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CONSTRUCTION OF NIKULIN CONFIGURATIONS ON SOME
KUMMER SURFACES AND APPLICATIONS

XAVIER ROULLEAU, ALESSANDRA SARTI

Abstract. A Nikulin configuration is the data of 16 disjoint smooth rational
curves on a K3 surface. According to a well known result of Nikulin, if a
K3 surface contains a Nikulin configuration C, then X is a Kummer surface
X = Km(B) where B is an Abelian surface determined by C. Let B be a
generic Abelian surface having a polarization M with M2 = k(k + 1) (for
k > 0 an integer) and let X = Km(B) be the associated Kummer surface.
To the natural Nikulin configuration C on X = Km(B), we associate another
Nikulin configuration C′; we denote by B′ the Abelian surface associated to
C′, so that we have also X = Km(B′). For k ≥ 2 we prove that B and B′

are not isomorphic. We then construct an infinite order automorphism of the
Kummer surface X that occurs naturally from our situation. Associated to
the two Nikulin configurations C, C′, there exists a natural bi-double cover
S → X, which is a surface of general type. We study this surface which is a
Lagrangian surface in the sense of Bogomolov-Tschinkel, and for k = 2 is a
Schoen surface.

1. Introduction

To a set C of 16 disjoint smooth rational curves A1, . . . , A16 on a K3 surface X,
Nikulin proved that one can associate a double cover B̃ → X branched over the
curve

∑
Ai, such that the minimal model B of B̃ is an Abelian surface and the 16

exceptional divisors of B̃ → B are the curves above A1, . . . , A16. The K3 surface
X is thus a Kummer surface.

We call a set of 16 disjoint (−2)-curves on a K3 surface a Nikulin configuration.
Let us recall a classical construction of Nikulin configurations. The Kummer surface
X = Km(B) of a Jacobian surface B can be embedded birationally onto a quartic
Y of P3 with 16 nodes. Projecting from one node one gets another projective model
for X, this is a double cover Y ′ → P2 of the plane branched over 6 lines tangent to
a conic. The strict transform (in X) of that conic is the union of two (−2)-curves
A1, A

′
1, with A1A

′
1 = 6. One of these two curves, A1 say, corresponds to the node

from which we project. Above the 15 intersection points of the 6 lines there are 15
disjoint (−2)-curves A2, . . . , A16 on X, which corresponds to the 15 other nodes of
the quartic Y .
The divisors C =

∑16
i=1Ai, C′ = A′1 +

∑16
i=2Ai are two Nikulin configurations. The

Abelian surface B is then the Jacobian of the double cover of A1 branched over
A1 ∩A′1.

Let now k > 0 be an integer and let (B,M) be a polarized Abelian surface with
M2 = k(k + 1), such that B is generic, i.e. NS(B) = ZM . Let X = Km(B) be the
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associated Kummer surface, let L ∈ NS(X) be the class corresponding to M (so
that L2 = 2M2), and let C = A1 + · · · + A16 be the natural Nikulin configuration
on Km(B) (the class L is orthogonal to the Ai’s). We obtain the following results,
which for k = 1 are the results we recalled for Jacobian Kummer surfaces:

Theorem 1. Let be t ∈ {1, . . . , 16}. There exists a (−2)-curve A′t on Km(B) such
that AtA′t = 4k + 2 and Ct = A′t +

∑
j 6=tAj is another Nikulin configuration.

The numerical class of A′t is 2L− (2k + 1)At; the class

L′t = (2k + 1)L− 2k(k + 1)At

generates the orthogonal complement of the 16 curves A′t and {Aj | j 6= t}; moreover
L′2t = L2.

A Kummer structure on a Kummer surface X is an isomorphism class of Abelian
surfaces B such that X ' Km(B). It is known that Kummer structures on X are in
one-to-one correspondence with the orbits of Nikulin configurations by the action
of the automorphism group of X (see Proposition 21). In [29, Question 5], Shioda
raised the question whether if there could be more than one Kummer structure on
a Kummer surface. In [10], Gritsenko and Hulek noticed that Km(B) ' Km(B∗),
where B∗ is the dual of B, a (1, t)-polarized Abelian surface (thus B 6' B∗ if
t > 1). In [12] Hosono, Lian, Oguiso and Yau proved that the number of Kummer
structures is always finite and they construct for any N ∈ N∗ a Kummer surface of
Picard number 18 with at least N Kummer structures. When the Picard number
is 17 (which is the case of our paper), by results of Orlov [20] on derived categories,
the number of Kummer structures on X equals 2s where s is the number of prime
divisors of 1

2M
2. In Section 3.3, we obtain the following result

Theorem 2. Suppose k ≥ 2. There is no automorphism of X sending the Nikulin
configuration C =

∑16
j=1Aj to the configuration Ct = A′t +

∑
j 6=tAj.

Therefore the two configurations C, Ct belong in two distinct orbits of Nikulin
configurations under the action of Aut(X). As far as we know, Theorem 2 gives the
first explicit construction of two distinct Kummer structures on a Kummer surface:
the constructions in [12] and [10] use lattice theory and do not give a geometric
description of the Nikulin configurations.

We already recalled that when X is a Jacobian Kummer surface, there exists
a non-symplectic involution ι on X such that the double cover π : X → P2 is
the quotient of X by ι (after contraction of the 16 (−2)-curves). That involution
exchanges the (−2)-curves A1 and A′1 and fixes the 15 other curves {Aj | j 6= 1}. For
X a K3 surface with a polarization L such that L2 = 2k(k+ 1) and t ∈ {1, . . . , 16},
let θt be the involution of NS(X) ⊗ Q defined by L → L′t, At → A′t (as defined in
Theorem 1), and θt(Aj) = Aj for j 6= t. When k = 1, θ1 is in fact the action of
the involution ι on NS(X) : ι∗ = θ1. We do not have such an interpretation when
k > 1 (this is in fact the content of Theorem 2), but we obtain the following result
on the product θiθj :

Theorem 3. For 1 ≤ i 6= j ≤ 16 there exists an infinite order automorphism µij
of X such that the action of µij on NS(X) is µ∗ij = θiθj .

The classification of the automorphism group of a generic Jacobian Kummer
surface has been has been completed by Keum [13] (who constructed the last un-
known automorphisms) and by Kondo [14] (who proved that there was indeed no
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more automorphisms). We are far from such a knowledge for non Jacobian Kummer
surfaces, thus it is interesting to have a construction of such automorphisms µij .
Let A be an Abelian variety. In [18], Narasimhan and Nori prove that the orbits by
Aut(A) of the principal polarisations in the Néron-Severi group NS(A) are finite.
Similarly, one could think to prove that the number of Kummer structures on a
K3 is finite by associating to each Nikulin configuration C the pseudo-ample divisor
LC orthogonal to C and by proving that the number of orbits of such LC under the
action of Aut(X) in NS(X) is finite. Our approach is closer to that idea than to the
solutions previous proposed e.g. in [12] or [10], and it gives us more informations
on Aut(X).
Observe that one can repeat the construction in Theorem 1, starting with config-
uration Ci instead of C, but Theorem 3 tells us that the Nikulin configurations so
obtained will be in the orbit of the Nikulin configuration C under the automorphism
group X, thus we do not obtain new Nikulin structures in that way (observe also
that Ct and Ct′ (t 6= t′) are in the same orbit).

The paper is organized as follows: In Section 2 we construct the curve A′i such
that AiA′i = 4k + 2 and we prove Theorem 1. This is done by geometric consider-
ations on the properties of the divisor L′i, which we prove is big and nef.

In Section 3, we construct the automorphisms mentioned in Theorem 3. This
is done by using the Torelli Theorem for K3 surfaces. We then prove Theorem 2,
which is obtained by considerations on the lattice H2(X,Z).

