HAL

open science

Construction of Nikulin configurations on some Kummer surfaces and applications

Xavier Roulleau, Alessandra Sarti

To cite this version:

Xavier Roulleau, Alessandra Sarti. Construction of Nikulin configurations on some Kummer surfaces and applications. Mathematische Annalen, 2019, 373 (1-2), pp.597-623. 10.1007/s00208-018-1717-5 . hal-02112702

HAL Id: hal-02112702

https://hal.science/hal-02112702

Submitted on 26 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONSTRUCTION OF NIKULIN CONFIGURATIONS ON SOME KUMMER SURFACES AND APPLICATIONS

XAVIER ROULLEAU, ALESSANDRA SARTI

Abstract

A Nikulin configuration is the data of 16 disjoint smooth rational curves on a K3 surface. According to a well known result of Nikulin, if a K3 surface contains a Nikulin configuration \mathcal{C}, then X is a Kummer surface $X=\operatorname{Km}(B)$ where B is an Abelian surface determined by \mathcal{C}. Let B be a generic Abelian surface having a polarization M with $M^{2}=k(k+1)$ (for $k>0$ an integer) and let $X=\operatorname{Km}(B)$ be the associated Kummer surface. To the natural Nikulin configuration \mathcal{C} on $X=\operatorname{Km}(B)$, we associate another Nikulin configuration \mathcal{C}^{\prime}; we denote by B^{\prime} the Abelian surface associated to \mathcal{C}^{\prime}, so that we have also $X=\operatorname{Km}\left(B^{\prime}\right)$. For $k \geq 2$ we prove that B and B^{\prime} are not isomorphic. We then construct an infinite order automorphism of the Kummer surface X that occurs naturally from our situation. Associated to the two Nikulin configurations $\mathcal{C}, \mathcal{C}^{\prime}$, there exists a natural bi-double cover $S \rightarrow X$, which is a surface of general type. We study this surface which is a Lagrangian surface in the sense of Bogomolov-Tschinkel, and for $k=2$ is a Schoen surface.

1. Introduction

To a set \mathcal{C} of 16 disjoint smooth rational curves A_{1}, \ldots, A_{16} on a K 3 surface X, Nikulin proved that one can associate a double cover $\tilde{B} \rightarrow X$ branched over the curve $\sum A_{i}$, such that the minimal model B of \tilde{B} is an Abelian surface and the 16 exceptional divisors of $\tilde{B} \rightarrow B$ are the curves above A_{1}, \ldots, A_{16}. The K3 surface X is thus a Kummer surface.

We call a set of 16 disjoint (-2)-curves on a K3 surface a Nikulin configuration. Let us recall a classical construction of Nikulin configurations. The Kummer surface $X=\operatorname{Km}(B)$ of a Jacobian surface B can be embedded birationally onto a quartic Y of \mathbb{P}^{3} with 16 nodes. Projecting from one node one gets another projective model for X, this is a double cover $Y^{\prime} \rightarrow \mathbb{P}^{2}$ of the plane branched over 6 lines tangent to a conic. The strict transform (in X) of that conic is the union of two (-2)-curves A_{1}, A_{1}^{\prime}, with $A_{1} A_{1}^{\prime}=6$. One of these two curves, A_{1} say, corresponds to the node from which we project. Above the 15 intersection points of the 6 lines there are 15 disjoint (-2)-curves A_{2}, \ldots, A_{16} on X, which corresponds to the 15 other nodes of the quartic Y.
The divisors $\mathcal{C}=\sum_{i=1}^{16} A_{i}, \mathcal{C}^{\prime}=A_{1}^{\prime}+\sum_{i=2}^{16} A_{i}$ are two Nikulin configurations. The Abelian surface B is then the Jacobian of the double cover of A_{1} branched over $A_{1} \cap A_{1}^{\prime}$.

Let now $k>0$ be an integer and let (B, M) be a polarized Abelian surface with $M^{2}=k(k+1)$, such that B is generic, i.e. $\operatorname{NS}(B)=\mathbb{Z} M$. Let $X=\operatorname{Km}(B)$ be the

[^0]associated Kummer surface, let $L \in \mathrm{NS}(X)$ be the class corresponding to M (so that $L^{2}=2 M^{2}$), and let $\mathcal{C}=A_{1}+\cdots+A_{16}$ be the natural Nikulin configuration on $\operatorname{Km}(B)$ (the class L is orthogonal to the $A_{i}{ }^{\prime}$ s). We obtain the following results, which for $k=1$ are the results we recalled for Jacobian Kummer surfaces:

Theorem 1. Let be $t \in\{1, \ldots, 16\}$. There exists a (-2 -curve A_{t}^{\prime} on $\operatorname{Km}(B)$ such that $A_{t} A_{t}^{\prime}=4 k+2$ and $\mathcal{C}_{t}=A_{t}^{\prime}+\sum_{j \neq t} A_{j}$ is another Nikulin configuration.
The numerical class of A_{t}^{\prime} is $2 L-(2 k+1) A_{t}$; the class

$$
L_{t}^{\prime}=(2 k+1) L-2 k(k+1) A_{t}
$$

generates the orthogonal complement of the 16 curves A_{t}^{\prime} and $\left\{A_{j} \mid j \neq t\right\}$; moreover $L_{t}^{\prime 2}=L^{2}$.

A Kummer structure on a Kummer surface X is an isomorphism class of Abelian surfaces B such that $X \simeq \operatorname{Km}(B)$. It is known that Kummer structures on X are in one-to-one correspondence with the orbits of Nikulin configurations by the action of the automorphism group of X (see Proposition 21). In [29, Question 5], Shioda raised the question whether if there could be more than one Kummer structure on a Kummer surface. In [10], Gritsenko and Hulek noticed that $\operatorname{Km}(B) \simeq \operatorname{Km}\left(B^{*}\right)$, where B^{*} is the dual of B, a $(1, t)$-polarized Abelian surface (thus $B \nsucceq B^{*}$ if $t>1$). In [12] Hosono, Lian, Oguiso and Yau proved that the number of Kummer structures is always finite and they construct for any $N \in \mathbb{N}^{*}$ a Kummer surface of Picard number 18 with at least N Kummer structures. When the Picard number is 17 (which is the case of our paper), by results of Orlov [20] on derived categories, the number of Kummer structures on X equals 2^{s} where s is the number of prime divisors of $\frac{1}{2} M^{2}$. In Section 3.3, we obtain the following result

Theorem 2. Suppose $k \geq 2$. There is no automorphism of X sending the Nikulin configuration $\mathcal{C}=\sum_{j=1}^{16} \bar{A}_{j}$ to the configuration $\mathcal{C}_{t}=A_{t}^{\prime}+\sum_{j \neq t} A_{j}$.

Therefore the two configurations $\mathcal{C}, \mathcal{C}_{t}$ belong in two distinct orbits of Nikulin configurations under the action of $\operatorname{Aut}(X)$. As far as we know, Theorem 2 gives the first explicit construction of two distinct Kummer structures on a Kummer surface: the constructions in [12] and [10] use lattice theory and do not give a geometric description of the Nikulin configurations.

We already recalled that when X is a Jacobian Kummer surface, there exists a non-symplectic involution ι on X such that the double cover $\pi: X \rightarrow \mathbb{P}^{2}$ is the quotient of X by ι (after contraction of the $16(-2)$-curves). That involution exchanges the (-2)-curves A_{1} and A_{1}^{\prime} and fixes the 15 other curves $\left\{A_{j} \mid j \neq 1\right\}$. For X a K3 surface with a polarization L such that $L^{2}=2 k(k+1)$ and $t \in\{1, \ldots, 16\}$, let θ_{t} be the involution of $\mathrm{NS}(X) \otimes \mathbb{Q}$ defined by $L \rightarrow L_{t}^{\prime}, A_{t} \rightarrow A_{t}^{\prime}$ (as defined in Theorem 1), and $\theta_{t}\left(A_{j}\right)=A_{j}$ for $j \neq t$. When $k=1, \theta_{1}$ is in fact the action of the involution ι on $\operatorname{NS}(X): \iota^{*}=\theta_{1}$. We do not have such an interpretation when $k>1$ (this is in fact the content of Theorem 2), but we obtain the following result on the product $\theta_{i} \theta_{j}$:
Theorem 3. For $1 \leq i \neq j \leq 16$ there exists an infinite order automorphism $\mu_{i j}$ of X such that the action of $\mu_{i j}$ on $\mathrm{NS}(X)$ is $\mu_{i j}^{*}=\theta_{i} \theta_{j}$.

The classification of the automorphism group of a generic Jacobian Kummer surface has been has been completed by Keum [13] (who constructed the last unknown automorphisms) and by Kondo [14] (who proved that there was indeed no
more automorphisms). We are far from such a knowledge for non Jacobian Kummer surfaces, thus it is interesting to have a construction of such automorphisms $\mu_{i j}$. Let A be an Abelian variety. In [18], Narasimhan and Nori prove that the orbits by $\operatorname{Aut}(A)$ of the principal polarisations in the Néron-Severi group $\operatorname{NS}(A)$ are finite. Similarly, one could think to prove that the number of Kummer structures on a K 3 is finite by associating to each Nikulin configuration \mathcal{C} the pseudo-ample divisor $L_{\mathcal{C}}$ orthogonal to \mathcal{C} and by proving that the number of orbits of such $L_{\mathcal{C}}$ under the action of $\operatorname{Aut}(X)$ in $\mathrm{NS}(X)$ is finite. Our approach is closer to that idea than to the solutions previous proposed e.g. in [12] or [10], and it gives us more informations on $\operatorname{Aut}(X)$.
Observe that one can repeat the construction in Theorem 1, starting with configuration \mathcal{C}_{i} instead of \mathcal{C}, but Theorem 3 tells us that the Nikulin configurations so obtained will be in the orbit of the Nikulin configuration \mathcal{C} under the automorphism group X, thus we do not obtain new Nikulin structures in that way (observe also that \mathcal{C}_{t} and $\mathcal{C}_{t^{\prime}}\left(t \neq t^{\prime}\right)$ are in the same orbit).

