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Context-Aware Zero-Shot Learning for Object Recognition

Éloi Zablocki * 1 Patrick Bordes * 1 Benjamin Piwowarski 1 Laure Soulier 1 Patrick Gallinari 1 2

Abstract

Zero-Shot Learning (ZSL) aims at classifying
unlabeled objects by leveraging auxiliary knowl-
edge, such as semantic representations. A limita-
tion of previous approaches is that only intrinsic
properties of objects, e.g. their visual appearance,
are taken into account while their context, e.g. the
surrounding objects in the image, is ignored. Fol-
lowing the intuitive principle that objects tend to
be found in certain contexts but not others, we
propose a new and challenging approach, context-
aware ZSL, that leverages semantic representa-
tions in a new way to model the conditional like-
lihood of an object to appear in a given context.
Finally, through extensive experiments conducted
on Visual Genome, we show that contextual in-
formation can substantially improve the standard
ZSL approach and is robust to unbalanced classes.

1. Introduction
Traditional Computer Vision models, such as Convolutional
Neural Networks (CNNs) (Lecun et al., 1998), are designed
to classify images into a set of predefined classes. Their per-
formances have kept improving in the last decade, namely
on object recognition benchmarks such as ImageNet (Deng
et al., 2009a), where state-of-the-art models (Zoph et al.,
2017; Real et al., 2018) have outmatched humans. However,
training such models requires hundreds of manually-labeled
instances for each class, which is a tedious and costly ac-
quisition process. Moreover, these models cannot replicate
humans’ capacity to generalize and to recognize objects they
have never seen before. As a response to these limitations,
Zero-Shot Learning (ZSL) has emerged as an important re-
search field in the last decade (Farhadi et al., 2009a; Mensink
et al., 2012; Fu et al., 2015a; Kodirov et al., 2017). In the
object recognition field, ZSL aims at labeling an instance of
a class for which no supervised data is available, by using
knowledge acquired from another disjoint set of classes, for

*Equal contribution 1Sorbonne Université, CNRS, Labora-
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<eloi.zablocki@lip6.fr>.

which corresponding visual instances are provided. In the
literature, these sets of classes are respectively called target
and source domains — terms borrowed from the transfer
learning community. Generalization from the source to the
target domain is achieved using auxiliary knowledge that
semantically relates classes of both domains, e.g. attributes
or textual representations of the class labels.

Previous ZSL approaches only focus on intrinsic proper-
ties of objects, e.g. their visual appearance, by the means
of handcrafted features — e.g. shape, texture, or color —
(Lampert et al., 2014) or distributed representations learned
from text corpora (Akata et al., 2016; Long et al., 2017). The
underlying hypothesis is that the identification of entities
of the target domain is made possible thanks to the implicit
principle of compositionality (a.k.a. Frege’s principle (Pel-
letier, 2001)) — an object is formed by the composition of
its attributes and characteristics — and the fact that other
entities of the source domain share the same attributes. For
example, if textual resources state that an apple is round
and that it can be red or green, this knowledge can be used
to identify apples in images because these characteristics
(‘round‘, ‘red‘) could be shared by classes of the source
domain (e.g, ‘round‘ like a ball, ‘red‘ like a strawberry. . . ).

We believe that visual context, i.e. the other entities sur-
rounding an object, also explains human’s ability to rec-
ognize an object that has never been seen before. This
assumption relies on the fact that scenes are compositional
in the sense that they are formed by the composition of
objects they contain. Some works in Computer Vision have
exploited visual context to refine the predictions of clas-
sification (Mensink et al., 2014) or detection (Bell et al.,
2016) models. To the best of our knowledge, context has
not been exploited in ZSL because, for obvious reasons, it
is impossible to directly estimate the likelihood of a context
for objects from the target domain — from visual data only.
However, textual resources can be used to provide insights
on the possible visual context in which an object is expected
to appear. To illustrate this, knowing from language that
an apple is likely to be found hanging on a tree or in the
hand of someone eating it, can be very helpful to identify
apples in images. In this paper, our goal is to leverage visual
context as an additional source of knowledge for ZSL, by
exploiting the distributed word representations (Mikolov
et al., 2013) of the object class labels. More precisely, we
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adopt a probabilistic framework in which the probability to
recognize a given object is split into three components: (1)
a visual component based on its visual appearance (which
can be derived from any traditional ZSL approach), (2) a
contextual component exploiting its visual context, and (3) a
prior component, which estimates the frequency of objects
in the dataset. As a complementary contribution, we show
that separating prior information in a dedicated component,
along with simple yet effective sampling strategies, leads to
a more interpretable model, able to deal with imbalanced
datasets. Finally, as traditional ZSL datasets lack contex-
tual information, we design a new dedicated setup based on
the richly annotated Visual Genome dataset (Krishna et al.,
2017). We conduct extensive experiments to thoroughly
study the impact of contextual information.

2. Related work
Zero-shot learning While state-of-the-art image classifi-
cation models (Zoph et al., 2017; Real et al., 2018) restrict
their predictions to a finite set of predefined classes, ZSL
bypasses this important limitation by transferring knowl-
edge acquired from seen classes (source domain) to unseen
classes (target domain). Generalization is made possible
through the medium of a common semantic space where all
classes from both source and target domains are represented
by vectors called semantic representations.