In Section 4, we study the bi-double cover Z → X associated to the two Nikulin
configurations C =

∑16
i=1Ai, C′ = A′1 +

∑16
i=2Ai. When k = 2, Y is a so-called

Schoen surface, a fact that has been already observed in [24]. Schoen surfaces carry
many remarkable properties (see e.g. [7, 24]). For example the kernel of the natural
map

∧2H0(Z,ΩZ)→ H0(Z,KZ)

is one dimensional, and is not of the form w1 ∧ w2, i.e. by the Castelnuovo De
Franchis Theorem, it does not come from a fibration of Z onto a curve of genus
≥ 2. Surfaces with this property are called Lagrangian. We will see that for the
other k > 1, the surfaces are also Lagrangian.
In Subsection 4.1, we discuss the singularities of the curve Ai + A′i. The transver-
sality of the intersection of two rational curves on a K3 surface is an interesting but
open problem in general (see e.g. [11]). We also study the curve Γi on the Abelian
surface B coming from the pull-back of the curve A′i. That curve Γi is hyperelliptic
and has a unique singularity, which is a point of multiplicity 4k + 2, and therefore
Γi has geometric genus ≤ 2g. In the case of a Jacobian surface, Γi has been used
as the branch locus of covers of B by Penegini [22] and Polizzi [21], for creating
new surfaces of general type. We end this paper by remarking that Γi is a curve
with the lowest known H-constant (see [25] for definitions and motivations) on an
Abelian surface.

Acknowledgements The authors thank the anonymous referee for useful re-
marks improving the exposition of the paper.

2. Two Nikulin configurations on Kummer surfaces

2.1. Two rational curves A1, A
′
1 such that A1A

′
1 = 2(2k + 1). Let k > 0

be an integer and let B be an abelian surface with a polarization M such that
M2 = k(k+1). We suppose that B is generic so thatM generates the Néron-Severi
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group of B. Let X = Km(B) be the associated Kummer surface and A1, . . . , A16

be its 16 disjoint (−2)-curves coming from the desingularization of B/[−1].
By [17, Proposition 3.2], [9, Proposition 2.6], corresponding to the polarization M
on B, there is a polarization L on Km(B) such that

L2 = 2k(k + 1)

and LAi = 0, i ∈ {1, . . . , 16}. The Néron-Severi group of X = Km(B) satisfies:

ZL⊕K ⊂ NS(X),

where K denotes the Kummer lattice (the saturated sub-lattice of NS(X) contain-
ing the 16 classes Ai). For B generic among polarized Abelian surfaces rk(NS(X)) =
17 and NS(X) is an overlattice of finite index of ZL⊕K which is described precisely
in [9], in particular we will use the following result:

Lemma 4. ([9, Remarks 2.3 & 2.10]) An element Γ ∈ NS(X) has the form Γ =
αL−

∑
βiAi with α, βi ∈ 1

2Z. If α or βi for some i is in 1
2Z \ Z, then at least 4 of

the βj’s are in 1
2Z \ Z, if moreover α ∈ Z, at least 8 of the βj’s are in 1

2Z \ Z.

The divisor
A′1 = 2L− (2k + 1)A1

is a (−2)-class, indeed:

(2L− (2k + 1)A1)2 = 8k(k + 1)− 2(2k + 1)2 = −2,

and one has A′1Ai = 0 for i = 2, · · · , 16. By the Riemann-Roch Theorem and
since LA′1 > 0, the class A′1 is represented by an effective divisor. Let us prove the
following result

Theorem 5. The class A′1 can be represented by a (−2)-curve and A1A
′
1 = 2(2k+

1). The set of (−2)-curves
A′1, A2, . . . , A16

is another Nikulin configuration on X.

In order to prove Theorem 5, let us define

L′ = (2k + 1)L− 2k(k + 1)A1.

One has L′A′1 = 0 and

L′2 = (2k + 1)22k(k + 1)− 8k2(k + 1)2 = 2k(k + 1) = L2.

First let us prove:

Proposition 6. One has:
a) The divisor L′ is nef and big. Moreover a (−2)-class Γ satisfies ΓL′ = 0 if and
only if Γ = A′1 or Γ = Aj for j in {2, ..., 16}.
b) The linear system |L′| has no base components.
c) The linear system |L′| defines a morphism from X = Km(B) to Pk2+k+1 which
is birational onto its image and contracts the divisor A′1 and the 15 (−2)-curves
Ai, i ≥ 2.

Proof. Proof of a). We already know that L′2 = 2k(k+ 1) > 0. By the Riemann-
Roch Theorem either L′ or −L′ is effective. Since LL′ > 0, we see that L′ is
effective. On a K3 surface, the (−2)-curves are the only irreducible curves with
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negative self-intersection, thus L′ is nef if and only if L′Γ ≥ 0 for each irreducible
(−2)-curve Γ. Let

Γ = αL−
16∑
i=1

βiAi, α, βi ∈
1

2
Z

be the class of Γ in NS(X). Since Γ represents an irreducible curve we have α ≥ 0.
Moreover if Γ = Ai then the condition L′Γ ≥ 0 is trivially verified so that we can
assume ΓAi ≥ 0, which gives βi ≥ 0. From the condition Γ2 = −2, we get

(2.1) k(k + 1)α2 −
∑
i

β2
i = −1

Assume that the (−2)-curve Γ satisfies L′Γ < 0. We have

0 > L′Γ = ((2k + 1)L− 2k(k + 1)A1) Γ = 2αk(k + 1)(2k + 1)− 4k(k + 1)β1,

thus

β1 >
(2k + 1)

2
α.

Combining with equation (2.1) we get

−1 = k(k + 1)α2 −
∑
i

β2
i < −

1

4
α2 −

15∑
i=2

β2
i .

which is

(2.2)
1

4
α2 +

15∑
i=2

β2
i < 1

thus α ∈ {0, 1/2, 1, 3/2}.
If α = 0, by (2.1) either exactly one of the βi = 1 (but this is not possible since it
would give Γ = −Ai) or exactly 4 of the β′is are equal to 1

2 and the others are 0
but such a class is not contained in NS(X) by Lemma 4.
If α = 1

2 , then from inequality (2.2), βi ∈ {0, 12} for i ≥ 2 and at most 3 of these
βi’s equal 1

2 . By Lemma 4 at least 4 of the βi are in 1
2Z \Z, thus 3 of the βi, i ≥ 2

equals 1
2 and the others are 0. Then from equation (2.1), we get:

β2
1 =

k2 + k + 1

4
.

Suppose that there exists n ∈ N such that k2 + k + 1 = n2. Then n > k, but since
n2 ≥ (k + 1)2 > k2 + k + 1, we get a contradiction. Hence ∀k ∈ N∗, the integer
k2 + k + 1 is never a square and therefore the case α = 1

2 is impossible.
If α = 1, at most 2 of the βi’s with i > 1 are equal 1

2 and the others are 0, by
applying Lemma 4 we get βi = 0 for i > 1 and β1 ∈ N. Then equation (2.1) implies

β2
1 = k2 + k + 1,

which we know has no integral solutions for k > 0.
If α = 3

2 , at most 1 of the βi’s with i > 1 is 1
2 , this is also impossible by Lemma 4,

therefore such Γ does not exist and this concludes the proof that L′ is big and nef
for all k ≥ 1.
Assume that the (−2)-curve Γ satisfies L′Γ = 0 and is not Aj for j ≥ 2. Then one
has β1 = (2k+1)

2 α, and one computes that either α = 2, β1 = 2k + 1 and Γ = A′1,
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or α = 1, β1 = (2k+1)
2 α and (up to re-ordering) β2 = b3 = b4 = 1/2. Since α is an

integer the second case is impossible by Lemma 4.
Proof of b). By [23, Section 3.8] either |L′| has no fixed part or L′ = aE + Γ,

where |E| is a free pencil, and Γ a (−2)-curve with EΓ = 1. In that case, write
Γ = αL−

