R
2
n(t) ≤ 2T p1 + 2T p3 . We obtain,∥∥∥hp − ĥĜp ∥∥∥2 ≤ 2 sup

t∈S(p)
(νn(t))2 + 4T p1 + 4T p3 .
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and thus, substracting V (m′) and taking expectation, this yields
E [A(m)]

≤ 6E

[
max
m′∈Mn

(
sup

t∈S(m′)
(νn(t))2 − V (m′)

24

)
+

]
+ 6E

[
max
m′∈Mn

(
sup

t∈S(m∧m′)
(νn(t))2 − V (m′)

24

)
+

]

+12E
[

max
m′∈Mn

(
Tm

′
3 −

V (m′)

48

)
+

]
+ 12E

[
max
m′∈Mn

(
Tm∧m

′
3 − V (m′)

48

)
+

]
+12E

[
max
m′∈Mn

Tm
′

1

]
+ 12E

[
max
m′∈Mn

Tm∧m
′

1

]
+ 3 max

m′∈Mn

‖hm′ − hm∧m′‖2 .

The last term is denoted by Tmc in (27) and proved to be bounded by 4 ‖hm − h‖2 (see the proof
of Lemma 6). Moreover, applying Proposition 3 yields to

E

[
max
m′∈Mn

(
sup

t∈S(m′)
(νn(t))2 − p(m′)

)
+

]
≤ C

n
,

E

[
max
m′∈Mn

(
sup

t∈S(m∧m′)
(νn(t))2 − p(m′)

)
+

]
≤ C

n
,

using −p(m′) ≤ −p(m∧m′) (remember that p(m′) = Cφ20E
[
Y 2
1

]
Dm′/n). By gathering the last

bounds, and noting that the constant c′v (in the de�nition of V (m′)) can be chosen larger than
the one of p(m′), we obtain the result of Lemma 11.

2

5.3.5. Proof of Lemmas 7 to 10. In this section we state upper bounds for Tml , l = 1, . . . , 4
(see (35)). Recall that mmax is the index of the largest model in the collection. Notice that
Dmmax ≥ mmax, since we work with the trigonometric model. Recall also that we denote by aj
the Fourier coe�cients of the function h, that is, hm =

∑Dm
j=1 ajϕj , where hm is the orthogonal

projection on the space Sm, m ∈Mn.
The sketch of all the proof can be described by the following cases:

(A) Some of the terms are less than CDm/n, under the constraint Dm ≤ Cn1/3/ ln(n),
and so we do not need to center them. For example, they involve expectations of form
E[
∑Dm

j=1(ϕj(G(X1))−ϕj(Ĝn(X1)))
2]. By using a Taylor formula, we come down to terms

of form
∑Dm

j=1(ϕ
(k)
j )2E[‖Ûn− id‖2k∞] (k an integer), and bound them with Inequality (32).

This is the case for Tm1 (Lemma 7), Tm3 , �rst inequality (�rst part of Lemma 9), and for
some terms of the decomposition of Tm4 (see proof of Lemma 10).

(B) The other terms have to be centered to be negligible. There are then two possibilities:
(B1) The �rst one is to make emerge the supremum of an empirical process (with Lemma

5) and the to use the Talagrand Inequality (23). This is the case for a part of Tm2
and Tm3 (Lemmas 8 and 9, second inequality).

(B2) The second is to bound these terms by quantity of form C(Dm)‖Ûn − id‖k∞ (k an
integer, C(Dm) a constant depending onDm), and to use Inequality (33) or (34).This
is the case for the other parts of Tm2 and Tm3 (Lemmas 8 and 9, second inequality).

For sake of conciseness, we do not detail all of the proofs, especially the ones which follow a line
already described. However, the lector can �nd all the details in [12].
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• Proof of Lemma 7. Let us note that we can write

Tm
′

1 =

∥∥∥∥∥∥
Dm′∑
j=1

(
âGj − âĜj − E[âGj − âĜj |(X−l)l]

)
(ϕj ◦G)

∥∥∥∥∥∥
2

g

.

As the functions ϕj are orthonormal, it becomes

Tm
′

1 =

D′m∑
j=1

(
âGj − âĜj − E

[
âGj − âĜj |(X−l)l

])2
.