Historically, the first semantic representations that were used
were handcrafted attributes (Farhadi et al., 2009a; Parikh
& Grauman, 2011; Mensink et al., 2012; Lampert et al.,
2014). In these works, the attributes of a given image are
determined and the class with the most similar attributes
is predicted. Most methods represent class labels with bi-
nary vectors of visual features (e.g, ’IsBlack’,’HasClaws’)
(Lampert et al., 2009; Liu et al., 2011; Fu et al., 2014; Lam-
pert et al., 2014). However, attribute-based methods do not
scale efficiently since the attribute ontology is often domain-
specific and has to be built manually. To cope with this
limitation, more recent ZSL works rely on distributed se-
mantic representations learned from textual datasets such as
Wikipedia, using Distributional Semantic Models (Mikolov
et al., 2013; Pennington et al., 2014; Peters et al., 2018).
These models are based on the distributional hypothesis
(Harris, 1954), which states that textual items with similar
contexts in text corpora tend to have similar meanings. This
is of particular interest in ZSL: all object classes (from both
source and target domains) are embedded into the same con-
tinuous vector space based on their textual context, which is
a rich source of semantic information. Some models directly
aggregate textual representations of class labels and the pre-
dictions of a CNN (Norouzi et al., 2013), whereas others
learn a cross-modal mapping between image representations
(given by a CNN) and pre-learned semantic embeddings
(Akata et al., 2015; Bucher et al., 2016). At inference, the

predicted class of a given image is the nearest neighbor in
the semantic embedding space. The cross-modal mapping is
linear in most of ZSL works (Palatucci et al., 2009; Romera-
Paredes & Torr, 2015; Akata et al., 2016; Qiao et al., 2016);
this is the case in the present paper. Among these works,
the DeViSE model (Frome et al., 2013) uses a max-margin
ranking objective to learn a cross-modal projection and fine-
tune the lower layers of the CNN. Several models have built
upon DeViSE with approaches that learn non-linear map-
pings between the visual and textual modalities (Ba et al.,
2015; Xian et al., 2016), or by using a common multimodal
space to embed both images and object classes (Fu et al.,
2015b; Long et al., 2017). In this paper, we extend DeViSE
in two directions: by additionally leveraging visual context,
and by reformulating it as a probabilistic model that allows
coping with an imbalanced class distribution.

Visual context The intuitive principle that some objects
tend to be found in some contexts but not others, is at the
core of many works. In NLP, visual context of objects can be
used to build efficient word representations (Zablocki et al.,
2018). In Computer Vision, it can be used to refine detec-
tion (Chen et al., 2015; Chu & Cai, 2018) or segmentation
(Zhang et al., 2018) tasks.

Visual context can either be low-level (i.e. raw image pixels)
or high-level (i.e. labeled objects). When visual context is
exploited in the form of low-level information (Torralba,
2003; Wolf & Bileschi, 2006; Torralba et al., 2010), it of-
ten consists of global image features. For instance, in (He
et al., 2004), a Conditional Random Field is trained at com-
bining low-level image features to assign to each pixel a
class. In high-level approaches, the referential meaning of
the context objects (i.e. class labels) is used. For example,
Rabinovich et al. (2007) show that high-level context can be
used at the post-processing level to reduce the ambiguities
of a pre-learned object classification model, by leveraging
co-occurrence patterns between objects that are computed
from the training set. Moreover, Yu et al. (2016) study the
role of context to classify objects: they investigate the impor-
tance of contextual indicators, such as object co-occurrence,
relative scale and spatial relationships, and find that contex-
tual information can sometimes be more informative than
direct visual cues from objects. Spatial relations between
objects can also be used in addition to co-occurrences, as
in (Galleguillos et al., 2008; Chen et al., 2018). In (Bengio
et al., 2013), co-occurrences are computed using external
information collected from web documents. The model
classifies all objects jointly; it gives an inference method
enabling a balance between an image coherence term (given
by an image classifier) and a semantic term (given by a
co-occurrence matrix). However, the approach is fully su-
pervised, and this setting cannot be applied to ZSL. The
context-aware zero-shot learning task is related to the graph
generation tasks (Zellers et al., 2018; Yang et al., 2018) and
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Figure 1. The goal is to find the class (in the target domain) of the object contained within the blue image region V . Its context is formed
of labeled objects from the source domain (red plain boxes) and of unlabeled object from the target domain (red dashed boxes).

visual relationship detection (Lu et al., 2016).

In conclusion, while many works in NLP and Computer
Vision show the importance of visual context, its use in ZSL
remains a challenge, that we propose to tackle in this paper.

3. Context-aware Zero-Shot Learning
LetO be the set of all object classes, divided in classes from
the source domain S and classes from the target domain
T . The goal of our approach — context-aware ZSL — is to
determine the class i ∈ T of an object contained in an image
I , given its visual appearance V and its visual context C. The
image I is annotated with bounding boxes, each containing
an object. Given the zone V , the context C consists of the
surrounding objects in the image. Their classes can either
belong to the source domain (C ∩ S) or to the target domain
(C ∩ T ). Note that the class of an object of C ∩ T is not
accessible in ZSL, only its visual appearance is.

