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Projections in enlargements of filtrations

under Jacod’s hypothesis and examples∗

Pavel V. Gapeev† Monique Jeanblanc‡ Dongli Wu

In this paper, we consider two kinds of enlargements of a Brownian filtration F :

the initial enlargement with a random time τ , denoted by F(τ) , and the progressive

enlargement with τ , denoted by G . We assume Jacod’s equivalence hypothesis, that is,

the existence of a positive F-conditional density for τ . Then, starting with the predictable

representation of an F(τ) -martingale Y (τ) in terms of a standard F(τ) -Brownian motion,

we consider its projection on G , denoted by Y G , and on F , denoted by y . We show how

to obtain the coefficients which appear in the predictable representation property for Y G

(and y ) in terms of Y (τ) and its predictable representation. In the last part, we give

examples of conditional densities.

1 Introduction

In this paper, we consider two kinds of enlargement of a Brownian filtration F generated by a

Brownian motion W : the initial enlargement with a random time (a positive random variable)

τ , denoted by F(τ) , and the progressive enlargement with τ , denoted by G . We assume Jacod’s
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equivalence hypothesis, that is, the existence of a positive conditional density for τ (see (2.1)

below in Section 2 for a precise definition). Processes considered in the filtration F(τ) will

be denoted as Y (τ) since, under Jacod’s condition, any F (τ)
t -measurable random variable is

of the form Yt(ω, τ(ω)) for some Ft ⊗ B(R+) measurable function (ω, u) → Yt(ω, u) (see [1;

Proposition 4.22]), processes considered in G will be indicated with the superscript G , as Y G .

Processes denoted without these symbols are F-adapted as Y or y(u).

In Section 2, we recall basic facts on enlargements of filtrations. In Section 3, we start with

an F(τ) -martingale Y (τ), which admits a decomposition

Yt(τ) = Y0(τ) +

∫ t

0

ys(τ) dWs(τ) (1.1)

for all t ≥ 0, where W (τ) is an F(τ) -Brownian motion and, for any u ≥ 0 the process y(u)

is F-predictable and for any t the map u → yt(u) is Borelian, and we study its G-optional

projection Y G and its F-optional projection y . From the predictable representation properties

[5], we obtain the existence of two G-predictable processes βG and γG such that

Y G
t = E

[
Yt(τ)

∣∣Gt] = Y G
0 +

∫ t

0

βG
s dW

G
s +

∫ t

0

γGs dM
G
s (1.2)

for all t ≥ 0, where MG is the compensated G-martingale of the default process 11{τ≤t} , and

the existence of an F-predictable process σ such that

Yt = E[Yt(τ)|Ft] = y0 +

∫ t

0

σsdWs .

We show how to compute βG, γG and σ in terms of Y (τ) and y(τ). We apply these compu-

tations to compare equivalent martingale measures for a financial market with price process

following an F-geometric Brownian motion considered in the two enlarged filtrations in Section

4. In the last section, we give a family of example of conditional densities.

In the whole paper, ”positive” means ”strictly positive”.

2 Enlargement of filtrations

We recall that, if H ⊂ K , the H-optional projection of a K-martingale µ is the H-optional

process ν such that E[µϑ11{ϑ<∞}|Hϑ) = νϑ11{ϑ<∞} for any H-stopping time ϑ . This optional

projection satisfies E(µt|Ht) = νt . By abuse of language, we shall call E(µt|Ht) the H-optional

projection of µ .
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We consider a probability space (Ω,G,P) endowed with a standard Brownian motion W =

(Wt)t≥0 and a positive random variable τ with the positive density g on R+ under P . We

denote by F = (Ft)t≥0 the natural right-continuous and completed filtration of W and G is

the progressive enlargement of F with τ . We assume Jacod’s equivalence hypothesis (see [1;

Chapter IV; Section 5]), that is, the existence of a positive function (ω, t, u) → pt(ω, u) such

that

(i): the map u 7→ pt(u;ω) is Borelian, (dt× dP) a.s.

(ii): for each u ≥ 0, the process p(u) = (pt(u))t≥0 is a continuous F-martingale,

(iii): for each t ≥ 0, for every bounded Borel function f , we have

E
[
f(τ)

∣∣Ft] =

∫ ∞
0

f(u) pt(u) g(u) du . (2.1)

Note that
∫∞

0
pt(u) g(u) du = 1, for all t ≥ 0, and p0(u) = 1, for each u ≥ 0. Moreover,

it follows from the predictable representation theorem in a Brownian filtration that, for each

u ≥ 0, there exists an F-predictable process ϕ(u) = (ϕt(u))t≥0 such that the positive martingale

p(u) admits the representation

pt(u) = p0(u) +

∫ t

0

ps(u)ϕs(u) dWs (2.2)

so that it takes the form of the Doléans-Dade stochastic exponential

pt(u) = p0(u) exp

(∫ t

0

ϕs(u) dWs −
1

2

∫ t

0

ϕ2
s(u) ds

)
(2.3)

for all t ≥ 0. It can be shown that u 7→ ϕt(u) is a Borel function on [0,∞), for all t ≥ 0.

We introduce the supermartingale G defined as Gt := P(τ > t | Ft) which can be written

in terms of the conditional density as

Gt =

∫ ∞
t

pt(u) g(u) du , t ≥ 0 . (2.4)

Note that G is a positive continuous F-supermartingale called the Azéma supermartingale

of τ which admits a Doob-Meyer decomposition Gt = Nt − At , where N = (Nt)t≥0 is an

F-martingale under P and A = (At)t≥0 is a nondecreasing F-predictable process. Then, by

means of Jacod’s equivalence hypothesis, we have

At =

∫ t

0

pu(u) g(u) du and Nt = 1−
∫ t

0

(
pt(u)− pu(u)

)
g(u) du (2.5)
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for all t ≥ 0 (see [7; Subsection 4.2.1]). Moreover, by means of Itô-Wentzell’s lemma (see, e.g.

Kunita [19], Wentzell [22], or [14; Theorem 1.5.3.2]), we have

dNt = −
∫ t

0

dtpt(u) g(u) du = −
(∫ t

0

ϕt(u) pt(u) g(u) du

)
dWt (2.6)

where dt means that one makes use of the stochastic differential, and the associated predictable

covariation processes have the form

d〈W,N〉t = −
(∫ t

0

ϕt(u) pt(u) g(u) du
)
dt and d〈W, p(u)〉t = pt(u)ϕt(u) dt (2.7)

for all t, u ≥ 0.