The paper is organized as follows: In Section 2 we construct the curve A_{i}^{\prime} such that $A_{i} A_{i}^{\prime}=4 k+2$ and we prove Theorem 1 . This is done by geometric considerations on the properties of the divisor L_{i}^{\prime}, which we prove is big and nef.

In Section 3, we construct the automorphisms mentioned in Theorem 3. This is done by using the Torelli Theorem for K3 surfaces. We then prove Theorem 2, which is obtained by considerations on the lattice $H^{2}(X, \mathbb{Z})$.

In Section 4, we study the bi-double cover $Z \rightarrow X$ associated to the two Nikulin configurations $\mathcal{C}=\sum_{i=1}^{16} A_{i}, \mathcal{C}^{\prime}=A_{1}^{\prime}+\sum_{i=2}^{16} A_{i}$. When $k=2, Y$ is a so-called Schoen surface, a fact that has been already observed in [24]. Schoen surfaces carry many remarkable properties (see e.g. [7, 24]). For example the kernel of the natural map

$$
\wedge^{2} H^{0}\left(Z, \Omega_{Z}\right) \rightarrow H^{0}\left(Z, K_{Z}\right)
$$

is one dimensional, and is not of the form $w_{1} \wedge w_{2}$, i.e. by the Castelnuovo De Franchis Theorem, it does not come from a fibration of Z onto a curve of genus ≥ 2. Surfaces with this property are called Lagrangian. We will see that for the other $k>1$, the surfaces are also Lagrangian.
In Subsection 4.1, we discuss the singularities of the curve $A_{i}+A_{i}^{\prime}$. The transversality of the intersection of two rational curves on a K3 surface is an interesting but open problem in general (see e.g. [11]). We also study the curve Γ_{i} on the Abelian surface B coming from the pull-back of the curve A_{i}^{\prime}. That curve Γ_{i} is hyperelliptic and has a unique singularity, which is a point of multiplicity $4 k+2$, and therefore Γ_{i} has geometric genus $\leq 2 g$. In the case of a Jacobian surface, Γ_{i} has been used as the branch locus of covers of B by Penegini [22] and Polizzi [21], for creating new surfaces of general type. We end this paper by remarking that Γ_{i} is a curve with the lowest known H-constant (see [25] for definitions and motivations) on an Abelian surface.

Acknowledgements The authors thank the anonymous referee for useful remarks improving the exposition of the paper.

2. Two Nikulin configurations on Kummer surfaces

2.1. Two rational curves A_{1}, A_{1}^{\prime} such that $A_{1} A_{1}^{\prime}=2(2 k+1)$. Let $k>0$ be an integer and let B be an abelian surface with a polarization M such that $M^{2}=k(k+1)$. We suppose that B is generic so that M generates the Néron-Severi
group of B. Let $X=\operatorname{Km}(B)$ be the associated Kummer surface and A_{1}, \ldots, A_{16} be its 16 disjoint (-2)-curves coming from the desingularization of $B /[-1]$.
By [17, Proposition 3.2], [9, Proposition 2.6], corresponding to the polarization M on B, there is a polarization L on $\operatorname{Km}(B)$ such that

$$
L^{2}=2 k(k+1)
$$

and $L A_{i}=0, i \in\{1, \ldots, 16\}$. The Néron-Severi group of $X=\operatorname{Km}(B)$ satisfies:

$$
\mathbb{Z} L \oplus K \subset \mathrm{NS}(X)
$$

where K denotes the Kummer lattice (the saturated sub-lattice of $N S(X)$ containing the 16 classes A_{i}). For B generic among polarized Abelian surfaces $\operatorname{rk}(\operatorname{NS}(X))=$ 17 and $\mathrm{NS}(X)$ is an overlattice of finite index of $\mathbb{Z} L \oplus K$ which is described precisely in [9], in particular we will use the following result:

Lemma 4. ([9, Remarks $2.3 \& 2.10])$ An element $\Gamma \in \operatorname{NS}(X)$ has the form $\Gamma=$ $\alpha L-\sum \beta_{i} A_{i}$ with $\alpha, \beta_{i} \in \frac{1}{2} \mathbb{Z}$. If α or β_{i} for some i is in $\frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}$, then at least 4 of the β_{j} 's are in $\frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}$, if moreover $\alpha \in \mathbb{Z}$, at least 8 of the β_{j} 's are in $\frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}$.

The divisor

$$
A_{1}^{\prime}=2 L-(2 k+1) A_{1}
$$

is a (-2)-class, indeed:

$$
\left(2 L-(2 k+1) A_{1}\right)^{2}=8 k(k+1)-2(2 k+1)^{2}=-2
$$

and one has $A_{1}^{\prime} A_{i}=0$ for $i=2, \cdots, 16$. By the Riemann-Roch Theorem and since $L A_{1}^{\prime}>0$, the class A_{1}^{\prime} is represented by an effective divisor. Let us prove the following result

Theorem 5. The class A_{1}^{\prime} can be represented by a (-2)-curve and $A_{1} A_{1}^{\prime}=2(2 k+$ $1)$. The set of (-2)-curves

$$
A_{1}^{\prime}, A_{2}, \ldots, A_{16}
$$

is another Nikulin configuration on X.
In order to prove Theorem 5, let us define

$$
L^{\prime}=(2 k+1) L-2 k(k+1) A_{1} .
$$

One has $L^{\prime} A_{1}^{\prime}=0$ and

$$
L^{\prime 2}=(2 k+1)^{2} 2 k(k+1)-8 k^{2}(k+1)^{2}=2 k(k+1)=L^{2} .
$$

First let us prove:
Proposition 6. One has:
a) The divisor L^{\prime} is nef and big. Moreover a (-2)-class Γ satisfies $\Gamma L^{\prime}=0$ if and only if $\Gamma=A_{1}^{\prime}$ or $\Gamma=A_{j}$ for j in $\{2, \ldots, 16\}$.
b) The linear system $\left|L^{\prime}\right|$ has no base components.
c) The linear system $\left|L^{\prime}\right|$ defines a morphism from $X=\operatorname{Km}(B)$ to $\mathbb{P}^{k^{2}+k+1}$ which is birational onto its image and contracts the divisor A_{1}^{\prime} and the $15(-2)$-curves $A_{i}, i \geq 2$.
Proof. Proof of a). We already know that $L^{\prime 2}=2 k(k+1)>0$. By the RiemannRoch Theorem either L^{\prime} or $-L^{\prime}$ is effective. Since $L L^{\prime}>0$, we see that L^{\prime} is effective. On a K3 surface, the (-2 -curves are the only irreducible curves with
negative self-intersection, thus L^{\prime} is nef if and only if $L^{\prime} \Gamma \geq 0$ for each irreducible (-2)-curve Γ. Let

$$
\Gamma=\alpha L-\sum_{i=1}^{16} \beta_{i} A_{i}, \quad \alpha, \beta_{i} \in \frac{1}{2} \mathbb{Z}
$$

be the class of Γ in $\operatorname{NS}(X)$. Since Γ represents an irreducible curve we have $\alpha \geq 0$. Moreover if $\Gamma=A_{i}$ then the condition $L^{\prime} \Gamma \geq 0$ is trivially verified so that we can assume $\Gamma A_{i} \geq 0$, which gives $\beta_{i} \geq 0$. From the condition $\Gamma^{2}=-2$, we get

$$
\begin{equation*}
k(k+1) \alpha^{2}-\sum_{i} \beta_{i}^{2}=-1 \tag{2.1}
\end{equation*}
$$

Assume that the (-2)-curve Γ satisfies $L^{\prime} \Gamma<0$. We have

$$
0>L^{\prime} \Gamma=\left((2 k+1) L-2 k(k+1) A_{1}\right) \Gamma=2 \alpha k(k+1)(2 k+1)-4 k(k+1) \beta_{1}
$$

thus

$$
\beta_{1}>\frac{(2 k+1)}{2} \alpha .
$$

Combining with equation (2.1) we get

$$
-1=k(k+1) \alpha^{2}-\sum_{i} \beta_{i}^{2}<-\frac{1}{4} \alpha^{2}-\sum_{i=2}^{15} \beta_{i}^{2}
$$

which is

$$
\begin{equation*}
\frac{1}{4} \alpha^{2}+\sum_{i=2}^{15} \beta_{i}^{2}<1 \tag{2.2}
\end{equation*}
$$

thus $\alpha \in\{0,1 / 2,1,3 / 2\}$.
If $\alpha=0$, by (2.1) either exactly one of the $\beta_{i}=1$ (but this is not possible since it would give $\Gamma=-A_{i}$) or exactly 4 of the $\beta_{i}^{\prime} s$ are equal to $\frac{1}{2}$ and the others are 0 but such a class is not contained in $\mathrm{NS}(X)$ by Lemma 4.
If $\alpha=\frac{1}{2}$, then from inequality (2.2), $\beta_{i} \in\left\{0, \frac{1}{2}\right\}$ for $i \geq 2$ and at most 3 of these β_{i} 's equal $\frac{1}{2}$. By Lemma 4 at least 4 of the β_{i} are in $\frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}$, thus 3 of the $\beta_{i}, i \geq 2$ equals $\frac{1}{2}$ and the others are 0 . Then from equation (2.1), we get:

$$
\beta_{1}^{2}=\frac{k^{2}+k+1}{4} .
$$

Suppose that there exists $n \in \mathbb{N}$ such that $k^{2}+k+1=n^{2}$. Then $n>k$, but since $n^{2} \geq(k+1)^{2}>k^{2}+k+1$, we get a contradiction. Hence $\forall k \in \mathbb{N}^{*}$, the integer $k^{2}+k+1$ is never a square and therefore the case $\alpha=\frac{1}{2}$ is impossible.
If $\alpha=1$, at most 2 of the β_{i} 's with $i>1$ are equal $\frac{1}{2}$ and the others are 0 , by applying Lemma 4 we get $\beta_{i}=0$ for $i>1$ and $\beta_{1} \in \mathbb{N}$. Then equation (2.1) implies

$$
\beta_{1}^{2}=k^{2}+k+1,
$$

which we know has no integral solutions for $k>0$.
If $\alpha=\frac{3}{2}$, at most 1 of the β_{i} 's with $i>1$ is $\frac{1}{2}$, this is also impossible by Lemma 4 , therefore such Γ does not exist and this concludes the proof that L^{\prime} is big and nef for all $k \geq 1$.
Assume that the (-2 -curve Γ satisfies $L^{\prime} \Gamma=0$ and is not A_{j} for $j \geq 2$. Then one has $\beta_{1}=\frac{(2 k+1)}{2} \alpha$, and one computes that either $\alpha=2, \beta_{1}=2 k+1$ and $\Gamma=A_{1}^{\prime}$,
or $\alpha=1, \beta_{1}=\frac{(2 k+1)}{2} \alpha$ and (up to re-ordering) $\beta_{2}=b_{3}=b_{4}=1 / 2$. Since α is an integer the second case is impossible by Lemma 4.

Proof of b). By [23, Section 3.8] either $\left|L^{\prime}\right|$ has no fixed part or $L^{\prime}=a E+\Gamma$, where $|E|$ is a free pencil, and Γ a (-2)-curve with $E \Gamma=1$. In that case, write $\Gamma=\alpha L-\sum \beta_{i} A_{i}$. Then

$$
2 k(k+1)=L^{\prime 2}=2 a-2
$$

gives $a=k^{2}+k+1$. In particular, a is odd. But

$$
a-2=L^{\prime} \Gamma=2 k(k+1)(2 k+1) \alpha-4 k(k+1) \beta_{1}
$$

and since $\alpha, \beta_{1} \in \frac{1}{2} \mathbb{Z}$, one gets that a is even, which yields a contradiction. Therefore $\left|L^{\prime}\right|$ has no base components. By [27, Corollary 3.2], it then has no base points.

Proof of \mathbf{c}). The linear system $\left|L^{\prime}\right|$ is big and nef without base points. We have to show that the resulting morphism has degree one, i.e. that $\left|L^{\prime}\right|$ is not hyperelliptic (see [27, Section 4]). By loc. cit., $\left|L^{\prime}\right|$ is hyperelliptic if there exists a genus 2 curve C such that $L^{\prime}=2 C$ or there exists an elliptic curve E such that $L^{\prime} E=2$.
In the first case $L^{\prime 2}=8$, but since $L^{\prime 2}=2 k(k+1)$, that cannot happen. Assume now

$$
E=\alpha L-\sum \beta_{i} A_{i}
$$

for E with $E L^{\prime}=2$, we get

$$
2=\left(\alpha L-\sum \beta_{i} A_{i}\right)\left((2 k+1) L-2 k(k+1) A_{1}\right)=k(k+1)\left(2(2 k+1) \alpha-2 \beta_{1}\right) .
$$

Since $\alpha, \beta_{1} \in \frac{1}{2} \mathbb{Z}, 2(2 k+1) \alpha-2 \beta_{1}$ is an integer, thus we get $k=1$ and $6 \alpha-2 \beta_{1}=1$. Since $E^{2}=0$, one obtain

$$
2 \alpha^{2}=\sum \beta_{i}^{2},
$$

using $\beta_{1}=3 \alpha-\frac{1}{2}$, one reaches a contradiction.
Therefore $\left|L^{\prime}\right|$ defines a birational map $X \rightarrow \mathbb{P}^{N}$ onto its image, contracting the (-2)-curves Γ such that $L^{\prime} \Gamma=0$, moreover $N=h^{0}\left(L^{\prime}\right)-1=\frac{L^{\prime 2}}{2}+1=k^{2}+k+1$.

We can now prove Theorem 5:
Proof. We proved that the only (-2)-classes that are contracted by L^{\prime} are A_{1}^{\prime}, A_{2}, \ldots, A_{16}. We know moreover that $A_{1}^{\prime} A_{j}=A_{i} A_{j}=0$ for $2 \leq i \neq j \leq 16$. Since one has $L^{\prime} A_{1}^{\prime}=0$ the base point free linear system $\left|L^{\prime}\right|$ contracts the connected components of A_{1}^{\prime} to some points. Therefore by the Grauert contraction Theorem (see [4, Chapter III, Theorem 2.1]), the support of A_{1}^{\prime} is the union of irreducible curves $\left(C_{i}\right)_{i \in\{1, \ldots, m\}}$ (for $\left.m \in \mathbb{N}, m \neq 0\right)$ such that the intersection matrix $\left(C_{i} C_{j}\right)$ is negative definite.
Since X is a K3 surface, the curves C_{i} are (-2)-curves. Since L^{\prime} only contracts the (-2)-classes $A_{1}^{\prime}, A_{2}, \ldots, A_{16}$ that are disjoint, we get that $m=1$ and we conclude that A_{1}^{\prime} is the class of a (-2 -curve C_{1}.
2.2. A projective model of the surface $\operatorname{Km}(B)$. Let us describe a natural map from $\operatorname{Km}(B)$ to \mathbb{P}^{k+1}, which is birational for $k>1$:

Theorem 7. The class $D=L-k A_{1}$ is big and nef with

$$
\left(L-k A_{1}\right)^{2}=2 k
$$

and for $k \geq 2$ it defines a birational map

$$
\phi: \operatorname{Km}(B) \rightarrow \mathbb{P}^{k+1}
$$

onto its image X such that X (of degree $2 k$) has 15 ordinary double points and moreover the curves A_{1}^{\prime} and A_{1} are sent to two rational curves of degree $2 k$ such that $A_{1} A_{1}^{\prime}=2(2 k+1)$.
Remark 8. We have

$$
A_{1}^{\prime}+A_{1}=2\left(L-k A_{1}\right)
$$

so that $A_{1}^{\prime}+A_{1}$ is cut out by a quadric of \mathbb{P}^{k+1} and is 2-divisible.

Proof. We proceed as in Proposition 6.
Let us show that D is nef and big. We have to prove that $D \Gamma \geq 0$ for each irreducible (-2)-curve Γ. As above, let

$$
\Gamma=\alpha L-\sum \beta_{i} A_{i}, \quad \alpha, \beta_{i} \in \frac{1}{2} \mathbb{Z}
$$

be such that $\Gamma D<0$. Then

$$
\Gamma D=2 \alpha k(k+1)-2 k \beta_{1}<0
$$

implies $\beta_{1}>(k+1) \alpha$.
Combining with the equation (2.1), we get

$$
1>(k+1) \alpha^{2}+\sum_{i \geq 2} \beta_{i}^{2},
$$

thus $\alpha<1$. As in Proposition 6, the case $\alpha=0$ is impossible. If $\alpha=\frac{1}{2}$, then $k \in\{1,2\}$, but as above, Lemma 4 implies that this is not possible. Thus D is nef and big.
Let us now suppose $k>1$. Let us show that $|D|$ has no base components. Suppose that there is a base component. Then $D=a E+\Gamma$, where $a \in \mathbb{N},|E|$ is a free pencil, Γ is a (-2)-curve and $E \Gamma=1$. One has

$$
2 k=D^{2}=2 a-2,
$$

thus $a=k+1$, so that

$$
L-k A_{1}=(k+1) E+\Gamma
$$

Suppose that $\Gamma=A_{1}$, then $2 k=A_{1} D=k-1$ and $k=-1$, which is impossible. If $\Gamma=A_{i}, i \geq 2$, then $0=D A_{i}=k-1$, thus $k=1$, but we assumed that $k>1$.
Thus we can assume that Γ is not one of the A_{i} and write $\Gamma=\alpha L-\sum \beta_{i} A_{i}$ with $\alpha, \beta_{i} \geq 0$. One has

$$
\begin{equation*}
2 k=D A_{1}=(k+1) E A_{1}+2 \beta_{1}, \tag{2.3}
\end{equation*}
$$

moreover

$$
\begin{equation*}
2 k(k+1)=\left(L-k A_{1}\right) L=(k+1) E L+2 k(k+1) \alpha . \tag{2.4}
\end{equation*}
$$