3.1. Model overview

We tackle this task by modeling the conditional probability
P (i|V, C) of a class i given both the visual appearance V
and the visual context C of the object of interest. Given
the absence of data in the target domain, we need to limit
the complexity of the model, for generalizability’s purpose.
Accordingly, we suppose that V and C are conditionally
independent given the class i — we show in the experi-
ments (section 5) that this hypothesis is acceptable. This
hypothesis leads to the following expression:

P (i|V, C) ∝ P (V|i)P (C|i)P (i) (1)

where each conditional probability expresses the probability
of either the visual appearance V or the context C given
class i, and P (i) denotes the prior distribution of the dataset.
Each term of this equation is modeled separately.

The intuition behind our approach is illustrated in Figure 1,
where the blue box contains the object of interest. Here, the

class is apple, which belongs to the target domain T . The
visual component, which focuses on the zone V , recognizes
a tennis ball due to its yellow and round appearance; ap-
ple is ranked second. The prior component indicates that
apple is slightly more frequent than tennis ball, but the fre-
quency discrepancy may not be high enough to change the
prediction of the visual component. In that case, the context
component is discriminant: it ranks objects that are likely to
be found in a kitchen, and reveals that an apple is far more
likely to be found than a tennis ball in this context.

Precisely modeling P (C|.), P (V|.) and P (.) is challenging
due to the ZSL setting. Indeed, these distributions cannot
be computed for classes of the target domain because of the
absence of corresponding training data. Thus, to transfer the
knowledge acquired from the source domain to the target do-
main, we use a common semantic space, namely Word2Vec
(Mikolov et al., 2013), where source and target class labels
are embedded as vectors of Rd, with d the dimension of
the space. It is worth noting that we propose to separately
learn the prior class distribution P (.) with a ranking loss (in
section 3.3). This allows dealing with imbalanced datasets,
in contrast to ZSL models like DeViSE (Frome et al., 2013).
This intuition is experimentally validated in section 5.2.

3.2. Description of the model’s components

Due to both the ZSL setting and the variety of possible
context and/or visual appearance of objects, it is not possible
to estimate directly the different probabilities of equation
1. Hence, in what follows, we estimate quantities related to
P (C|.), P (V|.) and P (.) using parametric energy functions
(LeCun et al., 2006). These quantities are learned separately,
as described in section 3.3. Finally, we explain how we
combine them to produce the global probability P (.|C,V)
in section 3.4.

Visual component The visual component models P (V|i)
by computing the compatibility between the visual appear-
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ance V of the object of interest, and the semantic represen-
tation wi of the class i.

Following previous ZSL works based on cross-modal projec-
tions (Frome et al., 2013; Bansal et al., 2018), we introduce
fθV , a parametric function mapping an image to the se-
mantic space: fθV (V) = WV .CNN(V) + bV ∈ Rd where
CNN(V) is a vector in Rdvisual , output by a pretrained CNN
truncated at the penultimate layer,WV is a projection matrix
(∈ Rd×dvisual ) and bV a bias vector — in our experiments,
dvisual = 2048. The probability that the image region V
corresponds to the class i is set to be proportional to the
cosine similarity between the projection fθV (V) of V and
the semantic representation wi of i:

logP (V|i; θV ) ∝ cos(fθV (V), wi) := log P̃visual (2)

Context component The context component models
P (C|i) by computing a compatibility score between the vi-
sual context C, and the semantic representation wi of class i.
More precisely, the conditional probability is written:

logP (C|i; θC) ∝ fθC (C, wi) = fθ1C

(
hθ2C (C)⊕ wi

)

:= log P̃context (3)

where hθ2C (C) ∈ Rd is a vector representing the context,
θC = {θ1C ; θ2C} are parameters to learn, and ⊕ is the con-
catenation operator. To take non-linear and high-order inter-
actions between hθ2C (C) and wi into account, fθ1C is mod-
eled by a 2-layer Perceptron. We found that concatenating
hθ2C (C) with wi leads to better results than a cosine similar-
ity, as done in equation 2 for the visual component.

To specify the modeling of hθ2C (C), we propose various
context models depending on which context objects are con-
sidered and how they are represented. Specifically, a context
model is characterized by (a) the domain of context objects
that are considered (i.e. source S or target T ) and (b) the
way these objects are represented, either by a textual repre-
sentation of their class label or by a visual representation of
their image regions. Accordingly, we distinguish:
• The low-level (L) approach that computes a representation
from the image region Vk of a context object. This produces
the following context models:

SL = {WCCNN(Vk) + bC |k ∈ C ∩ S}
TL = {WCCNN(Vk) + bC |k ∈ C ∩ T }

• The high-level (H) approach which considers semantic
representationswk of the class labels k of the context objects
(only available for entities of the source domain). This
produces context models:

SH = {wk|k ∈ C ∩ S} and TH = {wk|k ∈ C ∩ T }
Note that TH is not defined in the zero-shot setting, since
class labels of objects from the target domain are unknown;
yet it is used to define Oracle models (section 4.3).