It follows from Jacod’s theorem for initial enlargements of filtrations ([13; Corollaire 1.11]

or [1; Chapter IV, Proposition 4.40]) that the process W (τ) = (Wt(τ))t≥0 defined by

Wt(τ) := Wt −
∫ t

0

d〈p(u),W 〉s|u=τ

ps(τ)
= Wt −

∫ t

0

ϕs(τ) ds (2.8)

for all t ≥ 0, is a P-Brownian motion with respect to the initially enlarged filtration F(τ)

defined by F(τ) = (Ft ∨ σ(τ))t≥0 . Note that, according to the results of Fontana [9], the

filtration F(τ) is right-continuous.

It follows from the results of Grorud and Pontier [12] and also Amendinger [2], that the

process (1/pt(τ))t≥0 forms an F(τ) -martingale under P , and thus, since p0(τ) = 1 holds, we

have E[1/pt(τ)] = 1, for all t ≥ 0. Therefore, we can define a probability measure P∗ on F (τ)
t

by

dP∗

dP

∣∣∣∣
F(τ)
t

=
1

pt(τ)
= exp

(
−
∫ t

0

ϕs(τ) dWs(τ)− 1

2

∫ t

0

ϕ2
s(τ) ds

)
(2.9)

for all t ≥ 0. It is proved in [12] (see also [1; Chapter IV, Proposition 4.37]) that the probability

measure P∗ defined in (2.9) coincides with P on F and on σ(τ), and the random time τ is

independent of F under P∗ . This fact particularly implies that P∗(τ > u | Ft) = P∗(τ > u) =

P(τ > u) holds, for all t, u ≥ 0, as well as that the process W is a (P,F) standard Brownian

motion with respect to F under P∗ . Note that, by Girsanov’s theorem, following the arguments

of Callegaro et al. [5], we can recover that the process W (τ) from (2.8) is a (P,F(τ))-Brownian

motion.

Let us now introduce the progressively enlarged filtration G = (Gt)t≥0 which is the smallest

right-continuous filtration containing F and making τ a stopping time.
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Note that, according to the hypothesis that the positive random variable τ has a positive

density with support R+ , the σ -algebra G0 is trivial. It is known (see Jeulin [17; Chapter III]

or Callegaro et al. [5; Chapter I, Section 2]) that any G-predictable process ZG can be written

as

ZG
t = Z0

t 11{t≤τ} + Z1
t (τ) 11{τ<t} (2.10)

for all t ≥ 0, where the process Z0 is F-predictable and, for any u ≥ 0, the process Z1(u)

is F-predictable. In that case, using the key lemma for the computation of Z0 (see, e.g. [1;

Chapter II, Lemma 2.9]), we get

Z1
t (u) = Zt(u), for t ≥ u, and Z0

t =
1

Gt

∫ ∞
t

Zt(u) pt(u) g(u) du . (2.11)

We shall say that Z0 is the F-predictable reduction of ZG .

The decomposition (2.10), proved for any progressive enlargement in Jeulin does not extend

in general to optional processes (see Barlow [3] for a counter example). However, under Jacod’s

equivalence hypothesis, any G-optional process UG can be written as

UG
t = U0

t 11{t<τ} + U1
t (τ) 11{τ≤t} (2.12)

for all t ≥ 0, where U0 is F-optional and, for each u ≥ 0, U1(u) is F-optional (see Song

[21]). In particular, we shall use that result for the G-optional projection of an integrable

F(τ) -optional process U(τ), i.e., for

UG
t = E

[
Ut(τ)

∣∣Gt] (2.13)

In that case, similarly to (2.11), we have

U1
t (u) = Ut(u), for t ≥ u, and U0

t =
1

Gt

∫ ∞
t

Ut(u) pt(u) g(u) du (2.14)

for all t ≥ 0. The process U0 is called the optional reduction of U . Note that, working in a

Brownian filtration under Jacod’s equivalence hypothesis, U0 and U1(u) being continuous are

also F-predictable.

Then, it follows from the results of Jeanblanc and Le Cam [16] that the process WG =

(WG
t )t≥0 defined by

WG
t := Wt −

∫ t∧τ

0

d〈W,N〉s
Gs

−
∫ t

t∧τ

d〈W, p(u)〉s|u=τ

ps(τ)

= Wt +

∫ t∧τ

0

1

Gs

(∫ s

0

ϕs(u) ps(u) g(u) du

)
ds−

∫ t

t∧τ
ϕs(τ) ds (2.15)

= Wt +

∫ t

0

αG
s ds (2.16)
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is a (P,G)-standard Brownian motion, where αG is the G-predictable process with the decom-

position

αG
t = 11{t≤τ}

1

Gt

∫ t

0

ϕt(u) pt(u) g(u) du11{τ<t}ϕt(u) := 11{t≤τ} α
0
t + 11{τ<t} α

1
t (τ) (2.17)

for all t ≥ 0. Observe from (2.8) and (2.15) that

Wt(τ) = WG
t −

∫ t∧τ

0

(
α0
s + ϕs(τ)

)
ds (2.18)

for all t ≥ 0.

We define the G-martingale

MG
t := 11{τ≤t} −

∫ t

0

λGs ds = 11{τ≤t} −
∫ t∧τ

0

λ0
s ds (2.19)

for all t ≥ 0, where λGs = 11{s≤τ}λ
0
s and λ0

s = ps(s)g(s)/Gs (see, e.g. [5; Subsection 1.2] or [1;

Chapter II]).

We recall that the process W (τ) enjoys the Fτ -predictable representation property and that

the pair (WG,MG) enjoys the G-predictable representation property (see, e.g. [5; Proposition

4.3]):

Any F(τ) -martingale Y (τ) has the form

Yt(τ) = Y0(τ) +

∫ t

0

ys(τ) dWs(τ) (2.20)

for all t ≥ 0, where Y0 is a (deterministic) function and y(u), u ≥ 0, is a family of F-predictable

processes. In particular, any (P,F(τ))-martingale is continuous, and if Y (τ) is square integrable

on [0, T ] , then E[
∫ T

0
(ys(τ))2ds] <∞ .