∑
βiAi. Then

2k(k + 1) = L′2 = 2a− 2

gives a = k2 + k + 1. In particular, a is odd. But

a− 2 = L′Γ = 2k(k + 1)(2k + 1)α− 4k(k + 1)β1

and since α, β1 ∈ 1
2Z, one gets that a is even, which yields a contradiction. Therefore

|L′| has no base components. By [27, Corollary 3.2], it then has no base points.
Proof of c). The linear system |L′| is big and nef without base points. We

have to show that the resulting morphism has degree one, i.e. that |L′| is not
hyperelliptic (see [27, Section 4]). By loc. cit., |L′| is hyperelliptic if there exists
a genus 2 curve C such that L′ = 2C or there exists an elliptic curve E such that
L′E = 2.
In the first case L′2 = 8, but since L′2 = 2k(k + 1), that cannot happen. Assume
now

E = αL−
∑

βiAi,

for E with EL′ = 2, we get

2 =
(
αL−

∑
βiAi

)
((2k + 1)L− 2k(k + 1)A1) = k(k + 1) (2(2k + 1)α− 2β1) .

Since α, β1 ∈ 1
2Z, 2(2k+1)α−2β1 is an integer, thus we get k = 1 and 6α−2β1 = 1.

Since E2 = 0, one obtain

2α2 =
∑

β2
i ,

using β1 = 3α− 1
2 , one reaches a contradiction.

Therefore |L′| defines a birational map X → PN onto its image, contracting the
(−2)-curves Γ such that L′Γ = 0, moreoverN = h0(L′)−1 = L′2

2 +1 = k2+k+1. �

We can now prove Theorem 5:

Proof. We proved that the only (−2)-classes that are contracted by L′ are A′1, A2,
. . . , A16. We know moreover that A′1Aj = AiAj = 0 for 2 ≤ i 6= j ≤ 16. Since
one has L′A′1 = 0 the base point free linear system |L′| contracts the connected
components of A′1 to some points. Therefore by the Grauert contraction Theorem
(see [4, Chapter III, Theorem 2.1]), the support of A′1 is the union of irreducible
curves (Ci)i∈{1,...,m} (for m ∈ N, m 6= 0) such that the intersection matrix (CiCj)
is negative definite.
Since X is a K3 surface, the curves Ci are (−2)-curves. Since L′ only contracts the
(-2)-classes A′1, A2, . . . , A16 that are disjoint, we get that m = 1 and we conclude
that A′1 is the class of a (−2)-curve C1.

�
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2.2. A projective model of the surface Km(B). Let us describe a natural map
from Km(B) to Pk+1, which is birational for k > 1:

Theorem 7. The class D = L− kA1 is big and nef with

(L− kA1)2 = 2k

and for k ≥ 2 it defines a birational map

φ : Km(B)→ Pk+1

onto its image X such that X (of degree 2k) has 15 ordinary double points and
moreover the curves A′1 and A1 are sent to two rational curves of degree 2k such
that A1A

′
1 = 2(2k + 1).

Remark 8. We have
A′1 +A1 = 2(L− kA1)

so that A′1 +A1 is cut out by a quadric of Pk+1 and is 2-divisible.

Proof. We proceed as in Proposition 6.
Let us show that D is nef and big. We have to prove that DΓ ≥ 0 for each
irreducible (−2)-curve Γ. As above, let

Γ = αL−
∑

βiAi, α, βi ∈
1

2
Z,

be such that ΓD < 0. Then

ΓD = 2αk(k + 1)− 2kβ1 < 0,

implies β1 > (k + 1)α.
Combining with the equation (2.1), we get

1 > (k + 1)α2 +
∑
i≥2

β2
i ,

thus α < 1. As in Proposition 6, the case α = 0 is impossible. If α = 1
2 , then

k ∈ {1, 2}, but as above, Lemma 4 implies that this is not possible. Thus D is nef
and big.
Let us now suppose k > 1. Let us show that |D| has no base components.
Suppose that there is a base component. Then D = aE + Γ, where a ∈ N, |E| is a
free pencil, Γ is a (−2)-curve and EΓ = 1. One has

2k = D2 = 2a− 2,

thus a = k + 1, so that
L− kA1 = (k + 1)E + Γ.

Suppose that Γ = A1, then 2k = A1D = k − 1 and k = −1, which is impossible. If
Γ = Ai, i ≥ 2, then 0 = DAi = k − 1, thus k = 1, but we assumed that k > 1.
Thus we can assume that Γ is not one of the Ai and write Γ = αL−

∑
βiAi with

α, βi ≥ 0. One has

(2.3) 2k = DA1 = (k + 1)EA1 + 2β1,

moreover

(2.4) 2k(k + 1) = (L− kA1)L = (k + 1)EL+ 2k(k + 1)α.
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Since EA1 ≥ 0 we obtain from equation (2.3) that either β1 = k (and EA1 = 0) or
β1 = k−1

2 and EA1 = 1, in that second case since

E(L− kA1) = E((k + 1)E + Γ) = 1

one obtains EL = k + 1.
Since EL ≥ 0, we obtain from equation (2.4) that α ∈ {0, 12 , 1}, but as in Proposi-
tion 6, α = 0 is not possible. Moreover if α = 1, EL = 0, but this contradicts the
Hodge Index Theorem since E2 = 0 and L2 > 0, therefore α = 1

2 . If β1 = k, from
Γ2 = −2, one gets

k(k + 1)

4
− k2 −

∑
i≥2

β2
i = −1

which is ∑
i≥2

β2
i =

1

4
(−3k2 + k + 4).

But for k > 1, −3k2 + k + 4 < 0 and we obtain a contradiction. If now β1 = k−1
2 ,

then EL = k + 1, but equation (2.4) gives EL = k, contradiction. Therefore |D|
has no base component.
Let us show that |D| defines a birational map. We have to show that |D| is
not hyperelliptic. Suppose that D = 2C where C is a genus 2 curve. Then D2 = 8;
since D2 = 2k, we get k = 4. One has D = L−4A1 and the class of C is 1

2L−2A1.
Then 1

2L ∈ NS(X), which contradicts the fact that L generates the orthogonal
complement of NS(Km(B)), and so L is primitive. Suppose now that there exists
an elliptic curve E such that DE = 2. Let

E = αL−
∑

βiAi,

with α ∈ 1
2Z. Since D = L− kA1, one has

DE = 2k(k + 1)α− 2kβ1,

therefore k(k + 1)α − kβ1 = 1. If α ∈ Z, then if β1 ∈ Z, one gets k = 1, if β1 = b
2

with b odd, then
k(2(k + 1)α− b) = 2

and k = 2 (we supposed k > 1), 6α − b = 2, which is impossible since b is odd. If
α = a

2 with a ∈ Z odd , then k((k+ 1)a− 2β1) = 2. Then since 2β1 ∈ Z and k > 1,
one has k = 2 and 3a− 2β1 = 1, thus β1 = 3a−1

2 = 3α− 1
2 ∈ Z. We have moreover

(since k = 2):
0 = E2 = 6α2 −

∑
β2
i

thus
9α2 − 3α+

1

4
+
∑
i≥2

β2
i = 6α2,

and 3α2 − 3α+ 1
4 ≤ 0, the only possibility is α = 1

2 , but then
∑
i≥2 β

2
i = 1

2 , which
is impossible since, by Lemma 4, there is no class with βi = 1

2 for only 2 indices i.
Therefore when k > 1, |D| defines a birational map to PN , with N = D2

2 +1 = k+1.
That maps contracts the curves Γ with ΓD = 0, ie A2, . . . , A16.

One has
A1(L− kA1) = 2k = A′1(L− kA1),
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thus the curves A1, A
′
1 in Pk+1 have degree 2k. Moreover A1A

′
1 = 2(2k + 1).

