Context-Aware Zero-Shot Learning for Object Recognition - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Context-Aware Zero-Shot Learning for Object Recognition

Résumé

Zero-Shot Learning (ZSL) aims at classifying unlabeled objects by leveraging auxiliary knowledge , such as semantic representations. A limitation of previous approaches is that only intrinsic properties of objects, e.g. their visual appearance, are taken into account while their context, e.g. the surrounding objects in the image, is ignored. Following the intuitive principle that objects tend to be found in certain contexts but not others, we propose a new and challenging approach, context-aware ZSL, that leverages semantic representations in a new way to model the conditional likelihood of an object to appear in a given context. Finally, through extensive experiments conducted on Visual Genome, we show that contextual information can substantially improve the standard ZSL approach and is robust to unbalanced classes.
Fichier principal
Vignette du fichier
1904.12638.pdf (3.3 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02116654 , version 1 (01-05-2019)

Identifiants

  • HAL Id : hal-02116654 , version 1

Citer

Eloi Zablocki, Patrick Bordes, Benjamin Piwowarski, Laure Soulier, Patrick Gallinari. Context-Aware Zero-Shot Learning for Object Recognition. Thirty-sixth International Conference on Machine Learning (ICML), Jun 2019, Long Beach, CA, United States. ⟨hal-02116654⟩
202 Consultations
147 Téléchargements

Partager

More