These four basic sets of vectors can further be combined
in various ways to form new context models (for instance:
SL∪TL, SH∪SL, SH∪SL∪TL, etc.). At last, hθ2C averages
the representations of these vectors to build a global context
representation. For example, hθ2C (CSH∪TL

) equals:
1

|CS |+ |CT |
[ ∑

(i,Vi)∈CS

wi +
∑

(j,Vj)∈CT

(
WC .CNN(Vj) + bC

)]

where | · | denotes the cardinality of a set of vectors.

Prior component The goal of the prior component is to
assess whether an entity is frequent or not in images. We
estimate P (i) from the semantic representationwi of class i:

logP (i; θP ) ∝ fθP (wi) := log P̃prior (4)

where fθP is a 2-layer Perceptron that outputs a scalar.

3.3. Learning

In this section, we explain how we learn the energy func-
tions fθC , fθV and fθP . Each component (resp. context,
visual, prior) of our model is assigned a training objective
(resp. LC , LV , LP ). As the components are independent by
design, they are learned separately. This allows for a better
generalization in the target domain, as shown experimentally
(section 5.2). Besides, ensuring that some configurations
are more likely than others motivates us to model each ob-
jective by a max-margin ranking loss, in which a positive
configuration is assigned a lower energy than a negative
one, following the learning to rank paradigm (Weston et al.,
2011). Unlike previous works (Frome et al., 2013), which
are generally based on balanced datasets such as ImageNet
and thus are not concerned with prior information, we want
to avoid any bias coming from the imbalance of the dataset
in LC and LV , and learn the prior separately with LP . In
other terms, the visual (resp. context) component should
focus exclusively on the visual appearance (resp. visual
context) of objects. This is done with a careful sampling
strategy of the negative examples within the ranking objec-
tives, that we detail in the following. To the best of our
knowledge, such a discussion relative to prior modeling in
learning objectives — which is, in our view, paramount in
imbalanced datasets such as Visual Genome — has not been
done in previous research.

Positive examples are sampled among entities of the source
domain from the data distribution P ?: they consist in a
single object for LP , an object/box pair for LV , an ob-
ject/context pair for LC . To sample negative examples j
from the source domain, we distinguish two ways:

(1) For the prior objective LP , negative object classes are
sampled from the uniform distribution U :

LP = E
i∼P?

E
j∼U

⌊
γP − fθP (wi) + fθP (wj)

⌋
+

(5)
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Noting ∆ji := fθP (wj)− fθP (wi), the contribution of two
given objects i and j to this objective is:

P ?(i)
⌊
γP + ∆ji

⌋
+

+ P ?(j)
⌊
γP −∆ji

⌋
+

If P ?(i) > P ?(j), i.e. when object class i is more frequent
than object class j, this term is minimized when ∆ji =
−γP , i.e. fθP (wi) = fθP (wj) + γP > fθP (wj). Thus,
P̃prior(.; θP ) captures prior information, as it learns to rank
objects based on their frequency.

(2) For the visual and context objectives, negative object
classes are sampled from the prior distribution P ?(.):

LV = E
i,V∼P?

E
j∼P?

⌊
γV −fθV (V)>wi + fθV (V)>wj

⌋
+

(6)

LC = E
i,C∼P?

E
j∼P?

⌊
γC−fθC

(
C, wi

)
+fθC

(
C, wj

)⌋
+

(7)

Similarly, the contribution of two given objects i, j and a
context C to the objective LC is:

P ?(i)P ?(j)
[
P ?(C|i)

⌊
γV + fθC (C, wj)− fθC (C, wi)

⌋
+

+P ?(C|j)
⌊
γV + fθC (C, wi)− fθC (C, wj)

⌋
+

]

Minimizing this term does not depend on the relative
order between P ?(i) and P ?(j); thus, P̃context(C|.; θC)
does not take prior information into account. Moreover,
P ?(C|i) > P ?(C|j) implies that fθC (C, wi) > fθC (C, wj).

The alternative, as done in DeViSE (Frome et al., 2013),
is to sample negative classes uniformly in the source do-
main in the objective LV . Thus, if the prior is uniform,
DeViSE directly models P (.|V); otherwise, LV cannot be
analyzed straightforwardly. Besides, the contributions of
visual and prior information are mixed. However, we show
that learning the prior separately and imposing the context
(resp. visual) component to exclusively focus on contextual
(resp. visual) information is more efficient (section 5.2).

3.4. Inference

In this section, we detail the inference process. The goal
is to combine the predictions of the individual components
of the model to form the global probability distribution
P (.|V, C). In section 3.3, we detailed how to learn the func-
tions fθC , fθV and fθP , from which log P̃context, log P̃visual

and log P̃prior are deduced respectively. However, the nor-
malization constants in equations 2, 3 and 4, which depend
on the object class i in the general case, are unknown. As a
simplifying hypothesis, we suppose that these normalization
constants are scalars that we respectively note αC , αV and
αP . This leads to:

P (.|V, C) = (P̃context)
αC

︸ ︷︷ ︸
P (C|.)

. (P̃visual)
αV

︸ ︷︷ ︸
P (V|.)

. (P̃prior)
αP

︸ ︷︷ ︸
P (.)