Any G-martingale admits the representation

Y G
t = Y G

0 +

∫ t

0

βG
s dW

G
s +

∫ t

0

γGs dM
G
s (2.21)

where βG and γG are G-predictable processes.

3 Martingales and projections

3.1 Projections of F(τ) martingales on G

Proposition 3.1 Let Y (τ) be an F(τ) -martingale with representation (2.20). Its G-optional

projection Y G admits the following representation

Y G
t = E

[
Yt(τ)

∣∣Gt] = Y G
0 +

∫ t

0

βG
s dW

G
s +

∫ t

0

γGs dM
G
s (3.1)
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where Y G
0 = E[Y0(τ)], and the G-predictable processes βG and γG admit, from (2.10), the

decomposition

βG
t = β0

t 11{t≤τ} + β1
t (τ) 11{τ<t} (3.2)

γGt = γ0
t 11{t≤τ} + γ1

t (τ) 11{τ<t} . (3.3)

Then,

β0
t =

1

Gt

∫ ∞
t

(
yt(u) + (α0

t + ϕt(u))Yt(u)
)
pt(u) g(u) du, β1

t (u) = yt(u) , for t ≥ u ,(3.4)

γ0
t = Yt(t)− Y 0

t , (3.5)

for all t ≥ 0, and Y 0 is given by (2.11). Note that for any choice of γ1 , the property∫ t
0
γGs dM

G
s =

∫ t
0
γ0
sdM

G
s holds.

Proof: In a first step, we assume that Y (τ) (hence Y G ), are square integrable on [0, T ]

We start to determine βG (which is square integrable). For this purpose, we observe that for

any bounded G-predictable process nG , using the tower property and the fact that WG is a

G-martingale orthogonal to MG , we have

E
[
Yt(τ)

∫ t

0

nG
s dW

G
s

]
= E

[
Y G
t

∫ t

0

nG
s dW

G
s

]
(3.6)

= E
[ ∫ t

0

βG
s dW

G
s

∫ t

0

nG
s dW

G
s

]
= E

[ ∫ t

0

βG
s n

G
s ds

]
for all t ≥ 0. Recall that, from (2.18), we have

WG
t = Wt(τ) +

∫ t∧τ

0

(
α0
s + ϕs(τ)

)
ds (3.7)

for all t ≥ 0. We introduce the continuous G-martingale

V G
t =

∫ t

0

nG
s dW

G
s =

∫ t

0

nG
s dWs(τ) +

∫ t

0

(
α0
s + ϕs(τ)

)
11{s≤τ} n

G
s ds (3.8)

for all t ≥ 0. By means of the integration by parts, we have

E
[
Yt(τ)V G

t

]
= E

[
+

∫ t

0

Ys(τ) dV G
s + 〈Y (τ), V G〉F(τ)

t

∫ t

0

V G
s dYs(τ)

]
(3.9)

for all t ≥ 0.

A martingale X is square integrable if supt≤T E(X2
t ) <∞ .
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We recall that a local martingale M satisfying E[(〈M〉T )1/2] < ∞ is a martingale. Let us

prove that the F(τ) -local martingale Mt =
∫ t

0
V G
s dYs(τ) is a martingale. One has

E[(〈M〉T )1/2) = E
[(∫ T

0

(V G
s )2(ys(τ))2ds

)1/2

ds

]
≤ E

[
sup
s≤T
|V G
s |
(∫ T

0

(ys(τ))2ds
)1/2]

≤ E[sup
s≤T
|V G
s |2] + E

[ ∫ T

0

ys(τ)2ds
]
.

From Burkholder’s inequality {footnote Burkholder’s inequality states that for any p ≥ 1,

E[supt≤T |Mt|p)] ≤ CpE[〈M〉T )p/2] where Cp is a constant depending only on p . the quan-

tity E[sups≤T |V G
s |2] is smaller than C2E[

∫ T
0

(nG
s )2ds] which is bounded. Furthermorcdote,

E[
∫ T

0
ys(τ)2ds] is bounded. Hence,

∫ ·
0
V G
s dYs(τ) is a martingale and its expectation is null.

The boundeness of nG and the square integrability of Y (τ) imply that
∫ t

0
Ys(τ)nG

s dWs(τ) is a

martingale, so that

E
[ ∫ t

0

V G
s dYs(τ) +

∫ t

0

Ys(τ) dV G
s

]
= E

[ ∫ t

0

Ys(τ)
(
α0
s + ϕs(τ)

)
11{s≤τ} n

G
s ds

]
. (3.10)

Recall that 〈Y (τ), V G〉F(τ)

t =
∫ t

0
ys(τ)nG

s ds , for all t ≥ 0. Then, we have

E
[
Yt(τ)V G

t

]
= E

[ ∫ t

0

(
Ys(τ)

(
α0
s + ϕs(τ)

)
11{s≤τ} + ys(τ)

)
nG
s ds

]
(3.11)

hence, using the tower property

E
[ ∫ t

0

βG
s n

G
s ds

]
= E

[ ∫ t

0

E
[
ys(τ) + Ys(τ)

(
α0
s + ϕs(τ)

)
11{s≤τ}

∣∣Gs]nG
s ds

]
(3.12)

for all t ≥ 0 and for any bounded nG It follows that

βG
t = E

[
yt(τ) + Yt(τ) (α0

t + ϕt(τ)
)

11{t≤τ}
∣∣Gt] , (3.13)

and the F-predictable reduction of βG is

β0
t =

1

Gt

∫ ∞
t

(
yt(u) +

(
α0
t + ϕt(u)

)
Yt(u)

)
pt(u) g(u) du (3.14)

and on {t > τ} , one has, as expected, that βG
t = E[yt(τ) | Gt] = yt(τ) so that β1

t (u) = yt(u).

In the second step, we determine γG . For this purpose, on the one hand, for any bounded

G-predictable process nG , using the fact that MG is a G-martingale orthogonal to WG and
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that MG is flat after τ (MG
t = Mt∧τ ), and that the equality d〈MG〉t = λ0

t11{t≤τ}dt holds, we

have

E
[
Yt(τ)

∫ t

0

nG
s dM

G
s

]
= E

[
Yt(τ)

∫ t

0

n0
s dM

G
s

]
= E

[
Y G
t

∫ t

0

n0
s dM

G
s

]
(3.15)

= E
[ ∫ t

0

γ0
s dM

G
s

∫ t

0

n0
s dM

G
s

]
= E

[ ∫ t

0

γ0
s λ

0
s 11{s<τ} n

0
s ds

]
= E

[ ∫ t

0

γ0
s λ

0
s Gs n

0
s ds

]
for all t ≥ 0, where n0 is the F-predictable reduction of nG and where the last equality comes

from the tower property.

