Projections in enlargements of filtrations under Jacod's hypothesis and examples - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Projections in enlargements of filtrations under Jacod's hypothesis and examples

Résumé

In this paper, we consider two kinds of enlargements of a Brownian filtration F: the initial enlargement with a random time τ , denoted by F (τ) , and the progressive enlargement with τ , denoted by G. We assume Jacod's equivalence hypothesis, that is, the existence of a positive F-conditional density for τ. Then, starting with the predictable representation of an F (τ)-martingale Y (τ) in terms of a standard F (τ)-Brownian motion, we consider its projection on G, denoted by Y G , and on F, denoted by y. We show how to obtain the coefficients which appear in the predictable representation property for Y G (and y) in terms of Y (τ) and its predictable representation. In the last part, we give examples of conditional densities.
Fichier principal
Vignette du fichier
PGMJHAL.pdf (347.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02120343 , version 1 (05-05-2019)

Identifiants

  • HAL Id : hal-02120343 , version 1

Citer

Pavel V Gapeev, Monique Jeanblanc, Dongli Wu. Projections in enlargements of filtrations under Jacod's hypothesis and examples. 2019. ⟨hal-02120343⟩
73 Consultations
92 Téléchargements

Partager

More