(8)

Source domainTarget domain

log ePcontext log ePvisual

log ePprior

log ePcontext

log ePprior

log ePvisual

Figure 2. 3D visualization of the unnormalized log-probabilities
of each component (N = 500). Context model SL ∪ SH ∪ TL.

To see whether this hypothesis is reasonable, we did some
post-hoc analysis of one of our model, and plotted in Fig-
ure 2 the values log P̃visual, log P̃context and log P̃prior for pos-
itive (red points) and negative (blue points) configurations
(i,V, C) of the test set of Visual Genome. We observe that
positive and negative triplets are well separated, which em-
pirically validates our initial hypothesis.

Hyper-parameters αC , αV and αP are selected on the vali-
dation set to compute P (.|C,V). To build models that do not
use a visual/contextual component, we simply select a sub-
set of the probabilities and their respective hyperparameters.
For example, P (.|C) = (P̃context)

αC (P̃prior)
αP .

4. Experimental protocol
4.1. Data

To measure the role of context in ZSL, a dataset that presents
annotated objects within a rich visual context is required.
However, traditional ZSL datasets, such as AwA (Farhadi
et al., 2009b), CUB-200 (Wah et al., 2011) or LAD (Zhao
et al., 2018), are made of images that contain a unique
object each, with no or very little surrounding visual con-
text. We rather use Visual Genome (Krishna et al., 2017),
a large-scale image dataset (108K images) annotated at a
fine-grained level (3.8M object instances), covering various
concepts (105K unique object names). This dataset is of
particular interest for our work, as objects have richly anno-
tated contexts (31 object instances per image on average).
In order to shape the data to our task, we randomly split the
set of images of Visual Genome into train/validation/test
sets (70%/10%/20% of the total size). To build the set O of
all objects classes, we select classes which appear at least
10 times in Visual Genome and have an available Word2vec
representation. O contains 4842 object classes; it amounts
to 3.4M object instances in the dataset. This dataset is highly
imbalanced as 10% of most represented classes amount to
84% of object instances. We define the level of supervision
psup as the ratio of the size of the source domain over the
total number of objects: psup = |S|/|O|. For a given psup
ratio, the source S and target T domains are built by ran-
domly splitting O accordingly. Every object is annotated
with a bounding box and we use this supervision in our
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model for entities of both source and target domains. To
facilitate future work on context-aware ZSL, we publicly
release data splits and annotations 1.

4.2. Evaluation methodology and metrics

We adopt the conventional setting for ZSL, which implies
entities to be retrieved only among the target domain T .
Besides, we also evaluate the performance of the model to
retrieve entities of the source domain S (with models tuned
on the target domain).

The model’s prediction takes the form of a list of n classes,
sorted by probability; the rank of the correct class in that
list is noted r. Depending on the setting, n equals |T |
or |S|. We define the First Relevant (FR) metric with
FR = 2

n−1 (r − 1). To further evaluate the performance
over the whole test set, the Mean First Relevant (MFR)
metric is used (Fuhr, 2017). It is computed by taking the
mean value of FR scores obtained on each image of the test
set. Note that the factor 2

n−1 rescales the metric such that
the MFR score of a random baseline is 100%, while the
MFR of a perfect model would be 0%. The MFR metric
has the advantage to be interval-scale-based, unlike more
traditional Recall@k metrics or Mean Reciprocal Ranks
metrics (Ferrante et al., 2017), and thus can be averaged;
this allows for meaningful comparison with a varying psup.

4.3. Scenarios and Baselines

Model scenarios Model scenarios depend on the informa-
tion that is used in the probabilistic setting: ∅, C, V or both
C and V . When contextual information is involved, a con-
text model ? is specified to represent C, which we note C?.
The different context models are ? ∈ {SH , SL, TL, SL ∪
TL, SH ∪ TL, SL ∪ SH ∪ TL}. For clarity’s sake, we note
our model M. For example, M(CSH∪TL

,V) models the prob-
ability P (CSH∪TL

|.)P (V|.)P (.) as explained in 3.4, M(V)
models P (V|.)P (.), and M(∅) models P (.).

Oracles To evaluate upper-limit performances for our
models, we define Oracle baselines where classes of tar-
get objects are used, which is not allowed in the zero-shot
setting. Note that every Oracle leverages visual information.
• True Prior: This Oracle uses, for its prior component, the
true prior distribution P ?(i) = #i

M computed for all objects
of both source and target domains on the full dataset, where
#i is the number of instances of the i-th class in images and
M is the total number of images.
• Visual Bayes: This Oracle uses P ?(.) for its prior compo-
nent as well. Its context component uses co-occurrence
statistics between objects computed on the full dataset:
P im(C|i) =

∏
c∈C Pco-oc(c|i) where Pco-oc(c|i) = #(c,i)M

#c#i
is the probability that objects c and i co-occur in images,
with #(c, i) the number of co-occurrences of c and i.

1https://data.lip6.fr/context_aware_zsl/

• Textual Bayes: Inspired by (Bengio et al., 2013), this Ora-
cle is similar to Visual Bayes, except that its prior P text(.)
and context component P text(.|C) are based on textual co-
occurrences instead of image co-occurrences: Pco-oc(c|i) is
computed by counting co-occurrences of words c and i in
windows of size 8 in the Wikipedia dataset, and P text(i) is
computed by summing the number of instances of the i-th
class divided by the total size of Wikipedia.
• Semantic representations for all objects: M(CSH∪TH

,V)
uses word embeddings of both source and target objects.