This shows that Tm
′

1 ≤ Tmmax
1 and E[maxm′ T

m′
1 ] ≤ E[Tmmax

1 ]. Thus it is su�cient to bound

E[Tmmax
1 ]. Now, E[Tmmax

1 |(X−l)l] =
∑Dmmax

j=1 Var(âGj − âĜj |(X−l)l), where Var(.|(X−l)l) is the

conditional variance with respect to the sample (X−l)l∈{1,...,n} (we denote by a similar notation
the conditional expectation in the sequel). We work out it, for any index j ∈ {1, . . . , Dmmax},

Var
(
âGj − âĜj |(X−l)l

)
=

1

n
Var

(
Y1

(
ϕj (G(X1))− ϕj

(
Ĝn(X1)

))
|(X−l)l

)
,

≤ 1

n
E
[
f(X1)

2
(
ϕj (G(X1))− ϕj

(
Ĝn(X1)

))2
|(X−l)l

]
+
σ2

n
E
[(
ϕj (G(X1))− ϕj

(
Ĝn(X1)

))2
|(X−l)l

]
.

We use the mean value theorem: (ϕj(G(X1)) − ϕj(Ĝn(X1)))
2 ≤ ‖ϕ′j‖2∞‖G − Ĝn‖2∞. This leads

to

E [Tmmax
1 |(X−l)l ] ≤

1

n

(
E
[
f2(X1)

]
+ σ2

)Dmmax∑
j=1

∥∥ϕ′j∥∥2∞ ∥∥∥G− Ĝn∥∥∥2∞ ,
=

1

n
E
[
Y 2
1

]Dmmax∑
j=1

∥∥ϕ′j∥∥2∞ ∥∥∥Ûn − id∥∥∥2∞ .
The sum is bounded by Dmmax × (Dmmax‖ϕ′2‖∞)2, and we apply Inequality (32) with p = 2, to
conclude E[Tmmax

1 ] ≤ C2‖ϕ′2‖2∞E[Y 2
1 ]D3

mmax
/n2.

2

• Proof of Lemma 8. Begining with E[maxm′∈Mn(Tm
′

2 − V2(m′))+] ≤
∑

m′∈Mn
E[(Tm

′
2 −

V2(m
′))+], we have just to study this quantity for each index m′. We write

Tm
′

2

=

∫
[a;b]

(
ĥĜm′ (G(x))− ĥĜm′

(
Ĝn(x)

)
− E

[
ĥĜm′ (G(x))− ĥĜm′

(
Ĝn(x)

)
|(X−l)l

])2
g(x)dx,

=

∫
[0;1]


Dm′∑
j=1

(
âĜj − E

[
âĜj |(X−l)l

])(
ϕj(u)− ϕj

(
Ûn(u)

))
2

du,

We use the Cauchy-Schwarz Inequality, and by computations analogous of those of Lemma 7,
we get

Tm
′

2 ≤
∥∥ϕ′2∥∥2∞D3

m′

∥∥∥Ûn − id∥∥∥2
∞

Dm′∑
j=1

(
âĜj − E

[
âĜj |(X−l)l

])2
.
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Thus, we have

E
[(
Tm

′
2 − V2(m′)

)
+

]
≤ D3

m′
∥∥ϕ′2∥∥2∞ E

Dm′∑
j=1

(
âĜj − E

[
âĜj |(X−l)l

])2 ∥∥∥Ûn − id∥∥∥2
∞

− κκ′

‖ϕ′2‖2∞
Dm′

n2
ln2(n)

)
+

]
,

≤ Tm
′

2,a + Tm
′

2,b ,

denoting by

Tm
′

2,a = D3
m′
∥∥ϕ′2∥∥2∞ E

Dm′∑
j=1

(
âĜj − E

[
âĜj |(X−l)l

])2(∥∥∥Ûn − id∥∥∥2
∞
− κ′ ln(n)

n

)
+

 ,
Tm

′
2,b = D3

m′
∥∥ϕ′2∥∥2∞ κ′ ln(n)

n
E

Dm′∑
j=1

(
âĜj − E

[
âĜj |(X−l)l

])2
− κ

‖ϕ′2‖2∞
Dm′

n
ln(n)