Since $E A_{1} \geq 0$ we obtain from equation (2.3) that either $\beta_{1}=k$ (and $E A_{1}=0$) or $\beta_{1}=\frac{k-1}{2}$ and $E A_{1}=1$, in that second case since

$$
E\left(L-k A_{1}\right)=E((k+1) E+\Gamma)=1
$$

one obtains $E L=k+1$.
Since $E L \geq 0$, we obtain from equation (2.4) that $\alpha \in\left\{0, \frac{1}{2}, 1\right\}$, but as in Proposition $6, \alpha=0$ is not possible. Moreover if $\alpha=1, E L=0$, but this contradicts the Hodge Index Theorem since $E^{2}=0$ and $L^{2}>0$, therefore $\alpha=\frac{1}{2}$. If $\beta_{1}=k$, from $\Gamma^{2}=-2$, one gets

$$
\frac{k(k+1)}{4}-k^{2}-\sum_{i \geq 2} \beta_{i}^{2}=-1
$$

which is

$$
\sum_{i \geq 2} \beta_{i}^{2}=\frac{1}{4}\left(-3 k^{2}+k+4\right)
$$

But for $k>1,-3 k^{2}+k+4<0$ and we obtain a contradiction. If now $\beta_{1}=\frac{k-1}{2}$, then $E L=k+1$, but equation (2.4) gives $E L=k$, contradiction. Therefore $|D|$ has no base component.
Let us show that $|D|$ defines a birational map. We have to show that $|D|$ is not hyperelliptic. Suppose that $D=2 C$ where C is a genus 2 curve. Then $D^{2}=8$; since $D^{2}=2 k$, we get $k=4$. One has $D=L-4 A_{1}$ and the class of C is $\frac{1}{2} L-2 A_{1}$. Then $\frac{1}{2} L \in \operatorname{NS}(X)$, which contradicts the fact that L generates the orthogonal complement of $\operatorname{NS}(\operatorname{Km}(B))$, and so L is primitive. Suppose now that there exists an elliptic curve E such that $D E=2$. Let

$$
E=\alpha L-\sum \beta_{i} A_{i},
$$

with $\alpha \in \frac{1}{2} \mathbb{Z}$. Since $D=L-k A_{1}$, one has

$$
D E=2 k(k+1) \alpha-2 k \beta_{1},
$$

therefore $k(k+1) \alpha-k \beta_{1}=1$. If $\alpha \in \mathbb{Z}$, then if $\beta_{1} \in \mathbb{Z}$, one gets $k=1$, if $\beta_{1}=\frac{b}{2}$ with b odd, then

$$
k(2(k+1) \alpha-b)=2
$$

and $k=2$ (we supposed $k>1$), $6 \alpha-b=2$, which is impossible since b is odd. If $\alpha=\frac{a}{2}$ with $a \in \mathbb{Z}$ odd, then $k\left((k+1) a-2 \beta_{1}\right)=2$. Then since $2 \beta_{1} \in \mathbb{Z}$ and $k>1$, one has $k=2$ and $3 a-2 \beta_{1}=1$, thus $\beta_{1}=\frac{3 a-1}{2}=3 \alpha-\frac{1}{2} \in \mathbb{Z}$. We have moreover (since $k=2$):

$$
0=E^{2}=6 \alpha^{2}-\sum \beta_{i}^{2}
$$

thus

$$
9 \alpha^{2}-3 \alpha+\frac{1}{4}+\sum_{i \geq 2} \beta_{i}^{2}=6 \alpha^{2}
$$

and $3 \alpha^{2}-3 \alpha+\frac{1}{4} \leq 0$, the only possibility is $\alpha=\frac{1}{2}$, but then $\sum_{i \geq 2} \beta_{i}^{2}=\frac{1}{2}$, which is impossible since, by Lemma 4, there is no class with $\beta_{i}=\frac{1}{2}$ for only 2 indices i. Therefore when $k>1,|D|$ defines a birational map to \mathbb{P}^{N}, with $N=\frac{D^{2}}{2}+1=k+1$. That maps contracts the curves Γ with $\Gamma D=0$, ie A_{2}, \ldots, A_{16}.

One has

$$
A_{1}\left(L-k A_{1}\right)=2 k=A_{1}^{\prime}\left(L-k A_{1}\right)
$$

thus the curves A_{1}, A_{1}^{\prime} in \mathbb{P}^{k+1} have degree $2 k$. Moreover $A_{1} A_{1}^{\prime}=2(2 k+1)$.
Let us prove that the $15(-2)$-curves $A_{i}, i>1$ are the only ones contracted i.e. they are the only solutions of the equation $\Gamma D=0,\left(D=L-k A_{1}\right)$. Suppose $\Gamma \neq A_{i}, \Gamma=\alpha L-\sum \beta_{i} A_{i}$. One has $\Gamma D=0$ if and only if

$$
\alpha(k+1)=\beta_{1}
$$

and $\alpha^{2} k(k+1)-\sum \beta_{i}^{2}=-1$, which gives

$$
(k+1) \alpha^{2}+\sum_{i>1} \beta_{i}^{2}=1,
$$

which has no solutions by Lemma 4.
Remark 9. To the pair $\left(L, A_{1}\right)$ one can associate the pair $\left(L^{\prime}, A_{1}^{\prime}\right)$, with

$$
L^{\prime}=(2 k+1) L-2 k(k+1) A_{1}, A_{1}^{\prime}=2 L-(2 k+1) A_{1}
$$

with the same numerical properties

$$
L^{2}=L^{\prime 2}=2 k, L A_{1}=0=L^{\prime} A_{1}^{\prime}, L A_{1}^{\prime}=4 k(k+1)=L^{\prime} A_{1} .
$$

The polarization L^{\prime} comes from a polarization M^{\prime} on the Abelian surface B^{\prime} associated to the Nikulin configuration $A_{1}^{\prime}, A_{2}, \ldots, A_{16}$. We will see that for $k=1$ the mapping $\Psi:\left(L, A_{1}\right) \rightarrow\left(L^{\prime}, A_{1}^{\prime}\right)$ is an involution of $\mathrm{NS}(X)$ which comes from an involution of X, and the Abelian surfaces B, B^{\prime} are isomorphic.
One can repeat the construction with $\left(L^{\prime}, A_{2}\right)$ instead of L, A_{1} etc... Let us define the maps $\Psi_{i}, \Psi_{j},\{i, j\}=\{1,2\}$ by $\Psi_{i}(L)=(2 k+1) L-2 k(k+1) A_{i}, \Psi_{i}\left(A_{i}\right)=$ $2 L-(2 k+1) A_{i}, \Psi_{i}\left(A_{j}\right)=A_{j}$. It is easy to check that $\Psi_{1} \circ \Psi_{2}$ has infinite order, and we therefore obtain in that way an infinite number of Nikulin configurations. For any $k \in \mathbb{N}, k \neq 0$, we will see that the $\operatorname{map} \Psi_{i} \circ \Psi_{j}$ for $i \neq j$ is in fact the restriction of the action of an automorphism of X on $\operatorname{NS}(X)$.
2.3. The first cases $k=1,2,3,4$. In this subsection, we give a more detailed description of our construction when k is small. One has

k	1	2	3	4
$A_{1} A_{1}^{\prime}$	6	10	14	18
L^{2}	4	12	24	40

and the morphism ϕ associated to the linear system $\left|L-k A_{1}\right|$ is from $\operatorname{Km}(B)$ to \mathbb{P}^{k+1}, with $k+1=2,3,4,5$ (which produce the most famous geometric examples of K3 surfaces).

The case $k=1$ has been discussed in the Introduction.
For $k=2$, the result was already observed in [24]. The image of ϕ is a 15-nodal quartic $Q=Q_{4}$ in \mathbb{P}^{3}, the curves A_{1}, A_{1}^{\prime} are sent to two degree 4 rational curves (denoted by the same letters) meeting in 10 points. As we already observed, the divisor $A_{1}+A_{1}^{\prime}$ is a 2-divisible class. The double cover $Y \rightarrow Q$ branched over $A_{1}+A_{1}^{\prime}$ has 40 ordinary double points coming from the 15 singular points on Q and from the 10 intersection points of A_{1} and A_{1}^{\prime}. This surface Y is described in [24]. It is a general type surface, a complete intersection in \mathbb{P}^{4} of a quadric and the Igusa quartic. It is the canonical image of its minimal resolution. The double cover S of Y branched over the 40 nodes is a so-called Schoen surface. It is a surface with $p_{g}(S)=p_{g}(Y)=5$, thus the canonical image of S is Y and the degree of the canonical map of the Schoen surface is 2 .

For $k=3$, one get a model Q_{6} of X in \mathbb{P}^{4} which is the complete intersection of a quadric and a cubic. In a similar way as before, Q_{6} has 15 ordinary double
points and A_{1} and A_{1}^{\prime} are sent by $\left|L-3 A_{1}\right|$ to two rational curves of degree 6 with intersection number 14 .

For $k=4$, one get a degree 8 model Q_{8} of X in \mathbb{P}^{5} which is the complete intersection of 3 quadrics. That model has 15 ordinary double points and the curves A_{1} and A_{1}^{\prime} are sent by $\left|L-4 A_{1}\right|$ to two rational curves of degree 8 with intersection number 18.

3. Nikulin configurations and automorphisms

3.1. Construction of an infinite order automorphism. Let us denote by $K_{a b c d}$ with $a, b, c, d \in\{0,1\}$ the $16(-2)$-curves on the K 3 surface $X=\operatorname{Km}(A)$, and as before let L be the polarization coming from the polarization of A.
Let K be the lattice generated by the following 16 vectors v_{1}, \ldots, v_{16} :

$$
\begin{aligned}
& \frac{1}{2} \sum_{p \in A[2]} K_{p}, \frac{1}{2} \sum_{W_{1}} K_{p}, \frac{1}{2} \sum_{W_{2}} K_{p}, \frac{1}{2} \sum_{W_{3}} K_{p}, \frac{1}{2} \sum_{W_{4}} K_{p}, K_{0000} \\
& K_{1000}, K_{0100}, K_{0010}, K_{0001}, K_{0011}, K_{0101}, K_{1001}, K_{0110}, K_{1010}, K_{1100}
\end{aligned}
$$

where $W_{i}=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{4} \mid a_{i}=0\right\}$. By results of Nikulin, [19], the lattice K is the minimal primitive sub-lattice of $H^{2}(X, \mathbb{Z})$ containing the (-2)-curves $K_{a b c d}$. The discriminant group K^{\vee} / K is isomorphic to $\left(\mathbb{Z}_{2}\right)^{6}$ and the discriminant form of K is isometric to the discriminant form of $U(2)^{\oplus 3}$.