Recall that MG is a predictable bounded variation process in the initially enlarged filtration.

Let UG
t =

∫ t
0
n0
s dM

G
s . By integration by parts, using the fact that Y (τ) is continuous, its

bracket (in FG with the F(τ) -predictable bounded variation process UG is null

E[Yt(τ)UG
t ] = E[

∫ t

0

Ys(τ)n0
sdM

G
s +

∫ t

0

UG
s dYs(τ)] .

The same methodology than in the first part for
∫
V GdYs(τ) proves that the process

∫ ·
0
UG
s dYs(τ)

is a martingale. Furthermore, setting Ht = 11{t≤τ} , we have

E[

∫ t

0

Ys(τ)n0
sdM

G
s ] = E[

∫ t

0

Ys(τ)n0
sdHs −

∫ t

0

Ys(τ)n0
sλ

0
s11{s<τ}ds

= E[11{τ≤t}Yτ (τ)n0
τ −

∫ t

0

E[Ys(τ)Gs]n0
sλ

0
s11{s<τ}ds]

= E[

∫ t

0

Ys()n
0
upt(s)g(s)ds−

∫ t

0

Y 0
s n

0
sλ

0
s11{s<τ}ds

= E[

∫ t

0

[Ys(s)ps(s)− Y 0
u λ

0
uGu]n

0
udu]

where in the last equality, we used the fact that p(u) is an F-martingale. To conclude, we have

E
[ ∫ t

0

γ0
s λ

0
s Gs n

0
s ds

]
= E

[ ∫ t

0

(Ys(s) ps(s) g(s)− λ0
s Gs Y

0
s )n0

s ds

]
(3.16)

and using the fact that λ0
sGs = ps(s)g(s), one has, for any F adapted bounded process n0

E
[ ∫ t

0

(γ0
s − Ys(s) + Y 0

s )λ0
s Gs n

0
s ds

]
= 0 (3.17)

for all t ≥ 0, so that the expression in (3.5) holds. The result obtained for square integrable

martingales Y (τ) extends to all martingales. �
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3.2 Projection of F(τ)-martingales on F

Proposition 3.2 Let Y (τ) be an F(τ) -martingale of the form dYt(τ) = yt(τ)dWt(τ). Its F-

optional projection is Yt = E[Yt(τ) | Ft] = Y0 +
∫ t

0
σsdWs , where the F-predictable process σ is

given by

σt =

∫ ∞
0

(
yt(u) + Yt(u)ϕt(u)

)
pt(u) g(u) du (3.18)

for all t ≥ 0.

Proof: It follows from the predictable representation property in the filtration F that there

exists an F-predictable process σ such that

E
[
Yt(τ)

∣∣Ft] = Y0 +

∫ t

0

σs dWs (3.19)

holds for all t ≥ 0. On the one hand, for any bounded F-adapted process n , we have

E
[
Yt(τ)

∫ t

0

ns dWs

]
= E

[
Yt

∫ t

0

ns dWs

]
= E

[ ∫ t

0

σs ns ds

]
(3.20)

for all t ≥ 0. On the other hand, using (2.8) and an integration by parts on the left-hand side

lead to, assuming that Y (τ) is square integrable

E
[
Yt(τ)

∫ t

0

ns dWs

]
= E

[
Yt(τ)

(∫ t

0

ns dWs(τ) +

∫ t

0

ns ϕs(τ) ds

)]
(3.21)

= E
[ ∫ t

0

(
ys(τ) + Ys(τ)ϕs(τ)

)
ns ds

]
= E

[ ∫ t

0

E
[
ys(τ) + Ys(τ)ϕs(τ) | Fs]ns ds

]
for all t ≥ 0. Hence, we have

σt = E
[
yt(τ) + Yt(τ)ϕt(τ) | Ft

]
=

∫ ∞
0

(
yt(u) + Yt(u)ϕt(u)

)
pt(u) g(u) du (3.22)

for all t ≥ 0. �

3.3 Projection of G-martingales on F

Proposition 3.3 Consider the G-martingale Y G = (Y G
t )t≥0 defined by

Y G
t = Y G

0 +

∫ t

0

βG
s dW

G
s +

∫ t

0

γGs dM
G
s = Y 0

t 11{t<τ} + Y 1
t (τ)11{τ≤t} . (3.23)
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Then, its F-optional projection is Yt = E[Y G
t | Ft] = Y0 +

∫ t
0
ηsdWs , where the F-predictable

process η satisfies

ηt = E
[
βG
t − Y G

t αG
t | Ft

]
= (β0

t − Y 0
t α

0
t )Gt +

∫ t

0

(
β1
t (u)− Y 1

t (u)α1
t (u)

)
pt(u) g(u) du (3.24)

for all t ≥ 0.

Proof: We proceed as before and consider, for a bounded F-adapted process n , the quantity

E
[
Y G
t

∫ t
0
nsdWs

]
, for all t ≥ 0. On the one hand, using the same procedure as in the analysis

of (3.12), we get

E
[
Y G
t

∫ t

0

ns dWs

]
= E

[ ∫ t

0

ηs ns ds

]
(3.25)

for all t ≥ 0. On the other hand, setting Ut =
∫ t

0
nsdWs , by means of integration by parts and

(2.15), we obtain, using the same methodology as before

E
[
Y G
t

∫ t

0

ns dWs

]
= E

[
Y G
t Ut

]
= E

[ ∫ t

0

Us dY
G
s +

∫ t

0

Y G
s ns dWs +

∫ t

0

βG
s ns ds

]
(3.26)

= E
[ ∫ t

0

(
βG
s − Y G

s αG
s

)
ns ds

]
= E

[ ∫ t

0

E
[
βG
s − Y G

s αG
s | Fs

]
ns ds

]
for all t ≥ 0. �

Remark 3.4 Since E[Yt(τ)|Ft] = E[E[Yt(τ)|Gt]|Ft] we have σ = η where these quantities are

defined in (3.18) and (3.24). Indeed, from (3.13),

E[βG
t − αG

t Y
G
t |Ft] = E[yt(τ) + Yt(τ)(α0

t + ϕt(τ))11{t≤τ} − α0
tY

0
t 11{t≤τ} − α1(τ)Y 1

t (τ)11{τ<t}|Ft]