+

 .
For the term Tm

′
2,a , we obtain �rst

Tm
′

2,a = D3
m′
∥∥ϕ′2∥∥2∞ Dm′∑

j=1

E
[(
âĜj − E

[
âĜj |(X−l)l

])4]1/2
E

[(∥∥∥Ûn − id∥∥∥2
∞
− κ′ ln(n)

n

)2
]1/2

,

and bound roughly

Dm′∑
j=1

E
[(
âĜj − E

[
âĜj |(X−l)l

])4]
≤ 16φ40E

[
Y 4
1

]
Dm′ .

Gathering this bound with Inequality (33) leads to,∑
m′∈Mn

Tm
′

2,a ≤ C
∑

m′∈Mn

D4
m′n

−1−κ′ ≤ Cn4/3−κ′ ≤ Cn−1

as soon as Dm′ ≤ Cn1/3 and for κ′ = 7/3. For the second term Tm
′

2,b , thanks to Lemma 5, we

notice �rst that
∑Dm′

j=1

(
âĜj − E

[
âĜj |(X−l)l

])2
= supt∈S(m′) ν̄

2
n(t), with, for t ∈ L2([0; 1]),

ν̄n(t) =
1

n

n∑
i=1

Yit
(
Ĝn(Xi)

)
− E

[
Yit
(
Ĝn(Xi)

)
|(X−l)l

]
,

a process which is centered conditionally to the sample (X−l)l. We must now bound its deviations,
exactly as we bound the one of the process νn, in the proof of Proposition 3, but conditionally
to the variables X−l. Let us just recall the sketch of the proof: we split ν̄n in three parts, taking
into account that Yi = f(Xi) + εi(1|ε|≤κn + 1|ε|>κn). We get thus three terms: the two main are
bounded, and are hence controled with the Talagrand Inequality (23). We obtain �nally,∑

m′∈Mn

Tm
′

2,b ≤ C
ln(n)

n
,

which completes the proof.

2
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• Proof of Lemma 9, �rst inequality . The term E[Tm3 ] requires more computations. Let

us �rst notice that Tm3 =
∑Dm

j=1{
∫ 1
0 f(G−1(u))(ϕj(u)−ϕj(Ûn(u)))du}2. We apply Taylor formula

with Lagrange form for the remainder rest: there exists a random number depending on j, α̂j,n,u,
such that the following splitting holds:

Tm3 ≤ 3Tm3,1 + 3Tm3,2 + 3Tm3,3,(36)

with notations

Tm3,1 =

Dm∑
j=1

{∫ 1

0
h(u)

(
Ûn(u)− u

)
ϕ′j(u)du

}2

,

Tm3,2 = (1/4)

Dm∑
j=1

{∫ 1

0
h(u)

(
Ûn(u)− u

)2
ϕ′′j (u)du

}2

,

Tm3,3 = (1/6)

Dm∑
j=1

{∫ 1

0
h(u)

(
Ûn(u)− u

)3
ϕ
(3)
j (α̂j,n,u)du

}2

.

Writing the de�nition of Ûn(u), and noting that u = E[1Ui≤u] (i = 1, . . . , n), we get for the �rst
term

Tm3,1 =

Dm∑
j=1

(
1

n

n∑
i=1

Ai,j − E[Ai,j ]

)2

, with Ai,j =

∫ 1

Ui

h(u)ϕ′j(u)du.

An integration by parts so as to compute Ai,j leads to

Tm3,1 ≤ 2Tm3,1,1 + 2Tm3,1,2,(37)

with notations

(38)

Tm3,1,1 =

Dm∑
j=1

{
1

n

n∑
i=1

h(Ui)ϕj(Ui)− E [h(Ui)ϕj(Ui)]

}2

,

Tm3,1,2 =

Dm∑
j=1

{∫ 1

0
h′(u)

(
Ûn(u)− u

)
ϕj(u)du

}2

.