Lemma 10. (See [9, Remark 2.3]) The Néron-Severi group $\operatorname{NS}(X)$ is generated by K and $v_{17}:=\frac{1}{2}\left(L+\omega_{4 d}\right)$, where L is the positive generator of K^{\perp} with $L^{2}=4 d$ (here $d=\frac{k(k+1)}{2}$), and if $L^{2}=0 \bmod 8$,

$$
\omega_{4 d}=K_{0000}+K_{1000}+K_{0100}+K_{1100},
$$

if $L^{2}=4 \bmod 8$,

$$
\omega_{4 d}=K_{0001}+K_{0010}+K_{0011}+K_{1000}+K_{0100}+K_{1100} .
$$

One has moreover
Lemma 11. (99, Remark 2.11]) The discriminant group of $\mathrm{NS}(X)$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{4} \times \mathbb{Z} / 4 d \mathbb{Z}$. Suppose that $d=4 \bmod 8$. Then $\operatorname{NS}(X)^{\vee} / \mathrm{NS}(X)$ is generated by

$$
\begin{aligned}
& w_{1}=\frac{1}{2}\left(v_{6}+v_{8}+v_{10}+v_{12}\right), \quad w_{2}=\frac{1}{2}\left(v_{12}+v_{13}+v_{14}+v_{15}\right), \\
& w_{3}=\frac{1}{2}\left(v_{11}+v_{13}+v_{14}+v_{16}\right), \quad w_{4}=\frac{1}{2}\left(v_{9}+v_{10}+v_{12}+v_{13}\right), \\
& w_{5}=\frac{1}{2}\left(v_{6}+v_{12}+v_{13}\right)+\frac{1}{4 d}\left(v_{7}+v_{8}+v_{9}+v_{10}+(1+2 d) v_{11}+v_{16}-2 v_{17}\right)
\end{aligned}
$$

Suppose that $d=0$ mod 8. Then $\operatorname{NS}(X)^{\vee} / \mathrm{NS}(X)$ is generated by

$$
\begin{aligned}
& w_{1}=\frac{1}{2}\left(v_{6}+v_{12}+v_{14}+v_{16}\right), \quad w_{2}=\frac{1}{2}\left(v_{6}+v_{13}+v_{15}+v_{16}\right), \\
& w_{3}=\frac{1}{2}\left(v_{6}+v_{8}+v_{10}+v_{12}\right), w_{4}=\frac{1}{2}\left(v_{6}+v_{8}+v_{9}+v_{13}\right), \\
& w_{5}=\frac{1}{2}\left(v_{11}+v_{12}+v_{13}\right)+\frac{1}{4 d}\left((1+2 d) v_{6}+v_{7}+v_{8}+v_{16}-2 v_{17}\right)
\end{aligned}
$$

In both cases, the discriminant form of $\mathrm{NS}(X)$ is isometric to the discriminant form of $U(2)^{\oplus 3} \oplus\langle 4 d\rangle$ and the transcendent lattice $T_{X}=\mathrm{NS}(X)^{\perp}$ is isomorphic to $U(2)^{\oplus 3} \oplus\langle-4 d\rangle$.

Proof. The columns of the inverse of the intersection matrix $\left(v_{i} v_{j}\right)_{1 \leq i, j \leq 17}$ is a base of $\operatorname{NS}(X)^{\vee}$ in the base v_{1}, \ldots, v_{17}. From that data we obtain the generators
w_{1}, \ldots, w_{5} of $\operatorname{NS}(X)^{\vee} / \mathrm{NS}(X)$. The matrix $\left(w_{i} w_{j}\right)_{1 \leq i, j \leq 5}$ is

$$
\left(\begin{array}{ccccc}
0 & \frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{4 d}
\end{array}\right) \in M_{5}(\mathbb{Q} / \mathbb{Z})
$$

one has moreover $w_{i}^{2}=0 \bmod 2 \mathbb{Z}$ for $1 \leq i \leq 4$ and $w_{5}^{2}=\frac{1}{4 d} \bmod 2 \mathbb{Z}$. Thus the discriminant form

$$
q: \mathrm{NS}(X)^{\vee} / \mathrm{NS}(X) \rightarrow \mathbb{Q} / 2 \mathbb{Z}
$$

is isometric to the discriminant form of $U(2)^{\oplus 3} \oplus\langle 4 d\rangle$. Since $H^{2}(X, \mathbb{Z})$ is unimodular, and $U(-2) \simeq U(2)$, we obtain T_{X} (for more details see e.g. [11, Chap. 14, Proposition 0.2]).

In Section 2, we associated to L and to A_{j} the divisors

$$
L_{j}=(2 k+1) L-2 k(k+1) A_{j}, A_{j}^{\prime}=2 L-(2 k+1) A_{1} .
$$

The vector space endomorphism

$$
\theta_{j}: \mathrm{NS}(X) \otimes \mathbb{Q} \rightarrow \mathrm{NS}(X) \otimes \mathbb{Q}
$$

defined by $\theta_{j}\left(A_{i}\right)=A_{i}$ for $i \neq j$ and

$$
\theta_{j}\left(A_{j}\right)=A_{j}^{\prime}, \theta_{j}(L)=L_{j}
$$

is an involution, and we will see that it is an isometry (cf. Lemma 13). Let us define

$$
\Phi_{1}=\theta_{2} \theta_{1} .
$$

The endomorphism Φ_{1} has infinite order, its characteristic polynomial $\operatorname{det}\left(T \mathrm{I}_{\mathrm{d}}-\Phi_{1}\right)$ is the product of $(T-1)^{15}$ and the Salem polynomial

$$
T^{2}+\left(2-4 k^{2}\right) T+1
$$

The aim of this section is to prove the following result:
Theorem 12. The automorphism Φ_{1} extends to an effective Hodge isometry Φ of $H^{2}(X, \mathbb{Z})$ and there exists an automorphism ι of X which acts on $H^{2}(X, \mathbb{Z})$ by $\iota^{*}=\Phi$.

Let us start by the following Lemma:
Lemma 13. The morphisms $\theta_{1}, \theta_{2}, \Phi_{1}$ preserve $\mathrm{NS}(X)$ and are isometries of NS (X).

Proof. It is simple to check that θ_{j} preserves the lattice generated by K, L and $v_{17}=\frac{1}{2}\left(L+\omega_{4 d}\right)$. Since for all $1 \leq i, j \leq 16$ one has $\theta_{j}\left(A_{i}\right) \theta_{j}\left(A_{k}\right)=A_{i} A_{k}$, $\theta_{j}(L) \theta_{j}\left(A_{i}\right)=L A_{i}=0, \theta_{j}(L)^{2}=L^{2}, \theta_{j}$ is an isometry of $\operatorname{NS}(X)$, hence so is $\Phi_{1}=\theta_{2} \theta_{1}$.

Let $T_{X}=\mathrm{NS}(X)^{\perp}$. We define $\Phi_{2}: T_{X} \rightarrow T_{X}$ as the identity. The map $\left(\Phi_{1}, \Phi_{2}\right)$ is an isometry of $\mathrm{NS}(X) \oplus T_{X}$.

Lemma 14. The morphism $\left(\Phi_{1}, \Phi_{2}\right)$ extends to an isometry Φ of $H^{2}(X, \mathbb{Z})$.

Proof. Let L_{1}, L_{2} be the lattices $L_{1}=\mathrm{NS}(X), L_{2}=T_{X}=\mathrm{NS}(X)^{\perp}$. Let us denote by

$$
q_{i}: L_{i}^{\vee} / L_{i} \rightarrow \mathbb{Q} / 2 \mathbb{Z}
$$

the discriminant form of L_{i}. By Lemma 11 and its proof, we know the form q_{1} on the base w_{i}.
One has $L_{2}=U(2) \oplus U(2) \oplus\langle-4 d\rangle$. Let us take the base $e_{i}, 1 \leq i \leq 5$ of L_{2} such that the intersection matrix of the e_{j} 's is

$$
\left(e_{i} e_{j}\right)_{1 \leq i, j \leq 5}=-\left(\begin{array}{ccccc}
0 & 2 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 d
\end{array}\right)
$$

The elements $w_{i}^{\prime}=\frac{1}{2} e_{i}$ for $1 \leq i \leq 4$ and $w_{5}^{\prime}=\frac{1}{4 d} e_{5}$ are generators of L_{2}^{\vee} / L_{2}. Let

$$
\phi: L_{2}^{\vee} / L_{2} \rightarrow L_{1}^{\vee} / L_{1}
$$

be the isomorphism (called the gluing map) defined by

$$
\phi\left(w_{i}^{\prime}\right)=w_{i} .
$$

One has $q_{1}\left(\phi\left(\sum a_{i} w_{i}^{\prime}\right)\right)=-q_{2}\left(\sum a_{i} w_{i}^{\prime}\right)$ i.e.

$$
q_{2}=-\phi^{*} q_{1} .
$$

Since L_{1}, L_{2} are primitive sub-lattices of the even unimodular lattice $H^{2}(X, \mathbb{Z})$ with $L_{2}=L_{1}^{\perp}$, the lattice $H^{2}(X, \mathbb{Z})$ is obtained by gluing L_{1} with L_{2} by the gluing isomorphism ϕ. In other words $H^{2}(X, \mathbb{Z})$ is generated by all the lifts in $L_{1}^{\vee} \oplus L_{2}^{\vee}$ of the elements $\left(w_{i}, w_{i}^{\prime}\right), i=1, \ldots, 5$ of the discriminant group of $L_{1} \oplus L_{2}$.
According to general results (see e.g. [16, Page 5]), the element (Φ_{1}, Φ_{2}) of the orthogonal group of $L_{1} \oplus L_{2}$ extends to $H^{2}(X, \mathbb{Z})$ if and only if the gluing map ϕ satisfies $\phi \circ \Phi_{2}=\Phi_{1} \circ \phi$. A simple computation gives that for $1 \leq i \leq 4$, one has $\theta_{j} w_{i}=-w_{i}=w_{i}$ (for $j \in\{1,2\}$), thus $\Phi_{1}\left(w_{i}\right)=w_{i}$. Moreover we compute that

$$
\theta_{j}\left(w_{5}\right)=\left(1-2 k^{2}\right) w_{5}
$$

and since $\left(1-2 k^{2}\right)^{2}=1$ modulo $4 d=2 k(k+1)$, one gets $\Phi_{1}\left(w_{5}\right)=\theta_{2} \theta_{1} w_{5}=\omega_{5}$. Since by definition $\Phi_{2}\left(w_{i}^{\prime}\right)=w_{i}^{\prime}$ for $i=1, \ldots, 5$, we obtain the desired relation $\phi \circ \Phi_{2}=\Phi_{1} \circ \phi$.