= E[yt(τ) + Yt(τ)ϕt(τ)|Ft] . (3.27)

3.4 Change of probability measures

3.4.1 F(τ) versus G

Note that, from PRP, and positive F(τ) -martingale has the form

Lt(τ) = L0(τ)E(ζ(τ) ·W (τ))t, = L0(τ) exp

(∫ t

0

ζs(τ)dWs(τ)− 1

2

∫ t

0

(ζs(τ))2ds

)
, t ≥ 0 (3.28)

where L0 is a positive function and ζ(τ) is F(τ) -predictable, or in a closed form

Lt(τ) = L0(τ) exp
(∫ t

0

ζs(τ)dWs(τ)− 1

2

∫ t

0

(ζs(τ))2ds
)
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and any positive G-martingale has the form

CE(µG ·WG)t E(ψG ·MG)t , (3.29)

where C is a positive constant and µG and ψG are G predictable and ψG > −1. We recall

that

E(ψG ·MG)t = exp

(∫ t∧τ

0

ψG
s λ

0
sds

)
(1 + ψG

τ )Ht .

Proposition 3.5 Let L(τ) = (Lt(τ))t≥0 be of the form (3.28). Then, its G-optional projection

LG satisfies

LG
t = E

[
Lt(τ) | Gt

]
= E

[
L0(τ)

]
+

∫ t

0

LG
s− µ

G
s dW

G
s +

∫ t

0

LG
s− ψ

G
s dM

G
s (3.30)

where the G-predictable processes µG and ψG are given by

µG
t = 11{t≤τ}

1

L0
tGt

∫ ∞
t

Lt(u)
(
ζt(u) + ϕt(u) + α0

t

)
pt(u) g(u) du+ 11{τ<t} ζt(τ) (3.31)

ψG
t =

Lt(t)

L0
t

− 1 (3.32)

where L0 is the optional reduction of LG .

Proof: This is an application of Proposition 3.2. �

Note that ψG
t > −1, as it must be. If E[L0(τ)] = 1, and L(τ) is a positive (P,F(τ))-

martingale with initial value `(τ), one can associate to it the change of probability measure

defined by dP̃ = Lt(τ)dP on F (τ)
t , for any t ≥ 0. The choice L0 ≡ 1 is equivalent to

P̃(τ > u) = P(τ > u), for each u ≥ 0. Indeed, since τ is F0 ∨ σ(τ)-measurable, we have, using

tower property P̃(τ > u) = E
[
`(τ)11{τ>u}

]
and the equality E

[
L0(τ)11{τ>u}

]
= E

[
11{τ>u}

]
holds, for each u ≥ 0, which implies that L0 ≡ 1.

In particular, in the case Lt(τ) = p0(tau)/pt(τ), which satisfies dLt(τ) = −Lt(τ)ϕt(τ)dWt(τ),

one obtains (recall that P ∗ is defined in (2.9)) dP∗|Gt = LG,∗
t dP|Gt with

LG,∗
t = E(

p0(τ)

pt(τ)
|Gt) = E(µG,∗ ·WG)t E(ψG,∗ ·MG)t (3.33)

with

µG,∗
t = 11{t≤τ} α

0
t − 11{τ<t} ϕt(τ) and ψG,∗

t = 11{t≤τ}

(
Gt

pt(t)(1− F (t))
− 1

)
(3.34)
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where F (t) =
∫ t

0
g(u)du .

From the definition of LG,∗ one has

LG,∗
t = 11{t≤τ}

1− F (t)

Gt

+ 11{τ<t} Lt(τ) (3.35)

for all t ≥ 0.

3.4.2 G versus F

From PRP, any positive (P,G)-martingale LG = (LG
t )t≥0 can be written as

LG
t = LG

0 +

∫ t

0

LG
s µ

G
s dW

G
s +

∫ t

0

LG
s− ψ

G
s dM

G
s = L0

t 11{t<τ} + L1
t (τ) 11{τ≤t} . (3.36)

Let L = (Lt)t≥0 be its F-optional projection Lt = E
[
LG
t | Ft

]
, for all t ≥ 0. Then, we have

Lt = L0 +
∫ t

0
LsηsdWs , where L0 = E[L0(τ)] and η is the F-predictable process

ηt =
L0
t

Lt
(µ0

t − α0
t )Gt +

∫ t

0

L1
t (u)

(
µ1
t (u)− α1

t (u)
)
pt(u) g(u) du (3.37)

for all t ≥ 0.

3.4.3 F(τ) versus F

Let L(τ) be a positive F(τ) -martingale of the form (3.28), then its F-optional projection is

Lt = E[Lt(τ) | Ft] = L0 +
∫ t

0
LsσsdWs where L0 = E[L0(τ)] and σ is the F-predictable process

σt =
1

`t

∫ ∞
0

Lt(u)
(
ζt(u) + ϕt(u)

)
pt(u) g(u) du (3.38)

for all t ≥ 0.

3.5 Stability of the Brownian property

As we mentioned before, due to the fact that the processes WG and MG enjoy the predictable

representation property in G , any locally equivalent probability measure Q which is equivalent

to P on Gt is given by

dQ
dP

∣∣∣∣
Gt

= E(µG ·WG)t E(ψG ·MG)t (3.39)

for all t ≥ 0, where µG and ψG are G predictable and ψG > −1. Note that the change of

probability measure does not affect the intensity if and only if ψG = 0.
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For a probability measure Q which is locally equivalent to P on G , let us denote by QF

its restriction to F , which is locally equivalent to P on F , with its density being of the form

dQF/dP = E(η ·W )t , for all t ≥ 0. Under QF , the process WQ,F defined by WQ,F
t = Wt−

∫ t
0
ηsds

is a (QF,F)-standard Brownian motion. Let us provide a set of probability measures Q which

are equivalent to P on G such that the (QF,F)-standard Brownian motion WQ,F is a (Q,G)-

standard Brownian motion.

Proposition 3.6 Let LG be a positive (P,G)-martingale of the form E(µG ·WG), and define

the probability measure Q by
dQ
dP

∣∣∣∣
Gt

= LG
t (3.40)

for all t ≥ 0. The process WQ,F is a (Q,G)-standard Brownian motion if and only if µG−αG

is F-adapted. Then, we have ηt = µG
t − αG

t , for all t ≥ 0.