Baselines
•M(C ⊕ V): To study the validity of the hypothesis about
the conditional independence of C and V , we introduce a
baseline where we directly model P (C,V|.)P (.). To do so,
we replace, in the expression of LV (equation 6), fθV (V)
by the concatenation of h(C) and fθV (V) projected in Rd
with a 2-layer Perceptron.
•DeViSE(V): To evaluate the impact of our Bayesian model
(equation 1) and our sampling strategy (section 3.3), we
compare against DeViSE (Frome et al., 2013). DeViSE(V)
is different from M(V) because negative examples in LV
are uniformly sampled, and the prior P (.) is not learned.
• DeViSE(C ⊕V): similarly to M(C ⊕V), we define a base-
line that does not rely on the conditional independence of C
and V , using the same sampling strategy as DeViSE.
• M(CI ,V): To understand the importance of context su-
pervision, i.e. annotations of context objects (boxes and
classes), we design a baseline where no context annotations
are used. The context is the whole image without the zone V
of the object, which is masked out. The associated context
model is ? = I with h(CI) = gθI (I \ V) ; gθI is a paramet-
ric function to be learned. This baseline is inspired from
(Torralba et al., 2010), where global image features are used
to refine the prediction of an image model.

4.4. Implementation details

For each objective LC ,LV and LP , at each iteration of the
learning algorithm, 5 negative entities are sampled per pos-
itive example. Word representations are vectors of R300,
learned with the Skip-Gram algorithm (Mikolov et al., 2013)
on Wikipedia. Image regions are cropped, rescaled to
(299×299), and fed to CNN, an Inception-v3 CNN (Szegedy
et al., 2016), whose weights are kept fixed during training.
This model is pretrained on ImageNet (Deng et al., 2009b).
As a result, every ImageNet class that belongs to the to-
tal set of objects O was included in the source domain S.
Models are trained with Adam (Kingma & Ba, 2014) and
regularized with a L2-penalty; the weight of this penalty
decreases when the level of supervision increases, as the
model is less prone to overfitting. All hyper-parameters
are cross-validated on classes of the target domain, on the
validation set.

https://data.lip6.fr/context_aware_zsl/
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Table 1. Evaluation of various information sources, with varying
levels of supervision. MFR scores in %. δC is the relative improve-
ment (in %) of M(CSH ,V) over M(V).

Target domain T Source domain S
psup 10% 50% 90% 10% 50% 90%

Domain size 4358 2421 484 484 2421 4358

M
od

el
s

Random 100 100 100 100 100 100
M(∅) 38.6 23.7 13.8 12.0 10.6 11.2
M(V) 20.5 10.7 6.0 1.5 2.6 3.6

M(CSH
) 28.7 14.4 9.1 4.2 4.3 4.4

M(CSH
,V) 18.1 9.0 5.2 1.1 1.9 2.4

δC (%) 11.6 16.4 12.1 23.7 27.3 31.5

5. Results
5.1. The importance of context

In this section, we evaluate the contribution of contextual
information, with varying levels of supervision psup. We fix
a simple context model (? = SH ) and report MFR results
with psup = 10, 50, 90% in Table 1 for every combination of
information sources: ∅, V , C and (C,V) — we observe simi-
lar trends for the other context models. Results highlight that
contextual knowledge acquired from the source domain can
be transferred to the target domain, as M(CSH

) significantly
outperforms the Random baseline. As expected, it is not as
useful as visual information: M(V)

MFR
< M(CSH

), where
MFR
<

means lower MFR scores, i.e. better performances. How-
ever, Table 1 demonstrates that contextual and visual infor-
mation are complementary: using M(CSH

,V) outperforms
both M(CSH

) and M(V). Interestingly, as the learned prior
model M(∅) is also able to generalize, we show that visual
frequency can somehow be learned from textual semantics,
which extends previous work where word embeddings were
shown to be a good predictor of textual frequency (Schakel
& Wilson, 2015).

When psup increases, we observe that all models are better at
retrieving objects of the target domain (i.e. MFR decreases),
which is intuitive because models are trained on more data
and thus generalize better to recognize entities from the
target domain. Besides, when psup increases, the context
is also more abundant. This explains: (1) the decreasing
MFR values for model M(CSH

) on T , (2) the increasing
relative improvement δC of M(CSH

,V) over M(V) on S.
However, on the target domain, we note that δC does not
monotonously increase with psup. A possible explanation is
that the visual component improves faster than the context
component, so the relative contribution brought by context
to the final model M(CSH

,V) decreases after psup = 50%.
Since the highest relative improvement δC (in T ) is attained
with psup = 50%, we fix the standard level of supervision
psup = 50% in the rest of the experiments; this amounts to
2421 classes in both source and target domains.

Table 2. MFR performances (given in %) for all baselines and
scenarios. psup = 50%. Oracle results, written in italics, are not
taken into account to determine the best scores, written in bold.