Remark 15. Because of the relation $\theta_{j}\left(w_{5}\right)=\left(1-2 k^{2}\right) w_{5}, j \in\{1,2\}$ at the end of the proof of Lemma 14, it is not possible to extend the involution θ_{j} to an isometry, unless $k=1$. In that case, using the proof of Lemma 17 below, the involution θ_{j} extends to an effective Hodge isometry (with action by multiplication by -1 on $\left.T_{X}\right)$. The resulting non-symplectic involution is in fact known under the name of projection involution, see e.g. [13].

Lemma 16. The morphism Φ is an Hodge isometry: its \mathbb{C}-linear extension $\Phi_{\mathbb{C}}$: $H^{2}(X, \mathbb{C}) \rightarrow H^{2}(X, \mathbb{C})$ preserves the Hodge decomposition.

Proof. The map Φ is the identity on the space $T_{X} \otimes \mathbb{C}$ containing the period.
Lemma 17. The Hodge isometry Φ is effective.

Proof. Since X is projective by [4, Proposition 3.11], it is enough to prove that the image by Φ of one ample class is an ample class. Let $m \geq 2$ be an integer. By [9, Proposition 4.3], the divisor $D=m L-\frac{1}{2} \sum_{i \geq 1} A_{i}$ is ample. The image by θ_{1} of D is

$$
\theta_{1}(D)=m L_{1}-\frac{1}{2}\left(A_{1}^{\prime}+\sum_{i \geq 2} A_{i}\right)
$$

where by Section 2 we have that A_{1}^{\prime} is a (-2 -curve, which is disjoint from the $A_{j}, j \geq 2$, and these $16(-2)$-curves have intersection 0 with $L_{1}=\theta_{1}(L)$. There exists an Abelian surface B^{\prime} such that $X=\operatorname{Km}\left(B^{\prime}\right)$ and these $16(-2)$-curves are resolution of the 16 singularities in $B^{\prime} /[-1]$. Moreover L_{1} comes from a polarization M^{\prime} on B^{\prime}, which clearly generates $\mathrm{NS}\left(B^{\prime}\right)$. Thus again by $[9$, Proposition 4.3$], \theta_{1}(D)$ is ample.
The analogous proof with $\left(\theta_{2}, A_{2}\right)$ instead of $\left(\theta_{1}, A_{1}\right)$ gives us that $\theta_{2}(D)$ is also ample. Since $\theta_{i}, i=1,2$ are involutions and $\Phi=\theta_{2} \theta_{1}$, we conclude that

$$
\Phi\left(\theta_{1}(D)\right)=\theta_{2}(D)
$$

is ample, and thus Φ is effective.
We can now apply the Torelli Theorem for K3 surfaces (see [4, Chap. VIII, Theorem 11.1]): since Φ is an effective Hodge isometry there exists an automorphism $\iota: X \rightarrow X$ such that $\iota^{*}=\Phi$. This finishes the proof of Theorem 12.
Remark 18. The Lefschetz formula for the fixed locus X^{ι} of ι on X gives

$$
\chi\left(X^{\iota}\right)=\sum_{i=0}^{4}(-1)^{i} \operatorname{tr}\left(\Phi \mid H^{i}(X, \mathbb{R})\right)=1+\left(4 k^{2}+18\right)+1=20+4 k^{2}
$$

(here $\iota^{*}=\Phi$). If $k=1$ then $\chi\left(X^{\iota}\right)=24$ and we can easily see that X^{ι} contains two rational curves. Indeed in this case as remarked before (Remark 15) $\theta_{i}, i=1,2$ can be extended to a non-symplectic involution (still denoted θ_{i}) of the whole lattice $H^{2}(X, \mathbb{Z})$. The fixed locus of each $\theta_{i}, i=1,2$ are the curves pull-back on X of the six lines in the branching locus of the double cover of \mathbb{P}^{2} (the $\theta_{i}, i=1,2$ are the covering involutions). These curves are different except for the pull-backs ℓ_{1} and ℓ_{2} of two lines, which are the lines passing through the point of the branching curve corresponding to A_{2} if we consider the double cover determined by the involution θ_{1}, respectively through the point corresponding to A_{1} if we consider θ_{2}. So the infinite order automorphism ι corresponding to $\Phi=\theta_{2} \theta_{1}$ fixes the two rational curves ℓ_{1} and ℓ_{2} on X. By using results of Nikulin on non-symplectic involutions [1] the invariant sublattices $H^{2}(X, \mathbb{Z})$ for the action of $\theta_{i}, i=1,2$ are both isometric to $U \oplus E_{8}(-1) \oplus\langle-2\rangle^{\oplus 6}$.
3.2. Action of the automorphism group on Nikulin configurations. The aim of this sub-section is to prove the following result

Theorem 19. Suppose that $k \geq 2$. There is no automorphism f of X sending the configuration $\mathcal{C}=\sum_{i=1}^{16} A_{i}$ to the configuration $\mathcal{C}^{\prime}=A_{1}^{\prime}+\sum_{i=2}^{16} A_{i}$.

Suppose that such an automorphism f exists. The group of translations by the 2-torsion points on B acts on $X=\operatorname{Km}(B)$ and that action is transitive on the set of curves A_{1}, \ldots, A_{16}. Thus up to changing f by $f \circ t$ (where t is such a translation), one can suppose that the image of A_{1} is A_{1}^{\prime}. Then the automorphism f induces
a permutation of the curves A_{2}, \ldots, A_{16}. The (-2)-curve $A_{1}^{\prime \prime}=f^{2}\left(A_{1}\right)=f\left(A_{1}^{\prime}\right)$ is orthogonal to the 15 curves $A_{i}, i>1$ and therefore its class is in the group generated by L and A_{1}. By the description of $\operatorname{NS}(X)$, the (-2)-class $A_{1}^{\prime \prime}=a A_{1}+b L$ has coefficients $a, b \in \mathbb{Z}$. Moreover a, b satisfy the Pell-Fermat equation

$$
\begin{equation*}
a^{2}-k(k+1) b^{2}=1 \tag{3.1}
\end{equation*}
$$

Let us prove:
Lemma 20. Let $C=a A_{1}+b L$ be an effective (-2)-class. Then there exists $u, v \in \mathbb{N}$ such that $a A_{1}+b L=u A_{1}+v A_{1}^{\prime}$, in particular the only (-2)-curves in the lattice generated by L and A_{1} are A_{1} and A_{1}^{\prime}.
Proof. If (a, b) is a solution of equation (3.1), then so are $(\pm a, \pm b)$. We say that a solution is positive if $a \geq 0$ and $b \geq 0$. Let us identify \mathbb{Z}^{2} with $A=\mathbb{Z}[\sqrt{N}]$ by sending (a, b) to $a+b \sqrt{N}$, where $N=k(k+1)$. The solutions of (3.1) are units of the ring A. According to the Chakravala method solving equation (3.1), there exists a solution $\alpha+\beta \sqrt{N}$ (called fundamental) with $\alpha, \beta \in \mathbb{N}^{*}$ such that the positive solutions are the elements of the form

$$
a_{m}+b_{m} \sqrt{N}=(\alpha+\beta \sqrt{N})^{m}, m \in \mathbb{N}
$$

The first term of the sequence of convergents of the regular continued fraction for \sqrt{N} is

$$
\frac{2 k+1}{2}
$$

and since $(2 k+1,2)$ is a solution of (3.1), the fundamental solution is $(\alpha, \beta)=$ $(2 k+1,2)$.
An effective (-2)-class $C=a A_{1}+b L$ either equals A_{1} or satisfies $C L>0$ and $C A_{1}>0$, therefore $b>0$ and $a<0$. Thus if $C \neq A_{1}$, there exists m such that $C=-a_{m} A_{1}+b_{m} L$. Since $A_{1}^{\prime}=2 L-(2 k+1) A_{1}$, one obtains

$$
-a_{m} A_{1}+b_{m} L=\frac{b_{m}}{2} A_{1}^{\prime}+\left((2 k+1) \frac{b_{m}}{2}-a_{m}\right) A_{1}
$$

and the Lemma is proved if the coefficients $u_{m}=\frac{b_{m}}{2}$ and $v_{m}=(2 k+1) \frac{b_{m}}{2}-a_{m}$ are both positive and in \mathbb{Z}. Using the relation

$$
a_{m+1}+b_{m+1} \sqrt{N}=(2 k+1+2 \sqrt{N})\left(a_{m}+b_{m} \sqrt{N}\right)
$$

that follows from an easy induction.
Therefore we conclude that $A_{1}^{\prime \prime}=A_{1}$ i.e. f permutes A_{1} and A_{1}^{\prime}. Let us finish the proof of Theorem 19:

Proof. The class $f^{*} L$ is orthogonal to $A_{1}^{\prime}, A_{2}, \ldots, A_{16}$, thus this is a multiple of the class $L^{\prime}=(2 k+1) L-2 k(k+1) A_{1}$ which has the same property. Since both classes have the same self-intersection and are effective, one gets $f^{*} L=L^{\prime}$; by the same reasoning, since $f^{*} A_{1}^{\prime}=A_{1}$, one gets $f^{*} L^{\prime}=L$. By [9, Proposition 4.3], the divisor

$$
D=2 L-\frac{1}{2} \sum_{i \geq 1} A_{i}
$$

is ample, thus $f^{*} D=2 L^{\prime}-\frac{1}{2}\left(A_{1}^{\prime}+\sum_{i \geq 2} A_{i}\right)$ is also ample and so is $D+f^{*} D$. Moreover $D+f^{*} D$ is preserved by f, thus by [11, Proposition 5.3.3], the automorphism f has finite order. Up to taking a power of it, one can suppose that f has
order 2^{m} for some $m \in \mathbb{N}^{*}$. Suppose $m=1$, ie f is an involution. Then

$$
\frac{1}{2}\left(A_{1}+A_{1}^{\prime}\right)=L-k A_{1}
$$

is fixed, there are curves $A_{i}, i>1$ such that $f\left(A_{i}\right)=A_{i}$ (say s of such curves; necessarily s is odd) and f permutes the remaining curves A_{j} by pairs (there are $t=\frac{1}{2}(15-s)$ such pairs). Let Γ be the lattice generated by the classes A_{i} fixed by f, by $A_{j}+f\left(A_{j}\right)$ if $f\left(A_{j}\right) \neq A_{j}$ and by $L-k A_{1}$. It is a finite index sub-lattice of $\mathrm{NS}(X)^{f}$, the fix sub-lattice of the Néron-Severi group. The discriminant group of Γ is

$$
\mathbb{Z} / 2 k \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})^{s} \times(\mathbb{Z} / 4 \mathbb{Z})^{t}
$$

Since in $\operatorname{NS}(X)$ there is at most a coefficient $\frac{1}{2}$ on L, the discriminant of $\operatorname{NS}(X)^{f}$ contains $\mathbb{Z} / k \mathbb{Z}$. If f was non-symplectic, then $\mathcal{M}=\operatorname{NS}(X)^{f}$ would be a 2 elementary lattice (see [2]; it means that the discriminant group $\mathcal{M}^{*} / \mathcal{M} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{a}$ for some integer positive a). But for $k>2$ this is impossible, therefore f has to be symplectic.
For $k=2$, we use the model $Y \hookrightarrow \mathbb{P}^{3}$ of degree 4 with 15 nodes of X determined by the divisor $L-2 A_{1}$. Since f preserves $L-k A_{1}$, the involution on X induces an involution (still denoted f) on $\mathbb{P}^{3}=\left|L-k A_{1}\right|$ preserving Y. Up to conjugation, f is $x \rightarrow\left(-x_{1}: x_{2}: x_{3}: x_{4}\right)$ or $x \rightarrow\left(-x_{1}:-x_{2}: x_{3}: x_{4}\right)$.
Suppose that f is $f: x \rightarrow\left(-x_{1}: x_{2}: x_{3}: x_{4}\right)$. The hyperplane $x_{1}=0$ cuts the quartic Y into a quartic plane curve $C_{0} \hookrightarrow Y$. The surface Y is a double cover of $\mathbb{P}(2,1,1,1)$ branched over $C_{0} \hookrightarrow \mathbb{P}(2,1,1,1)$. The quartic C_{0} is irreducible and reduced, since otherwise X would have Picard number >17. The singularities on C_{0} are at most nodes and the corresponding nodes on Y are fixed by f. Let us recall that the number s of fixed nodes is odd.
Suppose that C_{0} contains 3 nodes. Its pull back C_{0}^{\prime} on X is a smooth rational curve. The rank of the sub-lattice $\operatorname{NS}(X)^{f}$ is $1+s+t=10$. By [2, Figure 1], the genus of the fixed curve C_{0}^{\prime} must be strictly positive, which is a contradiction.
Suppose that C_{0} contains 2 nodes, then the isolated fixed point $(1: 0: 0: 0)$ is also a node; the rank of $\operatorname{NS}(X)^{f}$ is still 10. One has

$$
\left[\operatorname{NS}(X)^{f}: \Gamma\right]^{2}=\frac{\operatorname{det} \Gamma}{\operatorname{detNS}(X)^{f}}=\frac{2^{2+1+2 t}}{2^{a}}=2^{17-a}
$$

thus a is odd. However by [2, Figure 1], when $\operatorname{NS}(X)^{f}$ has rank 10, the integer a is always even, this is a contradiction.
Suppose that C_{0} contains 1 node. Its pull back on X is a smooth genus 2 curve. One has $\operatorname{rkNS}(X)^{f}=9$. By [2, Figure 1], since the fixed curve has genus 2, one has $a=9$, therefore

$$
\left[\operatorname{NS}(X)^{f}: \Gamma\right]^{2}=2^{17-a}=2^{8}
$$

and there are at most 4-classes which are 2-divisible in the discriminant group

$$
\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{7}
$$

of Γ. But then the discriminant group of $\operatorname{NS}(X)^{f}$ would contain a sub-group $\mathbb{Z} / 4 \mathbb{Z}$, which is a contradiction.
Suppose that f is $f: x \rightarrow\left(-x_{1}:-x_{2}: x_{3}: x_{4}\right)$ (observe that we can not exclude immediately this case since Y is singular. If Y would be smooth then such an f would correspond to a symplectic automorphism). The line $x_{1}=x_{2}=0$ or $x_{3}=x_{4}=0$ cannot be included in Y, otherwise Y would be singular along that line
(this is seen using the equation of Y). The number of fixed nodes being odd, there are 1 or 3 fixed nodes of Y on these two lines (the intersection number of each lines with Y being 4).
Suppose that one node is fixed. The corresponding (-2)-curve on X must be stable, moreover $\operatorname{rkNS}(X)^{f}=9$. But by [2, Figure 1], there is no non-symplectic involution on a K 3 such that $\operatorname{rkNS}(X)^{f}=9$ and the fix-locus is a (-2)-curve or is empty. By the same reasoning, one can discard the case of 3 stable rational curves.
We therefore proved that for any $k>1, f$ must be symplectic.
A symplectic automorphism acts trivially on the transcendental lattice T_{X}, which in our situation has rank 5 . Therefore the trace of f on $H^{2}(X, \mathbb{Z})$ equals $6+s>6$. But the trace of a symplectic involution equals 6 (see e.g. [28, Section 1.2]). This is a contradiction, thus f cannot have order 2 and m is larger than 1 .

The automorphism $g=f^{2^{m-1}}$ has order 2 and $g\left(A_{1}\right)=A_{1}, g\left(A_{1}^{\prime}\right)=A_{1}^{\prime}$, thus $g(L)=L$. There are curves $A_{i}, i>1$ such that $f\left(A_{i}\right)=A_{i}$ (say s of such, s is odd since A_{1} is fixed) and the remaining curves A_{j} are permuted 2 by 2 (there are $t=\frac{1}{2}(15-s)$ such pairs). Let similarly as above Γ^{\prime} be the sub-lattice generated by L, A_{1} and the fix classes $A_{i}, A_{j}+g\left(A_{j}\right)$. It is a finite index sub-lattice of $\operatorname{NS}(X)^{g}$ and its discriminant group is

$$
\mathbb{Z} / 2 k(k+1) \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})^{s+1} \times(\mathbb{Z} / 4 \mathbb{Z})^{t}
$$

By the same reasoning as before, the automorphism g must be symplectic as soon as $k>1$. But the trace of g is $8+s>6$, thus g cannot be symplectic either. Therefore we conclude that such an automorphism f does not exist.
3.3. Consequences on the Kummer structures on X. A Kummer structure on a K3 surface X is an isomorphism class of Abelian surfaces B such that $X \simeq \operatorname{Km}(B)$. The following Proposition is stated in [12]; we give here a proof for completeness:

Proposition 21. The Kummer structures on X are in one-to-one correspondence with the orbits of Nikulin configurations under the automorphism group $\operatorname{Aut}(X)$ of X.

Proof. Let \mathcal{C} be a Nikulin configuration on the K3 surface X. By [19, Theorem 1] of Nikulin, there exists a unique (up to isomorphism) double cover $\tilde{B} \rightarrow X$ branched over \mathcal{C}. Moreover the minimal model B of \tilde{B} is an Abelian surface, and X is the Kummer surface associated to B, \mathcal{C} being the union of the exceptional curves of the resolution $X=\operatorname{Km}(B) \rightarrow B /[-1]$.

Let $\mu: X \rightarrow X$ be an automorphism sending a Nikulin configuration \mathcal{C} to \mathcal{C}^{\prime}. Let B, B^{\prime} be the abelian surfaces such that \mathcal{C} (resp. \mathcal{C}^{\prime}) is the configuration associated to $\operatorname{Km}(B)=X\left(\right.$ resp. $\left.\operatorname{Km}\left(B^{\prime}\right)=X\right)$.
Let $\tilde{B} \rightarrow B$ and $\tilde{B}^{\prime} \rightarrow B^{\prime}$ be the blow-up at the sixteen 2-torsion points of B (resp. $\left.B^{\prime}\right)$. Consider the natural map $\tilde{B} \rightarrow X \xrightarrow{\mu} X$: it is a double cover of X branched over \mathcal{C}^{\prime} and ramified over the exceptional locus of $\tilde{B} \rightarrow B$, thus by the results of Nikulin we just recalled, \tilde{B} is isomorphic to \tilde{B}^{\prime} and $B \simeq B^{\prime}$.
Reciprocally, suppose that there is an isomorphism $\phi: B \rightarrow B^{\prime}$. It induces an isomorphism $\tilde{\phi}: \tilde{B} \rightarrow \tilde{B}^{\prime}$ that induces an isomorphism $X=\operatorname{Km}(B) \rightarrow \operatorname{Km}\left(B^{\prime}\right)=$ X which sends the Nikulin configuration \mathcal{C} corresponding to B to the Kummer structure \mathcal{C}^{\prime} corresponding to B^{\prime}.