Proof: On the one hand, we have seen in (2.15) that WG
t = Wt +

∫ t
0
αG
s ds , for all

t ≥ 0. Hence, we have WG
t = WQ,F

t +
∫ t

0
σsds +

∫ t
0
αG
s ds , for all t ≥ 0. On the other

hand, we see that WG
t −

∫ t
0
µG
s ds is a (Q,G)-standard Brownian motion. It follows that

WQ,F
t +

∫ t
0
σsds +

∫ t
0
αG
s ds −

∫ t
0
µG
s ds is a G-standard Brownian motion. Therefore, WQ,F is a

(Q,G)-standard Brownian motion if and only if σt + αG
t − µG

t = 0, for all t ≥ 0. Note that

indeed, if αG
t − µG

t is F adapted, then, from (3.24) Ltσt = E(LG
t (αG

t − µG
t )|Ft) = Lt(α

G
t − µG

t )

where Lt = E(LG
t |Ft). �

Examples 3.7 (i) If the process µG is such that

µ0
t = 0 (3.41)

then Q is equal to P on Gτ and the immersion holds for F and G under Q . The choice µ0
t = 0

leads to η = α0 , hence µ1
t (u) = α1

t (u)− α0
t = −ϕt(u)− α0

t , for all t ≥ u . Therefore, we have

E(µ1 ·WG)t (3.42)

= 11{t<τ} + 11{τ≤t} exp

(∫ t

τ

α1
s(τ) dWG

s −
1

2

∫ t

τ

(α1
s)

2 ds

)
exp

(
−
∫ t

τ

α0
s dW

G
s −

1

2

∫ t

τ

(α0
s)

2 ds

)
= 11{t<τ} + 11{τ≤t}

pτ (τ)

pt(τ)

Zt
Zτ
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where we have used the fact that, on {τ < t} , one has pτ (τ)/pt(τ) = exp
(∫ t

τ
α1
sdWs + 1

2

∫ t
τ
(α1

s)
2ds
)

and Zt = E(−α0 ·W )t = Gte
Λt , for all t ≥ 0. More precisely, we have

LG
t = 11{t<τ} + 11{τ≤t}

pτ (τ) eΛtGt

pt(τ)eΛτGτ

(3.43)

and

ηt =
Gt

1− F (t)
(3.44)

This example was presented in [1; Chapter V].

(ii) the case µ0 = α0 leads to η = 0 and µ1 = α1 , that is, this is the case in which Q = P∗ .

4 Equivalent Martingale Measures

consider the case where ν and σ are processes Let us consider a model of a financial market in

which the stock price process S = (St)t≥0 started at S0 = 1 satisfies the stochastic differential

equations (written in various filtrations)

dSt = St
(
ν dt+ σ dWt

)
= St

(
νGt dt+ σ dWG

t

)
= St

((
ν + σϕt(τ)

)
dt+ σ dWt(τ)

)
(4.1)

for some σ > 0 fixed, where, from (2.15), we have

νGt = ν + σαG
t = ν + σ α0

t 11{t≤τ} − ϕt(τ) 11{τ<t} . (4.2)

We assume that a riskless asset is traded with a null interest rate. It is straightforward to show

that, for positive function ` satisfying E[`(τ)] = 1, the positive martingale

Yt(τ) = `(τ) exp

(∫ t

0

ys(τ) dWs(τ)− 1

2

∫ t

0

y2
s(τ) ds

)
(4.3)

is a Radon-Nikodým density of an equivalent martingale measure on F(τ) (i.e. such that SY (τ)

is an F(τ) -martingale) if and only if

yt(τ) = −ϕt(τ)− ν

σ
(4.4)

for all t ≥ 0. We denote by L(τ) = (Lt(τ))t≥0 such a positive martingale defined by

Lt(τ) = L0(τ) exp

(
−
∫ t

0

(
ϕs(τ) +

ν

σ

)
dWs(τ)− 1

2

∫ t

0

(
ϕs(τ) +

ν

σ

)2

ds

)
(4.5)
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for all t ≥ 0. Then, we define a new probability measure P̃ which is locally equivalent to P on

F(τ) by

dP̃
dP

∣∣∣∣
F(τ)
t

= Lt(τ) (4.6)

for all t ≥ 0. Actually, there exists infinitely many such probabilities, which differ from each

other by the choice of the initial value L0 , that is, by the choice of the law of τ (under P̃):

P̃(τ > u) = E
[
L0(τ)11{τ>u}

]
=
∫∞
u
L0(v)g(v)dv , for all u ≥ 0. The case L0 ≡ 1 corresponds to

the situation in which P̃(τ > u) = P(τ > u), for any u ≥ 0. Note that, by virtue of Girsanov’s

theorem, the process W̃ (τ) defined as

W̃t(τ) = Wt(τ) +

∫ t

0

(
ϕs(τ) +

ν

σ

)
ds (4.7)

is a (P̃,F(τ))-standard Brownian motion.

Working in the filtration G , it easily seen that the set of G-equivalent martingale measures

(i.e. the set of positive G-martingales Y G such that SY G is a G-martingale) is

dY G
t = Y G

t−

(
− νGt

σ
dWG

t + γGt dM
G
t

)
(4.8)

so that

Y G
t = E(−(νG/σ) ·WG)t E(γG ·MG)t (4.9)

where γ is any G-predictable process, with γ > −1.

Let us now consider LG , the G-optional projection of Lt(τ). The process LG defines an

equivalent martingale measure for S and can be written as in Section 3.4

LG
t = 1 +

∫ t

0

LG
s− µ

G
s dW

G
s +

∫ t

0

LG
s− ψ

G
s dM

G
s = E(µG ·WG)t E(ψG ·MG)t (4.10)

where the processes µG and ψG are given in (3.31). Using the fact that L0
t = 1

Gt

∫ t
0
Lt(u)pt(u)g(u)du ,

one has

µG
t = 11{t≤τ}

1

GtL0
t

(∫ t

0

(
− ν

σ
− α0

t

)
Lt(u) pt(u) g(u) du+ 11{τ<t} ϕt(τ) (4.11)

= −11{t≤τ}

(νG
σ

+ α0
t

)
+ 11{τ<t} ϕt(τ) = −11{t≤τ}

νGt
σ

+ 11{τ<t} ϕt(τ)

ψG
t = 11{t≤τ}

(
Lt(t)

L0
t

− 1

)
. (4.12)
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We obtain here an equivalent martingale measures.