Let us prove that the 15 (−2)-curves Ai, i > 1 are the only ones contracted i.e.
they are the only solutions of the equation ΓD = 0, (D = L − kA1). Suppose
Γ 6= Ai, Γ = αL−

∑
βiAi. One has ΓD = 0 if and only if

α(k + 1) = β1,

and α2k(k + 1)−
∑
β2
i = −1, which gives

(k + 1)α2 +
∑
i>1

β2
i = 1,

which has no solutions by Lemma 4. �

Remark 9. To the pair (L,A1) one can associate the pair (L′, A′1), with

L′ = (2k + 1)L− 2k(k + 1)A1, A
′
1 = 2L− (2k + 1)A1

with the same numerical properties

L2 = L′2 = 2k, LA1 = 0 = L′A′1, LA
′
1 = 4k(k + 1) = L′A1.

The polarization L′ comes from a polarization M ′ on the Abelian surface B′ asso-
ciated to the Nikulin configuration A′1, A2, . . . , A16. We will see that for k = 1 the
mapping Ψ : (L,A1) → (L′, A′1) is an involution of NS(X) which comes from an
involution of X, and the Abelian surfaces B, B′ are isomorphic.
One can repeat the construction with (L′, A2) instead of L,A1 etc... Let us define
the maps Ψi, Ψj , {i, j} = {1, 2} by Ψi(L) = (2k + 1)L − 2k(k + 1)Ai, Ψi(Ai) =
2L− (2k + 1)Ai, Ψi(Aj) = Aj . It is easy to check that Ψ1 ◦Ψ2 has infinite order,
and we therefore obtain in that way an infinite number of Nikulin configurations.
For any k ∈ N, k 6= 0, we will see that the map Ψi ◦ Ψj for i 6= j is in fact the
restriction of the action of an automorphism of X on NS(X).

2.3. The first cases k = 1, 2, 3, 4. In this subsection, we give a more detailed
description of our construction when k is small. One has

k 1 2 3 4
A1A

′
1 6 10 14 18

L2 4 12 24 40

and the morphism φ associated to the linear system |L − kA1| is from Km(B) to
Pk+1, with k + 1 = 2, 3, 4, 5 (which produce the most famous geometric examples
of K3 surfaces).

The case k = 1 has been discussed in the Introduction.
For k = 2, the result was already observed in [24]. The image of φ is a 15-nodal

quartic Q = Q4 in P3, the curves A1, A
′
1 are sent to two degree 4 rational curves

(denoted by the same letters) meeting in 10 points. As we already observed, the
divisor A1 + A′1 is a 2-divisible class. The double cover Y → Q branched over
A1 + A′1 has 40 ordinary double points coming from the 15 singular points on Q
and from the 10 intersection points of A1 and A′1. This surface Y is described in
[24]. It is a general type surface, a complete intersection in P4 of a quadric and the
Igusa quartic. It is the canonical image of its minimal resolution. The double cover
S of Y branched over the 40 nodes is a so-called Schoen surface. It is a surface
with pg(S) = pg(Y ) = 5, thus the canonical image of S is Y and the degree of the
canonical map of the Schoen surface is 2.

For k = 3, one get a model Q6 of X in P4 which is the complete intersection
of a quadric and a cubic. In a similar way as before, Q6 has 15 ordinary double
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points and A1 and A′1 are sent by |L− 3A1| to two rational curves of degree 6 with
intersection number 14.

For k = 4, one get a degree 8 model Q8 of X in P5 which is the complete
intersection of 3 quadrics. That model has 15 ordinary double points and the
curves A1 and A′1 are sent by |L − 4A1| to two rational curves of degree 8 with
intersection number 18.

3. Nikulin configurations and automorphisms

3.1. Construction of an infinite order automorphism. Let us denote byKabcd

with a, b, c, d ∈ {0, 1} the 16 (−2)-curves on the K3 surface X = Km(A), and as
before let L be the polarization coming from the polarization of A.
Let K be the lattice generated by the following 16 vectors v1, . . . , v16:

1
2

∑
p∈A[2]Kp,

1
2

∑
W1

Kp,
1
2

∑
W2

Kp,
1
2

∑
W3

Kp,
1
2

∑
W4

Kp, K0000,

K1000, K0100, K0010, K0001, K0011, K0101, K1001, K0110, K1010, K1100

whereWi = {(a1, a2, a3, a4) ∈ (Z/2Z)4 | ai = 0}. By results of Nikulin, [19], the lat-
tice K is the minimal primitive sub-lattice of H2(X,Z) containing the (−2)-curves
Kabcd. The discriminant group K∨/K is isomorphic to (Z2)6 and the discriminant
form of K is isometric to the discriminant form of U(2)⊕3.

Lemma 10. (See [9, Remark 2.3]) The Néron-Severi group NS(X) is generated by
K and v17 := 1

2 (L + ω4d), where L is the positive generator of K⊥ with L2 = 4d

(here d = k(k+1)
2 ), and if L2 = 0 mod 8,

ω4d = K0000 +K1000 +K0100 +K1100,

if L2 = 4 mod 8,

ω4d = K0001 +K0010 +K0011 +K1000 +K0100 +K1100.

One has moreover

Lemma 11. ([9, Remark 2.11]) The discriminant group of NS(X) is isomorphic to
(Z/2Z)4 × Z/4dZ. Suppose that d = 4 mod 8. Then NS(X)∨/NS(X) is generated
by

w1 = 1
2 (v6 + v8 + v10 + v12), w2 = 1

2 (v12 + v13 + v14 + v15),
w3 = 1

2 (v11 + v13 + v14 + v16), w4 = 1
2 (v9 + v10 + v12 + v13),

w5 = 1
2 (v6 + v12 + v13) + 1

4d (v7 + v8 + v9 + v10 + (1 + 2d)v11 + v16 − 2v17)

Suppose that d = 0 mod 8. Then NS(X)∨/NS(X) is generated by

w1 = 1
2 (v6 + v12 + v14 + v16), w2 = 1

2 (v6 + v13 + v15 + v16),
w3 = 1

2 (v6 + v8 + v10 + v12), w4 = 1
2 (v6 + v8 + v9 + v13),

w5 = 1
2 (v11 + v12 + v13) + 1

4d ((1 + 2d)v6 + v7 + v8 + v16 − 2v17)

In both cases, the discriminant form of NS(X) is isometric to the discriminant
form of U(2)⊕3 ⊕ 〈4d〉 and the transcendent lattice TX = NS(X)⊥ is isomorphic to
U(2)⊕3 ⊕ 〈−4d〉.

Proof. The columns of the inverse of the intersection matrix (vivj)1≤i,j≤17 is a
base of NS(X)∨ in the base v1, . . . , v17. From that data we obtain the generators
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w1, . . . , w5 of NS(X)∨/NS(X). The matrix (wiwj)1≤i,j≤5 is
0 1

2 0 0 0
1
2 0 0 0 0
0 0 0 1

2 0
0 0 1

2 0 0
0 0 0 0 1

4d

 ∈M5(Q/Z),

one has moreover w2
i = 0 mod 2Z for 1 ≤ i ≤ 4 and w2

5 = 1
4d mod 2Z. Thus the

discriminant form
q : NS(X)∨/NS(X)→ Q/2Z

is isometric to the discriminant form of U(2)⊕3 ⊕ 〈4d〉. Since H2(X,Z) is unimod-
ular, and U(−2) ' U(2), we obtain TX (for more details see e.g. [11, Chap. 14,
Proposition 0.2]). �

In Section 2, we associated to L and to Aj the divisors

Lj = (2k + 1)L− 2k(k + 1)Aj , A
′
j = 2L− (2k + 1)A1.