The same study as the one done for Tm1 gives

E
[
Tm3,1,1

]
≤ 1

n

Dm∑
j=1

E
[
(h(U1)ϕj(U1))

2
]
≤ 1

n

∥∥∥∥∥∥
Dm∑
j=1

ϕ2
j

∥∥∥∥∥∥
∞

∫ 1

0
h(u)2du,

=

∫ 1

0
h(u)2duφ20

Dm

n
= φ20E[f(X1)

2]
Dm

n
≤ φ20E[Y 2

1 ]
Dm

n
.

Besides, using de�nition and properties of the orthogonal projection on Sm,

Tm3,1,2 =

Dm∑
j=1

(
〈h′(Ûn − id), ϕj〉

)2
=
∥∥∥ΠSm(h′(Ûn − id))

∥∥∥2 ≤ ‖h′‖2‖Ûn − id‖2∞.
Concluding with Inequality (32), p = 2, we obtain E[Tm3,1,2] ≤ C2‖h′‖2/n. Hence,

E
[
Tm3,1

]
≤ 2

(
C2‖h′‖2

1

n
+ φ20E[Y 2

1 ]
Dm

n

)
≤ CDm

n
.
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Let us deal with Tm3,2. We notice that for any j ≥ 2, ϕ′′j = −(πµj)
2ϕj , with µj = j for even j,

and µj = j − 1 for odd j. Consequently,

E
[
Tm3,2

]
= (π4/4)E

Dm∑
j=1

{∫ 1

0
h(u)

(
Ûn(u)− u

)2
µ2jϕj(u)du

}2
 ,

≤ (π4/4)D4
mE

Dm∑
j=1

{∫ 1

0
h(u)

(
Ûn(u)− u

)2
ϕj(u)du

}2
 ,

= (π4/4)D4
mE

Dm∑
j=1

{
〈h
(
Ûn − id

)2
, ϕj〉

}2
 .

Proceeding as in the term T3,1,2, we get E[Tm3,2] ≤ C4(π
4/4)‖h‖2D4

m/n
2. Last, we bound roughly

E
[
Tm3,3

]
≤ (1/6)

Dm∑
j=1

∥∥∥ϕ(3)
j

∥∥∥2
∞
‖h‖2E

[∥∥∥Ûn − id∥∥∥6
∞

]
≤ C6

6

∥∥∥ϕ(3)
2

∥∥∥2
∞
‖h‖2D

7
m

n3
.

Finally, we gather the three bounds for E[T3,l], l = 1, 2, 3, to end the proof of the inequality.

2

• Proof of Lemma 9, second inequality . Let us begin with V3(pm′) ≤ V3(m′). Therefore
E[maxm′∈Mn(T

pm′ ,b
3 − V3(m′))+] ≤ E[maxm′∈Mn(T

pm′ ,b
3 − V3(pm′))+]. In the sequel, we simplify

the notations by setting p = pm′ . As previously, we get T
p,b
3 ≤ 6T p3,1,1 + 6T p3,1,2 + 3T p3,2 + 3T p3,3.

Thus

E
[

max
m′∈Mn

(
T p,b3 − V3(p)

)
+

]
≤ E

[
max
m′∈Mn

(
6T p3,1,1 − V3(p)/3

)
+

]
+ E

[
max
m′∈Mn

6T p3,1,2

]
(39)

+E
[

max
m′∈Mn

(
3T p3,2 − V3(p)/3

)
+

]
+E

[
max
m′∈Mn

(
3T p3,3 − V3(p)/3

)
+

]
.

The term that we have not centered is directly negligible: its de�nition (see (38)) proves that
T p3,1,2 ≤ T

mmax
3,1,2 , thus we obtain

(40) E
[

max
m′∈Mn

6T p3,1,2

]
≤ C

n
.

It remains to bound the three other terms. Let us distinguish T p3,1,1 of the two others: Equality

(28) and Lemma 5 lead to T p3,1,1 = supt∈S(p)(ν
(1)
n (t))2, for the process de�ned by

ν(1)n (t) =
1

n

n∑
i=1

f(Xi) (t ◦G) (Xi)− E [f(Xi) (t ◦G) (Xi)] .

Thus we apply Talagrand Inequality (23), as in the proof of Proposition 3. The useful quantities
are the following:

M
(1)
1 = φ0‖f‖∞

√
Dp,

(
H(1)

)2
=
Dp

n
E
[
f2(X1)

]
φ20, v

(1) = ‖f‖2∞.