However, the set of all equivalent martingale measures is larger, since it is the family E(µG ·
WG)E(γG ·MG), for any G-predictable process γG = (γGt )t≥0 such that γGt > −1, for all t ≥ 0.

The compensated (P,G)-martingale of H = (Ht)t≥0 with Ht = 11{τ≤t} , for all t ≥ 0 is the

(uniformly integrable) (P,G)-martingale

MG
t = Ht −

∫ τ∧t

0

ps(s)g(s)

Gs

ds = Ht −
∫ t∧τ

0

λ0
s ds (4.13)

(see, e.g., [5; Subsection 1.2] or [1]). We introduce LG as

LG
t = E(µG ·WG)E(γG ·MG)

and the measure P̂ on G with

dP̂
dP

∣∣∣∣
Gt

= LG
t (4.14)

By virtue of Girsanov’s theorem, we have that the process Ŵ defines as

ŴG
t = WG

t −
∫ t

0

µG
s ds (4.15)

is a standard Brownian motion under P̂ with respect to G . Moreover, the process

M̂G
t = MG

t −
∫ t∧τ

0

γ0
s λ

0
s ds = Ht −

∫ t∧τ

0

(1 + γ0
s )λ

0
s ds (4.16)

is a (uniformly integrable) (P̂,G)-martingale. The above change of probability changes the

Brownian motion and the intensity of the default. The specific choice γ = 0 leads to a change

of probability measure which does not affect the intensity.

Remark 4.1 Assume for simplicity that S is a martingale under P . By definition S is also a

QF martingale, hence W = WG . Then, for any ζT ∈ FT and any equivalent martingale measure

QG on G , =one has EQG [ζT | Gt] = EP[ζT | Ft] , for 0 ≤ t ≤ T . The first reason is that ζT is

hedgeable in F , and thus in G . The second reason is that from ζT = x+
∫ T

0
xsdWsx+

∫ T
0
xsdW

G
s

and using the orthogonality of WG and MG , setting ζt = x+
∫ t

0
xsdW

G , the product E(γ·MG)tζt

is a martingale, hence, by Bayes’ formula

EQG
[
ζT | Gt

]
=

1

E(γ ·MG)t
EP
[
E(γ ·MG)T ζT

∣∣Gt] = ζt (4.17)

for 0 ≤ t ≤ T .
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Remark 4.2 We can extend easily the study to the case where the interest rate is G-adapted

with rt(τ) = r0
t 11{t<τ} + r1

t (τ)11{τ≤t} , where the processes r0 = (r0
t )t≥0 and r1(u) = (r1

t (u))t≥0

are F-adapted, for each u ≥ 0 fixed, and we define the discounted process S̃(τ) = (S̃t(τ))t≥0

by

S̃t(τ) = exp

(
−
∫ t

0

rs(τ) ds

)
St (4.18)

for all t ≥ 0.

5 Examples of conditional density

In the literature, there are some explicit examples of random times satisfying Jacod’s Hypoth-

esis, among them the Gaussian ones given in Crépey et al. [4] and the one in [10]. Here, we

shall work in the same framework as in [10], with the difference that we do not make use of a

change of probability measure, and we are working under the given probability P .

Let W = (Wt)t≥0 be a standard Brownian motion with its natural filtration (Ft)t≥0 . Let F

be the cumulative distribution function defined by F (t) =
∫ t

0
g(s)ds , with the given probability

density function g . For some constants µ and σ > 0, we define G = (Gt)t≥0 as the unique

strong solution of the stochastic differential equation

dGt = −Gt
g(t)

1− F (t)
dt− µ

σ
Gt(1−Gt) dWt (G0 = 1) . (5.1)

for all t ≥ 0. It is easily seen from the expressions in (5.1) that G is a supermartingale valued

in [0, 1]. We also define the process X = (Xt)t≥0 by

Xt =

∫ t

0

µ (1−Gs) ds+

∫ t

0

σ dWs (5.2)

so that, we have FXt ⊆ Ft with FXt = σ(Xs | 0 ≤ s ≤ t), for all t ≥ 0.

Let us now provide the multiplicative decomposition for the supermartingale G . For this

purpose, we define the process Z = (Zt)t≥0 by:

Zt = exp

(
µ

σ2
Xt −

µ2

2σ2
t

)
(5.3)

and the process Y = (Yt)t≥0 by

Yt =

∫ t

0

g(s)

Zs
ds+

1− F (t)

Zt
(5.4)
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for all t ≥ 0. Then, it is shown by means of standard arguments based on Itô’s formula that

the process Z solves the stochastic differential equation

dZt = Zt
µ

σ2
dXt =

(µ
σ

)2

(1−Gt)Zt dt+
µ

σ
Zt dWt (Z0 = 1) (5.5)

so that the process 1/Z takes the expression

d

(
1

Zt

)
= − 1

Zt

µ

σ2
dXt +

1

Zt

(µ
σ

)2

dt

(
1

Z0

= 1

)
(5.6)

and thus, the process Y admits the representation

dYt =
(µ
σ

)2 (1− F (t))Gt

Zt
dt− µ

σ

(1− F (t))

Zt
dWt (Y0 = 1). (5.7)

Observe from the expression in (5.1) that Gt = Nt − At with dNt = −(µ/σ)Gt(1 − Gt)dWt

and that pt(t) = Gt/(1− F (t)), so that the intensity of τ is a deterministic function λ(t) =

pt(t)g(t)/Gt = g(t)/(1− F (t)), for all t ≥ 0.

Let us now consider the stochastic differential

d(GtZtYt) = Yt d(GtZt) + (GtZt) dYt + d〈GZ, Y 〉t (5.8)

for which we first compute, setting λ(t) = g(t)/(1− F (t)),

d(GtZt) = Zt dGt +Gt dZt + d〈G,Z〉t = Zt

(
− λ(t)Gt dt−

µ

σ
Gt(1−Gt) dWt

)
(5.9)

+Gt

((µ
σ

)2

(1−Gt)Zt dt+
µ

σ
Zt dWt

)
−
(µ
σ

)2

Gt(1−Gt)Zt dt

= −λ(t)Gt Zt dt+
µ

σ
Gt Zt [1− 1 +Gt] dWt

= −λ(t)Gt Zt dt+
µ

σ
G2
t Zt dWt .