The vector space endomorphism

θj : NS(X)⊗Q→ NS(X)⊗Q

defined by θj(Ai) = Ai for i 6= j and

θj(Aj) = A′j , θj(L) = Lj

is an involution, and we will see that it is an isometry (cf. Lemma 13). Let us
define

Φ1 = θ2θ1.

The endomorphism Φ1 has infinite order, its characteristic polynomial det(T Id−Φ1)
is the product of (T − 1)15 and the Salem polynomial

T 2 + (2− 4k2)T + 1.

The aim of this section is to prove the following result:

Theorem 12. The automorphism Φ1 extends to an effective Hodge isometry Φ
of H2(X,Z) and there exists an automorphism ι of X which acts on H2(X,Z) by
ι∗ = Φ.

Let us start by the following Lemma:

Lemma 13. The morphisms θ1, θ2, Φ1 preserve NS(X) and are isometries of
NS(X).

Proof. It is simple to check that θj preserves the lattice generated by K,L and
v17 = 1

2 (L + ω4d). Since for all 1 ≤ i, j ≤ 16 one has θj(Ai)θj(Ak) = AiAk,
θj(L)θj(Ai) = LAi = 0, θj(L)2 = L2, θj is an isometry of NS(X), hence so is
Φ1 = θ2θ1. �

Let TX = NS(X)⊥. We define Φ2 : TX → TX as the identity. The map (Φ1,Φ2)
is an isometry of NS(X)⊕ TX .

Lemma 14. The morphism (Φ1,Φ2) extends to an isometry Φ of H2(X,Z).
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Proof. Let L1, L2 be the lattices L1 = NS(X), L2 = TX = NS(X)⊥. Let us denote
by

qi : L∨i /Li → Q/2Z
the discriminant form of Li. By Lemma 11 and its proof, we know the form q1 on
the base wi.
One has L2 = U(2)⊕ U(2)⊕ 〈−4d〉. Let us take the base ei, 1 ≤ i ≤ 5 of L2 such
that the intersection matrix of the ej ’s is

(eiej)1≤i,j≤5 = −


0 2 0 0 0
2 0 0 0 0
0 0 0 2 0
0 0 2 0 0
0 0 0 0 4d

 .

The elements w′i = 1
2ei for 1 ≤ i ≤ 4 and w′5 = 1

4de5 are generators of L∨2 /L2. Let

φ : L∨2 /L2 → L∨1 /L1

be the isomorphism (called the gluing map) defined by

φ(w′i) = wi.

One has q1(φ(
∑
aiw

′
i)) = −q2(

∑
aiw

′
i) i.e.

q2 = −φ∗q1.

Since L1, L2 are primitive sub-lattices of the even unimodular lattice H2(X,Z)
with L2 = L⊥1 , the lattice H2(X,Z) is obtained by gluing L1 with L2 by the gluing
isomorphism φ. In other words H2(X,Z) is generated by all the lifts in L∨1 ⊕L∨2 of
the elements (wi, w

′
i), i = 1, . . . , 5 of the discriminant group of L1 ⊕ L2.

According to general results (see e.g. [16, Page 5]), the element (Φ1,Φ2) of the
orthogonal group of L1 ⊕ L2 extends to H2(X,Z) if and only if the gluing map φ
satisfies φ ◦ Φ2 = Φ1 ◦ φ. A simple computation gives that for 1 ≤ i ≤ 4, one has
θjwi = −wi = wi (for j ∈ {1, 2}), thus Φ1(wi) = wi. Moreover we compute that

θj(w5) = (1− 2k2)w5

and since (1− 2k2)2 = 1 modulo 4d = 2k(k + 1), one gets Φ1(w5) = θ2θ1w5 = ω5.
Since by definition Φ2(w′i) = w′i for i = 1, . . . , 5, we obtain the desired relation
φ ◦ Φ2 = Φ1 ◦ φ. �

Remark 15. Because of the relation θj(w5) = (1− 2k2)w5, j ∈ {1, 2} at the end of
the proof of Lemma 14, it is not possible to extend the involution θj to an isometry,
unless k = 1. In that case, using the proof of Lemma 17 below, the involution θj
extends to an effective Hodge isometry (with action by multiplication by −1 on
TX). The resulting non-symplectic involution is in fact known under the name of
projection involution, see e.g. [13].

Lemma 16. The morphism Φ is an Hodge isometry: its C-linear extension ΦC :
H2(X,C)→ H2(X,C) preserves the Hodge decomposition.

Proof. The map Φ is the identity on the space TX ⊗ C containing the period. �

Lemma 17. The Hodge isometry Φ is effective.
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Proof. Since X is projective by [4, Proposition 3.11], it is enough to prove that the
image by Φ of one ample class is an ample class. Let m ≥ 2 be an integer. By [9,
Proposition 4.3], the divisor D = mL− 1

2

∑
i≥1Ai is ample. The image by θ1 of D

is

θ1(D) = mL1 −
1

2

A′1 +
∑
i≥2

Ai


where by Section 2 we have that A′1 is a (−2)-curve, which is disjoint from the
Aj , j ≥ 2, and these 16 (−2)-curves have intersection 0 with L1 = θ1(L). There
exists an Abelian surface B′ such that X = Km(B′) and these 16 (−2)-curves are
resolution of the 16 singularities in B′/[−1]. Moreover L1 comes from a polarization
M ′ on B′, which clearly generates NS(B′). Thus again by [9, Proposition 4.3], θ1(D)
is ample.
The analogous proof with (θ2, A2) instead of (θ1, A1) gives us that θ2(D) is also
ample. Since θi, i = 1, 2 are involutions and Φ = θ2θ1, we conclude that

Φ(θ1(D)) = θ2(D)

is ample, and thus Φ is effective. �

We can now apply the Torelli Theorem for K3 surfaces (see [4, Chap. VIII, The-
orem 11.1]): since Φ is an effective Hodge isometry there exists an automorphism
ι : X → X such that ι∗ = Φ. This finishes the proof of Theorem 12. �

Remark 18. The Lefschetz formula for the fixed locus Xι of ι on X gives

χ(Xι) =

4∑
i=0

(−1)itr(Φ|Hi(X,R)) = 1 + (4k2 + 18) + 1 = 20 + 4k2,

(here ι∗ = Φ). If k = 1 then χ(Xι) = 24 and we can easily see that Xι contains two
rational curves. Indeed in this case as remarked before (Remark 15) θi, i = 1, 2 can
be extended to a non-symplectic involution (still denoted θi) of the whole lattice
H2(X,Z). The fixed locus of each θi, i = 1, 2 are the curves pull-back on X of the
six lines in the branching locus of the double cover of P2 (the θi, i = 1, 2 are the
covering involutions). These curves are different except for the pull-backs `1 and `2
of two lines, which are the lines passing through the point of the branching curve
corresponding to A2 if we consider the double cover determined by the involution
θ1, respectively through the point corresponding to A1 if we consider θ2. So the
infinite order automorphism ι corresponding to Φ = θ2θ1 fixes the two rational
curves `1 and `2 on X. By using results of Nikulin on non-symplectic involutions
[1] the invariant sublattices H2(X,Z) for the action of θi, i = 1, 2 are both isometric
to U ⊕ E8(−1)⊕ 〈−2〉⊕6.

3.2. Action of the automorphism group on Nikulin configurations. The
aim of this sub-section is to prove the following result

Theorem 19. Suppose that k ≥ 2. There is no automorphism f of X sending the
configuration C =

∑16
i=1Ai to the configuration C′ = A′1 +

∑16
i=2Ai.