REGRESSION ESTIMATION WITH WARPED BASES 29

We have again

(41) E
[

max
m′∈Mn

(
6T p3,1,1 − V3,1,1(p)

)
+

]
≤ C

n
,

with V3,1,1(p) = 6× 2(1 + 2δ)E
[
f2(X1)

]
φ20Dp/n. But as

V3,1,1(p) ≤ 12(1 + 2δ)E
[
Y 2
1

]
φ20
Dp

n
:= V bis

3,1,1(p),

the result holds with V bis
3,1,1.

For the two other terms, the strategy is the one described in (B2) (beginning of this section).

For example, using T p3,2 ≤ (π4/4)‖h‖2D4
p

∥∥∥Ûn − id∥∥∥4
∞

implies, for V3,2(p) = κD4
p ln2(n)/n2,

E
[(

3T p3,2 − V3,2(p)
)
+

]
≤ (3π4/4)‖h‖2D4

pE
[(∥∥∥Ûn − id∥∥∥4

∞
− κ

(3π4/4)‖h‖2
ln2(n)

n2

)
+

]
,

≤ CD4
pn
−κ1/2b 2−1/2

,(42)

for κb = κ/(3π4/4)‖h‖2. Thus, if Dp ≤ Cn1/3,

E
[

max
m′∈Mn

(
3T p3,2 − V3,2(p)

)
+

]
≤ Cn× n4/3 × n−κ

1/2
b 2−1/2

.

The choice of κ = 50π4/3‖h‖2 leads successively to κb ≥ 200/9, and to 7/3 −
√
κb/2 ≤ −1, so

that the last upper-bound is O(1/n). If Dp ≤ Cn1/3/ ln(n), we have

V3,2(p) ≤ 50π4/3E
[
Y 2
1

] Dp

n
:= V bis

3,2 (p),

which can also be used. We do not detail the control for the term Tm3,3. Similarly, we get

(43) E
[

max
m′∈Mn

(
3T p3,3 − V

bis
3,3 (p)

)
+

]
≤ C/n,

with V bis
3,3 (p) = (133×2/27)‖ϕ(3)

2 ‖2∞E
[
Y 2
1

]
Dp/n.We conclude the proof of Lemma 9 by gathering

Inequalities (40), (41), (42), and (43), in the bound (39), and choosing the constant k3 such that
V3 ≥ 3V bis

3,1,1, V3 ≥ 3V bis
3,2 , and V3 ≥ 3V bis

3,3 .

2

• Proof of Lemma 10. The sketch of the proof is the same as the proof of the second
inequality of Lemma 9. We split

(44) Tm
′

4 ≤ 4Tm
′

4,1,1 + 4Tm
′

4,1,2 + 2Tm
′

4,2,1 + 2Tm
′

4,2,2 + 2Tm
′

4,2,3,

where the di�erent terms are de�ned below, and thus, E
[
maxm′∈Mn

(
Tm

′
4 − V4(m′)

)
+

]
≤ E

[
max
m′∈Mn

(
4Tm

′
4,1,1 − V4(m′)/3

)
+

]
+ E

[
max
m′∈Mn

(
4Tm

′
4,1,2 − V4(m′)/3

)
+

]
+E

[
max
m′∈Mn

(
2Tm

′
4,2,3 − V4(m′)/3

)
+

]
+ E

[
max
m′∈Mn

2Tm
′

4,2,1

]
+ E

[
max
m′∈Mn

2Tm
′

4,2,2

]
.
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We show that the two terms which we have not centered are negligible (less than C ln(n)/n) if

Dmmax = O(n1/3). For the three others we apply the strategy (B2). Let us only detail how Tm
′

4

is split, and the bounds for each T4,l. First,

Tm
′

4 =

∥∥∥∥∥∥E
Dm′∑
j=1

âĜj

(
(ϕj ◦G)− (ϕj ◦ Ĝn)

)
|(X−l)l

∥∥∥∥∥∥
2

g

,

≤ 2

∥∥∥∥∥∥E
Dm′∑
j=1

(âĜj − aj)
(

(ϕj ◦G)− (ϕj ◦ Ĝn)
)
|(X−l)l

∥∥∥∥∥∥
2

g

+2

∥∥∥∥∥∥E
Dm′∑
j=1

aj

(
(ϕj ◦G)− (ϕj ◦ Ĝn)

)
|(X−l)l |

∥∥∥∥∥∥
2

g

:= 2Tm
′

4,1 + 2Tm
′

4,2 .