Model Probability T S

O
ra

cl
es

Textual Bayes P text(C|.)P (V|.)P text(.) 14.54 6.73
M(CSH∪TH

,V) P (CSH∪TH
|.)P (V|.)P (.) 7.57 2.53

True Prior P (V|.)P?(.) 4.92 2.63
Visual Bayes P im(C|.)P (V|.)P?(.) 3.40 2.11

B
as

el
in

es DeViSE(V) P (.|V) 10.73 3.62
DeViSE(CSH

⊕ V) P (.|CSH
,V) 10.11 3.11

M(CSH
⊕ V) P (CSH

,V|.)P (.) 10.07 1.85
M(CI ,V) P (CI |.)P (V|.)P (.) 9.19 2.13

O
ur

m
od

el
s

M(V) P (V|.)P (.) 10.72 2.64
M(CSL

,V) P (CSL
|.)P (V|.)P (.) 9.01 2.05

M(CTL
,V) P (CTL

|.)P (V|.)P (.) 9.00 2.13
M(CSH

,V) P (CSH
|.)P (V|.)P (.) 8.96 1.92

M(CSH∪SL
,V) P (CSH∪SL

|.)P (V|.)P (.) 8.71 1.88
M(CSL∪TL

,V) P (CSL∪TL
|.)P (V|.)P (.) 8.60 1.93

M(CSH∪TL
,V) P (CSH∪TL

|.)P (V|.)P (.) 8.52 1.86
M(CSH∪SL∪TL

,V) P (CSH∪SL∪TL
|.)P (V|.)P (.) 8.31 1.79

5.2. Modeling contextual information

In this section, we compare the different context models;
results are reported in Table 2. First, underlying hypothe-
ses of our model are experimentally tested. (1) Modeling
context and prior information with semantic representations
(models M(C?,V)) is far more efficient than using direct
textual co-occurrences, as shown by the Textual Bayes base-
line, which is the weaker model despite being an Oracle. (2)
Moreover, we show that the hypothesis on the conditional
independence of C and V is acceptable, as separately model-
ing C and V gives better results than jointly modeling them
(i.e. M(CSH

,V)
MFR
< M(CSH

⊕ V)). (3) Furthermore, we ob-
serve that our approach M(V) is more efficient to capture
the imbalanced class distribution of the source domain, com-
pared to DeViSE(V); indeed, True Prior ≈M(V) , whereas
True Prior

MFR
< DeViSE(V) on S. Even if the improvement

is only significant for the source domain S , it indicates that
separately using information sources is clearly a superior
approach to further integrate contextual information.

Second, as observed in the case of the context model SH
(section 5.1), using contextual information is always bene-
ficial. Indeed, all models with context M(C?,V) improve
over M(V) — which is the model with no contextual in-
formation — both on target and source domains. In more
details, we observe that performances increase when addi-
tional information is used: (1) when the bounding boxes
annotations are available: all of our models that use both C
and V outperform the baseline M(CI ,V), which could also
be explained by the useless noise outside the object boxes in
the image and the difficulty of computing a global context
from raw image, (2) when context objects are labeled and
high-level features are used instead of low-level features, e.g.
SH

MFR
< SL and SH ∪ TH

MFR
< SH ∪ TL, (3) when more con-

text objects are considered (e.g. SL ∪ TL
MFR
< SL), (4) when
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Figure 3. Boxplot representing the distribution of the correct ranks
(First Relevant in %) for five randomly selected classes of the target
domain, with the context model SL ∪ SH ∪ TL. Below are listed,
by order of frequency, the classes that co-occur the most with the
object of interest (classes of T in green; S in red).

low-level information is used complementarily to high-level
information (e.g. SL∪SH∪TL

MFR
< SL∪TL). As a result, the

best performance is attained for M(CSL∪SH∪TL
,V), with a

22% (resp. 32%) relative improvement in the target (resp.
source) domain compared to M(V).

We note that there is still room for improvement to approach
ground-truth distributions for objects of the target domain
(e.g, towards word embeddings able to better capture visual
context). Indeed, even if our models outperform True Prior
and Visual Bayes on the source domain, these Oracle base-
lines are still better on the target domain, hence showing
that learning the visual context of objects from textual data
is challenging.

5.3. Qualitative Experiments

To gain a deeper understanding of contextual information,
we compare in Figure 3 the predictions of M(V) and the
global model M(C,V). We randomly select five classes of
the target domain and plot, for all instances of these classes
in the test set of Visual Genome, the distribution of the pre-
dicted ranks of the correct class (in percentage); we also
list the classes that appear the most in the context of these
classes. We observe that, for certain classes (player, handle
and field), contextual information helps to refine the predic-
tions; for others (house and dirt), contextual information
degrades the quality of the predictions.

First, we can outline that visual context can guide the model
towards a more precise prediction. For example, a player,
without context, could be categorized as person, man or
woman; but visual context provides important complemen-
tary information (e.g, helmet, baseball) that grounds person
in a sport setting, and thus suggests that the person could be
playing. Visual context is also particularly relevant when the
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P (C|.)Figure 4. Qualitative examples where the global model
M(CSL∪SH∪TL ,V) correctly retrieves the class (T classes only).

object of interest has a generic shape. For example, handle,
without context, is visually similar to many round objects;
but the presence of objects like door or fridge in the context
helps determine the nature of the object of interest.