Then, we can proceed with computing the expression (5.8) and obtain

d(GtZtYt) = Yt

(
− λ(t)Gt Zt dt+

µ

σ
G2
t Zt dWt

)
(5.10)

+GtZt

((µ
σ

)2 (1− F (t))Gt

Zt
dt− µ

σ

(1− F (t))

Zt
dWt

)
−
(µ
σ

)2

(1− F (t))G2
t dt

= −λ(t)Gt Zt Yt dt+
µ

σ
Gt [GtZtYt − (1− F (t))] dWt

so that, by using the fact that d(1− F (t)) = −g(t)dt , we get

d[GtZtYt − (1− F (t))] =
(
− λ(t)GtYt Zt + g(t)

)
dt+

µ

σ
Gt [GtZtYt − (1− F (t))] dWt (5.11)

= − g(t)

1− F (t)
[GtZtYt − (1− F (t))] dt+

µ

σ
Gt [GtZtYt − (1− F (t))] dWt
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from where it is seen that the process Vt := GtZtYt − (1− F (t)) is a solution of the stochastic

differential equation dVt = Vt(−λ(t) dt + (µ/σ)Gt dWt), started at G0Z0Y0 − (1 − F (0)) = 0,

and thus, we have GtZtYt − (1− F (t)) = 0, for all t ≥ 0.

Furthermore, by applying Itô’s formula we have

dYt = − µ

σ2

1− F (t)

Zt
dXt +

(µ
σ

)2 1− F (t)

Zt
dt (5.12)

and thus

d

(
1

Yt

)
=
µ

σ

1

Y 2
t

1− F (t)

Zt
dWt =

µ

σ

Gt

Yt
dWt (5.13)

and

d

(
1

ZtYt

)
=

1

Zt
d

(
1

Yt

)
+

1

Yt
d

(
1

Zt

)
+ d

〈
1

Z
,

1

Y

〉
t

= −µ
σ

1−Gt

ZtYt
dWt (5.14)

and hence, the processes 1/Y and 1/(ZY ) are (Ft)t≥0 -martingales. We recall that Gt = 1−F (t)
LtYt

.

Then, we can construct a family of positive F-martingales M(u) = (Mt(u))t≥0 , for u ≥ 0, by

Mt(u) =
1

Yt

(∫ u∨t

u

g(s)

Zs
ds+

1

Zt

∫ ∞
u∨t

g(s) ds

)
. (5.15)

Indeed, from

Mt(u) = 11{t<u}
1

YtZt

∫ ∞
u

g(s) ds+ 11{u<t}
1

Yt

(∫ t

u

g(s)

Zs
ds+

1

Zt

∫ ∞
t

g(s) ds

)
(5.16)

one has:

on {t ≤ u} , Mt(u) = (1− F (u))/(YtZt) is an F-martingale

on {u < t} , Mt(u) = (1/Yt)
( ∫ t

u
(g(s)/Zs) ds+ (1/Zt)

∫∞
t
g(s) ds

)
which leads to

dtMt(u) =

(∫ u

0

g(s)

Zs
ds

)
d

(
1

Yt

)
+
(
1− F (t)

)
d

(
1

YtZt

)
(5.17)

so that M(u) forms a martingale, because 1/Y and 1/(ZY ) are martingales. Note that

the process M(u) is valued in (0, 1), and Mt(u) is decreasing with respect to u , for any

t ≥ 0 fixed, with Mt(0) = 1. Furthermore, we have Mt(t) = Gt , M0(u) =
∫∞
u
g(s)ds , and

Mt(u) =
∫∞
u
pt(s)g(s)ds where pt(u) = g(u)/(Zu∧tYt).

It is therefore possible to construct, on an extended probability space, a random time τ and

a probability measure Q such that Q and P coincide on F and Q(τ > u | Ft) = Mt(u), for

t, u ≥ 0 (see [15]). It is straightforward to check the important property
∫∞

0
pt(u)g(u)du = 1,

for any t ≥ 0.
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Let us now thus compute the dynamics of p(u) by means of the integration by parts and

thus

dtpt(u) = dt

(
1

Zu∧tYt

)
=
µ

σ

(
11{u≤t}

Gt

ZuYt
− 11{u>t}

1−Gt

ZtYt

)
dWt (5.18)

so that

dtpt(u) = pt(u)
µ

σ

(
11{u≤t}Gt − 11{u>t} (1−Gt)

)
dWt (5.19)

and

ϕt(u) =
µ

σ

(
11{u≤t}Gt − 11{u>t} (1−Gt)

)
=
µ

σ

(
11{u≤t} − (1−Gt)

)
. (5.20)

In the progressively enlarged filtration, dWG
t = dWt − αG

t dt , where

α0
t =

µ

σ

1

Gt

∫ t

0

Gt
g(u)

ZuYt
du =

µ

σ

1

Yt

∫ t

0

g(u)

Zu
du (5.21)

=
µ

σ

1

Yt

(
Yt −

1− F (t)

Zt

)
=
µ

σ

(
1− 1− F (t)

YtZt

)
=
µ

σ
(1−Gt)

α1
t (τ) = −µ

σ
Gt , (5.22)

and

dWG
t = dWt −

µ

σ

(
(1−Gt) 11{t≤τ} −Gt 11{τ<t}

)
dt . (5.23)

We can check that the property
∫∞

0
E(αG

t |Ft)dt = 1 holds. Moreover, from

dWG
t = dWt −

µ

σ

(
11{τ≤t} − (1−Gt)

)
dt (5.24)

we deduce that

dXt = µ 11{τ≤t} dt+ σ dWG
t . (5.25)

Acknowledgment : Monique Jeanblanc thanks Marie Claire Quenez for a fruitfull discussion

21



References

[1] Aksamit, A. and Jeanblanc, M. (2017). Enlargement of filtration with finance in

view, Springer.

[2] Amendinger, J. (1999). Initial Enlargement of Filtrations and Additional Informa-

tion in Financial Markets. PhD thesis, Technical University Berlin.

[3] Barlow, M. T. (1978) Study of filtration expanded to include an honest time, Zeitschrift

für Wahrscheinlichkeitstheorie und verwandte Gebiete, 44, 307-323.
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