Then,

Tm
′

4,1 ≤
∫
[a;b]

E

Dm′∑
j=1

(
âĜj − aj

)2 Dm′∑
j=1

(
ϕj(G(x))− ϕj(Ĝn(x))

)2
|(X−l)l

 g(x)dx,

= E

Dm′∑
j=1

(
âĜj − aj

)2 Dm′∑
j=1

∫
[0;1]

(
ϕj(u)− ϕj(Ûn(u))

)2
du |(X−l)l

 ,
≤ 2Tm

′
4,1,1 + 2Tm

′
4,1,2,

with

Tm
′

4,1,1 =

∫
[0;1]

E


Dm′∑
j=1

(
âĜj − E

[
âĜj |(X−l)l

])2

Dm′∑
j=1

(
ϕj(u)− ϕj(Ûn(u))

)2 |(X−l)l
 du,

Tm
′

4,1,2 =

∫
[0;1]

E


Dm′∑
j=1

(
E
[
âĜj |(X−l)l

]
− aj

)2

Dm′∑
j=1

(
ϕj(u)− ϕj(Ûn(u))

)2 |(X−l)l
 du

Moreover, Tm
′

4,2 = ‖
∑Dm′

j=1 aj((ϕj ◦G)− (ϕj ◦ Ĝn))‖2g, so

E
[
Tm

′
4,2

]
≤ E

∥∥∥∥∥∥
Dm′∑
j=1

aj

(
(ϕj ◦G)− (ϕj ◦ Ĝn)

)∥∥∥∥∥∥
2

g

 ,(45)

= E

 Dm′∑
j,k=1

ajak

∫ 1

0
(ϕj(u)− ϕj ◦ Ûn(u))(ϕk(u)− ϕk ◦ Ûn(u))du

 .
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This yields, with Taylor formula, E[Tm
′

4,2 ] ≤ E[Tm
′

4,2,1 + Tm
′

4,2,2 + Tm
′

4,2,3], with

Tm
′

4,2,1 =

Dm′∑
j,k=1

ajak

∫ 1

0
(u− Ûn(u))2ϕ′j(u)ϕ′k(u)du,

Tm
′

4,2,2 = (1/4)

Dm′∑
j,k=1

ajak

∫ 1

0
(u− Ûn(u))4ϕ′′j (α̂j,n,u)ϕ′′k(α̂k,n,u)du,

Tm
′

4,2,3 =

Dm′∑
j,k=1

ajak

∫ 1

0
(u− Ûn(u))3ϕ′′j (α̂j,n,u)ϕ′k(u)du,

recalling that al = 〈h, ϕl〉. This explains the decomposition (44). Let us now bound each term.
The �rst one is

Tm
′

4,1,1 =

Dm′∑
j=1

Var
(
âĜj |(X−l)l

)∫
[0;1]

Dm′∑
j=1

(
ϕj(u)− ϕj(Ûn(u))

)2
du,

which is bounded using the mean value theorem:

Tm
′

4,1,1 ≤
Dm′∑
j=1

Var
(
âĜj |(X−l)l

)
D3
m‖ϕ′2‖2∞

∥∥∥Ûn − id∥∥∥2
∞
.