To get a better insight on the role of context, we cherry-
picked examples where the visual or the prior component is
inacurrate and the context component is able to counterbal-
ance the final prediction (Figure 4). In (i), for example, the
visual component ranks flower at position 223. However,
the context component assesses flower to be highly probable
in this context, due to the presence of source objects like
vase, water, stems or grass, but also target objects like the
other flowers around. At the inference phase, probabilities
are aggregated and flower is ranked first.

It is worth noting that our work is not without limitations.
Indeed, some classes (such as house and dirt) have a wide
range of possible contexts; in these cases, context is not
a discriminating factor. This is confirmed by a comple-
mentary analysis: the Spearman correlation between the
number of unique context objects and δC , the relative gain
of M(CSH

,V) over M(V), is ρ = −0.31. In other terms,
contextual information is useful for specific objects, which
appear in particular contexts; for objects that are too generic,
adding contextual information can be a source of noise.

6. Conclusion
In this paper, we introduced a new approach for ZSL:
context-aware ZSL, along with a corresponding model, us-
ing complementary contextual information that significantly
improves predictions. Possible extensions could include
spatial features of objects, and, more importantly, removing
the dependence on the detection of object boxes to make it
fully applicable to real-world images (e.g. by using a Re-
gion Proposal Network (Ren et al., 2015)) Finally, designing
grounded word embeddings that include more visual context
information would also benefit such models.
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A. Additional negative results
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Figure 5. Qualitative analysis: negative examples where the use
of the context leads to degraded predictions, i.e. examples where
model M(CSL∪SH∪TL ,V) is worse than the simpler model M(V)
(T classes only).

As explained in Section 5.3, using contextual information
can sometimes degrade predictions. We provide here addi-
tional examples, when an object occurs in an environment
in which it is unexpected. For example, Figure 5 shows a
picture of a kitchen where the object of interest to be pre-
dicted is “books”. Given only the surrounding environment,
predicted objects are logically related to the environment of
a kitchen (“freezer”, “oven”, . . . ), and the correct label is
badly ranked (because it is unexpected in such an environ-
ment). However, the model M(V) retrieves the correct label,
given only the region of interest. Finally, integrating contex-
tual information in the final model M(CSL∪SH∪TL

,V) leads
to worse performances over M(V).

B. Generalized ZSL
In the previous sections, retrieval in done only among
classes of the domain of interest, this is the classical zero-
shot learning setting. We now report results obtained when
both source and target object classes exist in the retrieval
space: this setting amounts to generalized zero-shot learn-
ing. Results are reported in Table 3.

Table 3. Evaluation of various information sources, with varying
levels of supervision. Generalized ZSL setting. MFR scores in %.
δC is the relative improvement (in %) of M(CSH ,V) over M(V).

Target domain T Source domain S
psup 10% 50% 90% 10% 50% 90%

Domain size 4358 2421 484 484 2421 4358

M
od

el
s

Random 100 100 100 100 100 100
M(∅) 39.6 26.3 16.9 6.6 8.68 10.9
M(V) 21.0 11.8 6.9 0.9 2.3 3.5

M(CSH
) 28.6 15.0 10.7 3.5 3.9 4.4

M(CSH
,V) 18.2 9.4 6.0 0.8 1.8 2.4
δC 13.4 20.2 13.4 13.8 24.4 31.5

C. MRR and top-k performances
ZSL models are usually evaluated with recall@k or MRR
(mearn reciprocal rank, i.e. harmonic mean). However, the
metrics are not optimal to evaluate our models for two rea-
sons:

• Theoretically, recent research points out that RR is not
an interval scale and thus MRR should not be used
(Fuhr, Some Common Mistakes In IR Evaluation, And
How They Can Be Avoided. SIGIR Forum 2017 ; Fer-
rante et al. Are IR evaluation measures on an interval
scale? ICTIR 2017).

• Practically, we make the size of the target domain vary
(10%, 50%, 90%). MRR and top-k scores cannot be
compared across these scenarios (e.g. top-5 among 100
entities is not comparable to top-5 among 1000)

Therefore, as explained in Section 4.2 we used MFR (mean
first relevant): the arithmetic mean of rank numbers (linearly
rescaled to have 100% for random model and 0% for perfect
model). FR is an interval scale and thus can be averaged.

However, we report here topk and MRR scores in Table 4.

Table 4. Recall@k (k ∈ {1, 5, 10}) (in percentage) and MRR
scores (in percentage). psup = 50%.

Target domain T Source domain S
Recall @ MRR Recall @ MRR1 5 10 1 5 10

Random <.1 0.2 0.4 <.1 <.1 0.2 0.4 <.1
M(∅) 3.2 11.7 16.3 7.8 5.7 17.9 24.9 12.5
M(V) 14.7 33.5 43.2 24.0 36.3 63.8 73.1 48.8

M(CSH
) 5.9 17.8 25.4 11.9 17.3 43.7 56.7 29.9

M(CSH
,V) 15.0 34.7 44.7 24.7 41.6 70.6 78.6 54.2