Suppose that such an automorphism f exists. The group of translations by the
2-torsion points on B acts on X = Km(B) and that action is transitive on the set of
curves A1, . . . , A16. Thus up to changing f by f ◦ t (where t is such a translation),
one can suppose that the image of A1 is A′1. Then the automorphism f induces
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a permutation of the curves A2, . . . , A16. The (−2)-curve A′′1 = f2(A1) = f(A′1)
is orthogonal to the 15 curves Ai, i > 1 and therefore its class is in the group
generated by L and A1. By the description of NS(X), the (−2)-class A′′1 = aA1+bL
has coefficients a, b ∈ Z . Moreover a, b satisfy the Pell-Fermat equation

(3.1) a2 − k(k + 1)b2 = 1.

Let us prove:

Lemma 20. Let C = aA1+bL be an effective (−2)-class. Then there exists u, v ∈ N
such that aA1 + bL = uA1 + vA′1, in particular the only (−2)-curves in the lattice
generated by L and A1 are A1 and A′1.

Proof. If (a, b) is a solution of equation (3.1), then so are (±a,±b). We say that
a solution is positive if a ≥ 0 and b ≥ 0. Let us identify Z2 with A = Z[

√
N ]

by sending (a, b) to a + b
√
N , where N = k(k + 1). The solutions of (3.1) are

units of the ring A. According to the Chakravala method solving equation (3.1),
there exists a solution α+β

√
N (called fundamental) with α, β ∈ N∗ such that the

positive solutions are the elements of the form

am + bm
√
N = (α+ β

√
N)m, m ∈ N.

The first term of the sequence of convergents of the regular continued fraction for√
N is

2k + 1

2
,

and since (2k + 1, 2) is a solution of (3.1), the fundamental solution is (α, β) =
(2k + 1, 2).
An effective (−2)-class C = aA1 + bL either equals A1 or satisfies CL > 0 and
CA1 > 0, therefore b > 0 and a < 0. Thus if C 6= A1, there exists m such that
C = −amA1 + bmL. Since A′1 = 2L− (2k + 1)A1, one obtains

−amA1 + bmL =
bm
2
A′1 + ((2k + 1)

bm
2
− am)A1

and the Lemma is proved if the coefficients um = bm
2 and vm = (2k + 1) bm2 − am

are both positive and in Z. Using the relation

am+1 + bm+1

√
N = (2k + 1 + 2

√
N)(am + bm

√
N),

that follows from an easy induction. �

Therefore we conclude that A′′1 = A1 i.e. f permutes A1 and A′1. Let us finish
the proof of Theorem 19:

Proof. The class f∗L is orthogonal to A′1, A2, . . . , A16, thus this is a multiple of the
class L′ = (2k+ 1)L−2k(k+ 1)A1 which has the same property. Since both classes
have the same self-intersection and are effective, one gets f∗L = L′; by the same
reasoning, since f∗A′1 = A1, one gets f∗L′ = L. By [9, Proposition 4.3], the divisor

D = 2L− 1

2

∑
i≥1

Ai

is ample, thus f∗D = 2L′ − 1
2 (A′1 +

∑
i≥2Ai) is also ample and so is D + f∗D.

Moreover D+ f∗D is preserved by f , thus by [11, Proposition 5.3.3], the automor-
phism f has finite order. Up to taking a power of it, one can suppose that f has
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order 2m for some m ∈ N∗. Suppose m = 1, ie f is an involution. Then
1

2
(A1 +A′1) = L− kA1

is fixed, there are curves Ai, i > 1 such that f(Ai) = Ai (say s of such curves;
necessarily s is odd) and f permutes the remaining curves Aj by pairs (there are
t = 1

2 (15− s) such pairs). Let Γ be the lattice generated by the classes Ai fixed by
f , by Aj + f(Aj) if f(Aj) 6= Aj and by L− kA1. It is a finite index sub-lattice of
NS(X)f , the fix sub-lattice of the Néron-Severi group. The discriminant group of
Γ is

Z/2kZ× (Z/2Z)s × (Z/4Z)t.

Since in NS(X) there is at most a coefficient 1
2 on L, the discriminant of NS(X)f

contains Z/kZ. If f was non-symplectic, then M = NS(X)f would be a 2-
elementary lattice (see [2]; it means that the discriminant groupM∗/M' (Z/2Z)a

for some integer positive a). But for k > 2 this is impossible, therefore f has to be
symplectic.
For k = 2, we use the model Y ↪→ P3 of degree 4 with 15 nodes of X determined
by the divisor L− 2A1. Since f preserves L− kA1, the involution on X induces an
involution (still denoted f) on P3 = |L− kA1| preserving Y . Up to conjugation, f
is x→ (−x1 : x2 : x3 : x4) or x→ (−x1 : −x2 : x3 : x4).
Suppose that f is f : x → (−x1 : x2 : x3 : x4). The hyperplane x1 = 0 cuts the
quartic Y into a quartic plane curve C0 ↪→ Y . The surface Y is a double cover
of P(2, 1, 1, 1) branched over C0 ↪→ P(2, 1, 1, 1). The quartic C0 is irreducible and
reduced, since otherwise X would have Picard number > 17. The singularities on
C0 are at most nodes and the corresponding nodes on Y are fixed by f . Let us
recall that the number s of fixed nodes is odd.
Suppose that C0 contains 3 nodes. Its pull back C ′0 on X is a smooth rational
curve. The rank of the sub-lattice NS(X)f is 1 + s+ t = 10. By [2, Figure 1], the
genus of the fixed curve C ′0 must be strictly positive, which is a contradiction.
Suppose that C0 contains 2 nodes, then the isolated fixed point (1 : 0 : 0 : 0) is also
a node; the rank of NS(X)f is still 10. One has

[NS(X)f : Γ]2 =
detΓ

detNS(X)f
=

22+1+2t

2a
= 217−a,

thus a is odd. However by [2, Figure 1], when NS(X)f has rank 10, the integer a
is always even, this is a contradiction.
Suppose that C0 contains 1 node. Its pull back on X is a smooth genus 2 curve.
One has rkNS(X)f = 9. By [2, Figure 1], since the fixed curve has genus 2, one has
a = 9, therefore

[NS(X)f : Γ]2 = 217−a = 28,

and there are at most 4-classes which are 2-divisible in the discriminant group

Z/4Z× Z/2Z× (Z/4Z)7

of Γ. But then the discriminant group of NS(X)f would contain a sub-group Z/4Z,
which is a contradiction.
Suppose that f is f : x → (−x1 : −x2 : x3 : x4) (observe that we can not exclude
immediately this case since Y is singular. If Y would be smooth then such an
f would correspond to a symplectic automorphism). The line x1 = x2 = 0 or
x3 = x4 = 0 cannot be included in Y, otherwise Y would be singular along that line
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(this is seen using the equation of Y ). The number of fixed nodes being odd, there
are 1 or 3 fixed nodes of Y on these two lines (the intersection number of each lines
with Y being 4).
Suppose that one node is fixed. The corresponding (−2)-curve on X must be stable,
moreover rkNS(X)f = 9. But by [2, Figure 1], there is no non-symplectic involution
on a K3 such that rkNS(X)f = 9 and the fix-locus is a (−2)-curve or is empty. By
the same reasoning, one can discard the case of 3 stable rational curves.
We therefore proved that for any k > 1, f must be symplectic.

A symplectic automorphism acts trivially on the transcendental lattice TX , which
in our situation has rank 5. Therefore the trace of f on H2(X,Z) equals 6 + s > 6.
But the trace of a symplectic involution equals 6 (see e.g. [28, Section 1.2]). This
is a contradiction, thus f cannot have order 2 and m is larger than 1.

The automorphism g = f2
m−1

has order 2 and g(A1) = A1, g(A′1) = A′1, thus
g(L) = L. There are curves Ai, i > 1 such that f(Ai) = Ai (say s of such, s is
odd since A1 is fixed) and the remaining curves Aj are permuted 2 by 2 (there are
t = 1

2 (15− s) such pairs). Let similarly as above Γ′ be the sub-lattice generated by
L,A1 and the fix classes Ai, Aj + g(Aj). It is a finite index sub-lattice of NS(X)g

and its discriminant group is

Z/2k(k + 1)Z× (Z/2Z)s+1 × (Z/4Z)t.