As

Var
(
âĜj | (X−l)l

)
=

1

n
Var

{
Y1ϕj

(
Ĝn(X1)

)
| (X−l)l

}
,

≤ 1

n
‖ϕj‖2∞

(
E
[
f2(X1)

]
+ σ2

)
=

1

n
‖ϕj‖2∞ E

[
Y 2
1

]
,

we obtain

(46) Tm
′

4,1,1 ≤ φ20E
[
Y 2
1

] Dm′

n
×D3

m′‖ϕ′2‖2∞
∥∥∥Ûn − id∥∥∥2

∞
,

which allows us to conclude that as announced, E[maxm′∈Mn

(
4Tm

′
4,1,1 − V4(m′)/3

)
+

] ≤ C/n, by
Inequality (33). The second term can be written

Tm
′

4,1,2 = Tm
′

3

∫
[0;1]

Dm′∑
j=1

(
ϕj(u)− ϕj(Ûn(u))

)2
du,

and again by the mean value theorem Tm
′

4,1,2 ≤ Tm
′

3 D3
m′‖ϕ′2‖2∞‖Ûn− id‖2∞. We replace Tm

′
3 by its

detailed bound which we obtain by gathering Inequalities (36) and (37):

Tm
′

3 ≤ 6Tm
′

3,1,1 + 6Tm
′

3,1,2 + 3Tm
′

3,2 + 3Tm
′

3,3 .

This leads to Tm
′

4,1,2 ≤
∑4

l=1 T
m′
4,1,2,l, and then Tm

′
4,1,2,l ≤ C‖Ûn − id‖pl∞ (pl an integer), so that we

can use the method (B2), for each of this four terms. As announced, the terms Tm
′

4,2,1 and Tm
′

4,2,2
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do not require to be centered: �rst,

Tm
′

4,2,1 =

∫ 1

0
(u− Ûn(u))2

{(
ΠSm′ (h)

)′
(u)
}2
du,

=

∫ 1

0
(u− Ûn(u))2

{
ΠSm′ (h

′)(u)
}2
du,

≤
∥∥∥Ûn − id∥∥∥2

∞

∥∥ΠSm′ (h
′)
∥∥2 ≤ ∥∥∥Ûn − id∥∥∥2

∞

∥∥h′∥∥2 ,
so that E[maxm′∈Mn T

m′
4,2,1] ≤ C2‖h′‖2/n. Then, notice that

Tm
′

4,2,2 = (1/4)E[
∫ 1
0 (u − Ûn(u))4(

∑Dm′
j=1 ajϕ

′′
j (α̂j,n,u))2du], we bound the Fourier's coe�cients of

the function h. To that end, we introduce the real numbers µj , for j ∈ {1, . . . , Dm}, de�ned by
µj = j if j is even, µj = j − 1 otherwise. We obtain:Dm′∑

j=1

ajϕ
′′
j (α̂j,n,u)

2

= ‖ϕ′′2‖2∞

Dm′∑
j=1

ajµ
2
j

2

≤ ‖ϕ′′2‖2∞

Dm′∑
j=1

a2jµ
2
j

Dm′∑
j=1

µ2j .

The function h belongs to the Sobolev spaceW 2,1
per(L), because h(0) = h(1), h belongs to C1([0; 1]),

and ‖h‖2 = ‖f‖2g ≤ L2. Thus we use Lemma A.3 (p. 162) from Tsybakov [30]: the sequence

(aj)j belongs to the ellipsoid Θ(1, L2/π2), so

Tm
′

4,2,2 ≤ CE
[∥∥∥Ûn − id∥∥∥4

∞
D3
m′

]
≤ CE

[∥∥∥Ûn − id∥∥∥2
∞
D3
mmax

]
≤ C

D3
mmax

n2
.

Following the same line of computations, we write,

Tm
′

4,2,3 = E

∫ 1

0
(u− Ûn(u))3

Dm′∑
j=1

ajϕ
′′
j (α̂j,n,u)

Dm′∑
k=1

akϕ
′
k(u)

 du

 ,
and bound as follows, for u ∈ [0; 1]∣∣∣∣∣∣

Dm′∑
j=1

ajϕ
′′
j (α̂j,n,u)

∣∣∣∣∣∣ ≤ ‖ϕ′′2‖∞LπD3/2
m′ ,

∣∣∣∣∣∣
Dm′∑
k=1

akϕ
′
k(u)

∣∣∣∣∣∣ ≤ ‖ϕ′2‖∞LπD1/2
m′ .

Consequently, Tm
′

4,2,3 ≤ E[‖Ûn − id‖3∞D2
m′ ], and we apply again the usual tools to end the proof.
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