Construction of Nikulin configurations on some Kummer surfaces and applications - Archive ouverte HAL
Article Dans Une Revue Mathematische Annalen Année : 2019

Construction of Nikulin configurations on some Kummer surfaces and applications

Résumé

A Nikulin configuration is the data of 16 disjoint smooth rational curves on a K3 surface. According to a well known result of Nikulin, if a K3 surface contains a Nikulin configuration C, then X is a Kummer surface X = Km(B) where B is an Abelian surface determined by C. Let B be a generic Abelian surface having a polarization M with M 2 = k(k + 1) (for k > 0 an integer) and let X = Km(B) be the associated Kummer surface. To the natural Nikulin configuration C on X = Km(B), we associate another Nikulin configuration C ; we denote by B the Abelian surface associated to C , so that we have also X = Km(B). For k ≥ 2 we prove that B and B are not isomorphic. We then construct an infinite order automorphism of the Kummer surface X that occurs naturally from our situation. Associated to the two Nikulin configurations C, C , there exists a natural bi-double cover S → X, which is a surface of general type. We study this surface which is a Lagrangian surface in the sense of Bogomolov-Tschinkel, and for k = 2 is a Schoen surface.
Fichier principal
Vignette du fichier
Nikulin ConfigurationsV6.pdf (487.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02112702 , version 1 (26-04-2019)

Identifiants

Citer

Xavier Roulleau, Alessandra Sarti. Construction of Nikulin configurations on some Kummer surfaces and applications. Mathematische Annalen, 2019, 373 (1-2), pp.597-623. ⟨10.1007/s00208-018-1717-5⟩. ⟨hal-02112702⟩
33 Consultations
88 Téléchargements

Altmetric

Partager

More