By the same reasoning as before, the automorphism g must be symplectic as soon
as k > 1. But the trace of g is 8 + s > 6, thus g cannot be symplectic either.
Therefore we conclude that such an automorphism f does not exist. �

3.3. Consequences on the Kummer structures on X. A Kummer struc-
ture on a K3 surface X is an isomorphism class of Abelian surfaces B such that
X ' Km(B). The following Proposition is stated in [12]; we give here a proof for
completeness:

Proposition 21. The Kummer structures on X are in one-to-one correspondence
with the orbits of Nikulin configurations under the automorphism group Aut(X) of
X.

Proof. Let C be a Nikulin configuration on the K3 surface X. By [19, Theorem 1] of
Nikulin, there exists a unique (up to isomorphism) double cover B̃ → X branched
over C. Moreover the minimal model B of B̃ is an Abelian surface, and X is the
Kummer surface associated to B, C being the union of the exceptional curves of
the resolution X = Km(B)→ B/[−1].

Let µ : X → X be an automorphism sending a Nikulin configuration C to C′. Let
B, B′ be the abelian surfaces such that C (resp. C′) is the configuration associated
to Km(B) = X (resp. Km(B′) = X).
Let B̃ → B and B̃′ → B′ be the blow-up at the sixteen 2-torsion points of B (resp.
B′). Consider the natural map B̃ → X

µ→ X: it is a double cover of X branched
over C′ and ramified over the exceptional locus of B̃ → B, thus by the results of
Nikulin we just recalled, B̃ is isomorphic to B̃′ and B ' B′.
Reciprocally, suppose that there is an isomorphism φ : B → B′. It induces an
isomorphism φ̃ : B̃ → B̃′ that induces an isomorphism X = Km(B) → Km(B′) =
X which sends the Nikulin configuration C corresponding to B to the Kummer
structure C′ corresponding to B′. �
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According to [12], the number of Kummer structures is finite. IfX = Km(B) and
B∗ is the dual of B, by result of Gritsenko and Hulek [10] one has alsoX ' Km(B∗),
thus if B is not principally polarized, the number of Kummer structures is at least
2.
When NS(B) = ZM , by results of Orlov [20] on derived categories, the number of
Kummer structures equals 2s where s is the number of prime divisor of 1

2M
2. In

our situation one has M2 = k(k + 1). By subsection 3.2 as soon as k > 2, there
is no automorphism sending the configuration C =

∑16
i=1Ai to C′ = A′1 +

∑16
i=2Ai,

thus

Corollary 22. Suppose k ≥ 2. The two Nikulin configurations C =
∑16
i=1Ai and

C′ = A′1 +
∑16
i=2Ai represent two distinct Kummer structures on X.

Remark 23. When k = 2 then k(k+1)
2 = 3 is divisible by one prime, thus the

configurations C and C′ are the two representatives of the set of Kummer structures
on X = Km(B). Observe that X is also isomorphic to Km(B∗), where B∗ is the
dual of B. Since B is not isomorphic to B∗, the double cover of X branched over
C′ is (the blow-up of) B∗.

4. bi-double covers associated to Nikulin configurations

4.1. A hyperelliptic curve with genus ≤ 2k and a point of multiplicity
2(2k+ 1) on the Abelian surface B. We keep the notations as above: (B,M) is
a polarized Abelian variety with M2 = k(k+ 1) and Pic(B) = ZM . The associated
K3 surface X = Km(B) contains the 17 smooth rational curves

A1, A
′
1, A2, . . . , A16

such that A1, . . . , A16 are the 16 disjoint (−2)-curves arising from the Kummer
structure, A′1 is a (−2)-curve such that A′1, A2, . . . , A16 is a Nikulin configuration
and

A1A
′
1 = 4k + 2.

Let π : B̃ → B be the blow-up of B at the 16 points of 2-torsion, so that there is a
natural double cover B̃ → X = Km(B) branched over the 16 exceptional divisors.

Let Γ̃ be the pull-back of A′1 on B̃ and let Γ be the image of Γ̃ on B. We denote
by E ↪→ B̃ the (−1)-curve above A1. Let us prove the following result

Proposition 24. The curve Γ ↪→ B is hyperelliptic, it has geometric genus ≤ 2k
and has a unique singularity, which is a point of multiplicity 2(2k + 1). The curve
Γ is in the linear system |4M |, in particular Γ2 = 16k(k + 1).

Proof. The singularities on a curve that is the union of two smooth curves on a
smooth surface are of type

a2m−1, m ≥ 1,

where an equation of an a2m−1 singularity is {x2m − y2 = 0}. This is well-known
by experts but we couldn’t find a reference and we therefore sketch a proof. At a
singularity p, there are local parameters x, y such that C1 is given by y = 0. By the
implicit function theorem, we reduce to the case where the curve C2 has equation
y = xm for some m > 0. Then the singularity has equation {y(y−xm) = 0}, which
after a variable change becomes {x2m − y2 = 0}.
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Let us denote by αm the number of a2m−1 singularities on the union A1+A′1. Since
a a2m−1 singularity contributes to m in the intersection of A1 and A′1, one has∑

m≥0

mαm = 4k + 2.

By [4, Table 1, Page 109], the curve Γ̃ ↪→ B̃ has a singularity am−1 above a
singularity a2m−1 of A1+A′1 (by abuse of language a a0-singularity means a smooth
point). Let Γ′ be de normalization of Γ̃; a a2m−1-singularity contributes in the
ramification locus of the double cover Γ′ → A1 (induced by Γ̃ → A1) by 1 if m is
odd and 0 if m is even. Therefore the geometric genus of Γ is

2g(Γ)− 2 = 2 · (−2) +
∑
modd

αm ≤ 4k + 2,

which gives g(Γ) ≤ 2k. The singularities of Γ̃ are at its intersection with E, and
since

Γ̃E =
1

2
π∗1A1π

∗
1A
′
1 = A1A

′
1,

we obtain Γ̃E = 4k + 2. Since E is contracted by the map B̃ → B, the curve Γ
(image of Γ̃) has a unique singular point of multiplicity 4k + 2.
Since A′1 = 2L− (2k + 1)A1, its pull back on B̃1 is 4M̃ − 2(2k + 1)Γ̃ and its image
Γ has class 4M , thus Γ2 = 16k(k + 1). �

Remark 25. Let us choose the point of multiplicity 2(2k + 1) of Γ as the origin
0 of the group B. By construction the curve Γ does not contain any non-trivial
2-torsion point of B1.

The problem of the intersection of A1 and A′1. It is a difficult question to understand
how the curves A1 and A′1 intersect on the Kummer surface X = Km(B). For k = 1
and 2 we know that these curves intersects transversally in 4k+ 2 points, and thus
g(Γ) = 2k. For k = 1, it follows from the geometric description of the Jacobian
Kummer surface as a double cover of the plane branched over 6 line. For k = 2 it
is a by-product of [24].

In [6, Section 5, pp. 54–56] Bryan, Oberdieck, Pandharipande and Yin, quoting
results of Graber, discuss on a related problem which is about hyperelliptic curves
on Abelian surfaces. Let f : C → B be a degree 1 morphism from a hyperelliptic
curve C to an Abelian surface B with image C̄, such that the polarization [C̄] is
generic. Let ι : C → C be the hyperelliptic involution.

Conjecture 26. (see [6]) Suppose B generic among polarized Abelian surfaces. The
differential of f is injective at the Weierstrass points of C, and no non-Weierstrass
points p is such that f(p) = f(ι(p)).

In our situation, that Conjecture means that the rational curves A1 and A′1 meet
transversally. Indeed if they meet at a point tangentially with order m ≥ 2, then
the curve above A′1 has a am−1 singularity. If m is even, there is no branch points
above that singular point, and thus there are points p, ι(p) (with p non-Weierstrass)
which are mapped to the same point by f . If m is odd and > 1, then the curve C
above A′1 has a singularity am−1 of type “cusp”, the differential of its normalization
is 0.

Construction of (nodal or smooth) rational curves on K3 surfaces is an important
problem, see e.g. [11, Chapter 13] for a discussion. The existence of two smooth
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rational curves C1, C2 intersecting transversely and such that C1 +C2 is a multiple
nH of a polarization H is also a key point for obtaining the existence of an integer
n such that there exists an integral rational curve in |nH|, see [11, Chapter 13,
Theorem 1.1] and its proof.

4.2. Invariants of the bidouble covers associated to the special configu-
ration. Let us define

D1 = A′1, D2 = A1, D3 =

16∑
i=2

Aj .

By Nikulin results, the divisors
∑16
i=2Aj +A1 and

∑16
i=2Aj +A′1 are 2-divisible and

therefore there exists L1, L2, L3 such that

2Li = Dj +Dk

for {i, j, k} = {1, 2, 3}. Each Li defines a double cover

πi : B̃i → X

branched over Dj + Dk (here B̃1 = B̃). For i = 1, 2, above the 16 (−2)-curves of
the branch locus of πi : B̃i → X there are 16 (−1)-curves. Let B̃i → Bi be the
contraction map, so that the surface Bi (i = 1, 2) is an Abelian surface.
The divisors Di, Li, i ∈ {1, 2, 3} are the data of a bi-double cover

π : V → X

which is a (Z/2Z)2-Galois cover of X branched over the curves A′1, Ai, i ≥ 1. By
classical formulas, the surface V has invariants

χ(OV ) = 4 · 2 + 1
2

∑
L2
i = k

K2
V = (

∑
Li)

2 = 8k − 30.

The surface V contains 30 (−1)-curves, which are above the 15 curves Ai, i > 1.
The surface V is smooth if and only if the intersection of A1 and A′1 is transverse,
i.e. if Conjecture 26 holds. Let us suppose that this is indeed the case, then one
has moreover the formula

pg(V ) = pg(X) +
∑

h0(X,Li).

The space H0(X,Li) is 0 for i = 1, 2 because the double covers branched over
D2 +D3 or D1 +D3 are Abelian surfaces Bi (i = 1, 2) and 1 = pg(Bi) = pg(X) +
h0(X,Li) ≥ 1. It remains to compute h0(X,L3). The divisor L3 = A1 + A′1 is big
and nef (see section 2). By Riemann-Roch, one has

χ(L3) =
1

2
L2
3 + 2 = k + 2.

By Serre duality and Mumford vanishing Theorem, h1(L3) = h1(L−13 ) = 0. More-
over h2(L3) = h0(−L3) = 0, thus h0(L3) = k + 2 and therefore pg(V ) = k + 3. Let
V → Z be the blow-down map of the 30 (−1)-curves on V which are above the 15
(−2)-curves Ai, i > 1 in X. We thus obtain:

Proposition 27. Suppose that A1 and A′1 intersect transversally. The surface Z
has general type and its invariants are

χ = k, K2
Z = 8k, pg(Z) = k + 3, and q = 4.
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The surface Z is minimal as we see by using the rational map of Z onto the
Abelian surface B1.

Remark 28. The surface Z satisfies

c21 = 2c2 = 8k.

Among surfaces with c21 = 2c2 there are surfaces whose universal covers is the bi-
disk H×H. For k = 1, it turns out that Z is the product of two genus 2 curves, thus
its universal cover is H × H. For k = 2, we obtain the so-called Schoen surfaces,
whose universal cover is not H×H (see [7], [24]).

Let (W,ω) be a smooth projective algebraic variety of dimension 2n over C
equipped with a holomorphic (2, 0)-form of maximal rank 2n. Let us recall that a
n dimensional subvariety Z ⊂W is called Lagrangian if the restriction of ω to Z is
trivial. We remark that

Proposition 29. The surface Z is a Lagrangian surface in B1 ×B2.

Proof. In [5], Bogomolov and Tschinkel associate a Lagrangian surface to the data
of Kummer surfaces S1 = Km(A1), S2 = Km(A2) and a K3 surface S such that
there is a rational map S → Si, i = 1, 2.
In our situation, we take S1 = S2 = S = Km(B), we consider the Kummer structure
Km(B1) for S1 and the Kummer structure Km(B2) (see also Remark 9) for S2, and
the identity map for S → Si.
According to [5, Section 3], the bi-double cover Z is a sub-variety of B1×B2 which
is Lagrangian. �

Let us now discuss what is happens if we do not make assumption on the transver-
sality of the intersection of A1 and A′1. Let us denote by Am a surface singularity
with germ

{xm+1 = y2 + z2}
and by am a curve singularity with germ {xm+1 = y2}.
Since A1, A

′
1 are smooth, the singularities of A1 + A′1 are of type a2m−1, m > 0.

Let s be a a2m−1-singularity of A1 +A′1. Recall that B̃1 is the cover of X branched
over

∑16
i=1Ai. The curve singularity above s in π∗1A′1 ⊂ B̃1 is a am−1 singularity

(see e.g. [4, Table 1, P. 109]).
Thus above the singularity s of type a2m−1 ofA1+A′1, the surface V has a singularity
of type Am−1, (where in fact a A0 (resp. a0) point is a smooth point).
The singularities Am are ADE singularities and by the Theorem of Brieskorn on
simultaneous resolution of singularities, they do not change the values of K2 , χ
and pg of the surface Ṽ which is the minimal resolution of V (we consider the two
successive double covers V → B̃1 and B̃1 → X).
Thus the surface Z obtained by taking the minimal desingularisation of V and
the contraction of the 30 exceptional curves has the same invariants χ(Z), K2

Z and
pg(Z) as if the intersection of A1 and A′1 was transverse. We observe that the image
of the natural map Z → B1 ×B2 is also a Lagrangian surface by [5, Section 3].

Let αm be the number of a2m−1 singularities on A1+A′1. Using Miyaoka’s bound
on the number of quotient singularities on a surface of general type (here to be the
surface B3, the double cover of X branched over A1 +A′1), one gets:∑

(n− 1

n
)αn ≤

4

3
k.
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For k = 1, a configuration of 6a1 singularities on A1 + A′1 is the only possibility.
For k = 2, the possibilities are

10a1, 8a1 + a3, 7a1 + a5,

but we know from explicit computations in [24] that for a generic Abelian surface
polarized by M with M2 = 6, the singularities of A1 +A′1 are 10a1. For k = 3 the
possibilities are

14a1, 12a1 + a3, 10a1 + 2a3, 11a1 + a5, 10a1 + a7.

4.3. The H-constant of the curve Γ. Let X be a surface, P be a non-empty
finite set points on X and let X̄ → X be the blow-up of X at P. For a curve C let
C̄P be the strict transform of C on X̄. The H-constant of C is defined by

H(C) = inf
P

(C̄P)2

#P
and the H-constant of X is H(X) = infC H(C), where the infimum is taken over
reduced curves. The H-constants have been introduced for studying the bounded
negativity Conjecture, which predicts that there exists a bound bX such that for
any reduced curve C on X, one has C2 ≥ bX .

Let A be the generic Abelian surface polarized by M with M2 = k(k + 1) and
let Γ be the curve with a unique singularity which is of multiplicity 4k + 2 and is
in the numerical equivalence class of 4M . One computes immediately

H(Γ) = Γ2 − (4k + 2)2 = −4.

For the moment, one do not know curves on Abelian surfaces which have H-
constants lower than −4. We use these curves in a more thorough study of curves
with low H-constants in [26].
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