According to [12], the number of Kummer structures is finite. If $X=\operatorname{Km}(B)$ and B^{*} is the dual of B, by result of Gritsenko and Hulek [10] one has also $X \simeq \operatorname{Km}\left(B^{*}\right)$, thus if B is not principally polarized, the number of Kummer structures is at least 2.

When $\operatorname{NS}(B)=\mathbb{Z} M$, by results of Orlov [20] on derived categories, the number of Kummer structures equals 2^{s} where s is the number of prime divisor of $\frac{1}{2} M^{2}$. In our situation one has $M^{2}=k(k+1)$. By subsection 3.2 as soon as $k>2$, there is no automorphism sending the configuration $\mathcal{C}=\sum_{i=1}^{16} A_{i}$ to $\mathcal{C}^{\prime}=A_{1}^{\prime}+\sum_{i=2}^{16} A_{i}$, thus

Corollary 22. Suppose $k \geq 2$. The two Nikulin configurations $\mathcal{C}=\sum_{i=1}^{16} A_{i}$ and $\mathcal{C}^{\prime}=A_{1}^{\prime}+\sum_{i=2}^{16} A_{i}$ represent two distinct Kummer structures on X.
Remark 23. When $k=2$ then $\frac{k(k+1)}{2}=3$ is divisible by one prime, thus the configurations \mathcal{C} and \mathcal{C}^{\prime} are the two representatives of the set of Kummer structures on $X=\operatorname{Km}(B)$. Observe that X is also isomorphic to $\operatorname{Km}\left(B^{*}\right)$, where B^{*} is the dual of B. Since B is not isomorphic to B^{*}, the double cover of X branched over \mathcal{C}^{\prime} is (the blow-up of) B^{*}.

4. Bi-Double covers associated to Nikulin configurations

4.1. A hyperelliptic curve with genus $\leq 2 k$ and a point of multiplicity $2(2 k+1)$ on the Abelian surface B. We keep the notations as above: (B, M) is a polarized Abelian variety with $M^{2}=k(k+1)$ and $\operatorname{Pic}(B)=\mathbb{Z} M$. The associated K3 surface $X=\operatorname{Km}(B)$ contains the 17 smooth rational curves

$$
A_{1}, A_{1}^{\prime}, A_{2}, \ldots, A_{16}
$$

such that A_{1}, \ldots, A_{16} are the 16 disjoint (-2)-curves arising from the Kummer structure, A_{1}^{\prime} is a (-2)-curve such that $A_{1}^{\prime}, A_{2}, \ldots, A_{16}$ is a Nikulin configuration and

$$
A_{1} A_{1}^{\prime}=4 k+2
$$

Let $\pi: \tilde{B} \rightarrow B$ be the blow-up of B at the 16 points of 2 -torsion, so that there is a natural double cover $\tilde{B} \rightarrow X=\operatorname{Km}(B)$ branched over the 16 exceptional divisors.

Let $\tilde{\Gamma}$ be the pull-back of A_{1}^{\prime} on \tilde{B} and let Γ be the image of $\tilde{\Gamma}$ on B. We denote by $E \hookrightarrow \tilde{B}$ the (-1)-curve above A_{1}. Let us prove the following result

Proposition 24. The curve $\Gamma \hookrightarrow B$ is hyperelliptic, it has geometric genus $\leq 2 k$ and has a unique singularity, which is a point of multiplicity $2(2 k+1)$. The curve Γ is in the linear system $|4 M|$, in particular $\Gamma^{2}=16 k(k+1)$.

Proof. The singularities on a curve that is the union of two smooth curves on a smooth surface are of type

$$
\mathfrak{a}_{2 m-1}, m \geq 1
$$

where an equation of an $\mathfrak{a}_{2 m-1}$ singularity is $\left\{x^{2 m}-y^{2}=0\right\}$. This is well-known by experts but we couldn't find a reference and we therefore sketch a proof. At a singularity p, there are local parameters x, y such that C_{1} is given by $y=0$. By the implicit function theorem, we reduce to the case where the curve C_{2} has equation $y=x^{m}$ for some $m>0$. Then the singularity has equation $\left\{y\left(y-x^{m}\right)=0\right\}$, which after a variable change becomes $\left\{x^{2 m}-y^{2}=0\right\}$.

Let us denote by α_{m} the number of $\mathfrak{a}_{2 m-1}$ singularities on the union $A_{1}+A_{1}^{\prime}$. Since a $\mathfrak{a}_{2 m-1}$ singularity contributes to m in the intersection of A_{1} and A_{1}^{\prime}, one has

$$
\sum_{m \geq 0} m \alpha_{m}=4 k+2
$$

By [4, Table 1, Page 109], the curve $\tilde{\Gamma} \hookrightarrow \tilde{B}$ has a singularity \mathfrak{a}_{m-1} above a singularity $\mathfrak{a}_{2 m-1}$ of $A_{1}+A_{1}^{\prime}$ (by abuse of language a \mathfrak{a}_{0}-singularity means a smooth point). Let Γ^{\prime} be de normalization of $\tilde{\Gamma}$; a $\mathfrak{a}_{2 m-1}$-singularity contributes in the ramification locus of the double cover $\Gamma^{\prime} \rightarrow A_{1}$ (induced by $\tilde{\Gamma} \rightarrow A_{1}$) by 1 if m is odd and 0 if m is even. Therefore the geometric genus of Γ is

$$
2 g(\Gamma)-2=2 \cdot(-2)+\sum_{m \text { odd }} \alpha_{m} \leq 4 k+2,
$$

which gives $g(\Gamma) \leq 2 k$. The singularities of $\tilde{\Gamma}$ are at its intersection with E, and since

$$
\tilde{\Gamma} E=\frac{1}{2} \pi_{1}^{*} A_{1} \pi_{1}^{*} A_{1}^{\prime}=A_{1} A_{1}^{\prime},
$$

we obtain $\tilde{\Gamma} E=4 k+2$. Since E is contracted by the map $\tilde{B} \rightarrow B$, the curve Γ (image of $\tilde{\Gamma}$) has a unique singular point of multiplicity $4 k+2$.
Since $A_{1}^{\prime}=2 L-(2 k+1) A_{1}$, its pull back on \tilde{B}_{1} is $4 \tilde{M}-2(2 k+1) \tilde{\Gamma}$ and its image Γ has class $4 M$, thus $\Gamma^{2}=16 k(k+1)$.

Remark 25. Let us choose the point of multiplicity $2(2 k+1)$ of Γ as the origin 0 of the group B. By construction the curve Γ does not contain any non-trivial 2-torsion point of B_{1}.

The problem of the intersection of A_{1} and A_{1}^{\prime}. It is a difficult question to understand how the curves A_{1} and A_{1}^{\prime} intersect on the Kummer surface $X=\operatorname{Km}(B)$. For $k=1$ and 2 we know that these curves intersects transversally in $4 k+2$ points, and thus $g(\Gamma)=2 k$. For $k=1$, it follows from the geometric description of the Jacobian Kummer surface as a double cover of the plane branched over 6 line. For $k=2$ it is a by-product of [24].

In [6, Section 5, pp. 54-56] Bryan, Oberdieck, Pandharipande and Yin, quoting results of Graber, discuss on a related problem which is about hyperelliptic curves on Abelian surfaces. Let $f: C \rightarrow B$ be a degree 1 morphism from a hyperelliptic curve C to an Abelian surface B with image \bar{C}, such that the polarization $[\bar{C}]$ is generic. Let $\iota: C \rightarrow C$ be the hyperelliptic involution.

Conjecture 26. (see [6]) Suppose B generic among polarized Abelian surfaces. The differential of f is injective at the Weierstrass points of C, and no non-Weierstrass points p is such that $f(p)=f(\iota(p))$.

In our situation, that Conjecture means that the rational curves A_{1} and A_{1}^{\prime} meet transversally. Indeed if they meet at a point tangentially with order $m \geq 2$, then the curve above A_{1}^{\prime} has a \mathfrak{a}_{m-1} singularity. If m is even, there is no branch points above that singular point, and thus there are points $p, \iota(p)$ (with p non-Weierstrass) which are mapped to the same point by f. If m is odd and >1, then the curve C above A_{1}^{\prime} has a singularity \mathfrak{a}_{m-1} of type "cusp", the differential of its normalization is 0 .

Construction of (nodal or smooth) rational curves on K3 surfaces is an important problem, see e.g. [11, Chapter 13] for a discussion. The existence of two smooth
rational curves C_{1}, C_{2} intersecting transversely and such that $C_{1}+C_{2}$ is a multiple $n H$ of a polarization H is also a key point for obtaining the existence of an integer n such that there exists an integral rational curve in $|n H|$, see [11, Chapter 13, Theorem 1.1] and its proof.
4.2. Invariants of the bidouble covers associated to the special configuration. Let us define

$$
D_{1}=A_{1}^{\prime}, D_{2}=A_{1}, D_{3}=\sum_{i=2}^{16} A_{j}
$$

By Nikulin results, the divisors $\sum_{i=2}^{16} A_{j}+A_{1}$ and $\sum_{i=2}^{16} A_{j}+A_{1}^{\prime}$ are 2-divisible and therefore there exists L_{1}, L_{2}, L_{3} such that

$$
2 L_{i}=D_{j}+D_{k}
$$

for $\{i, j, k\}=\{1,2,3\}$. Each L_{i} defines a double cover

$$
\pi_{i}: \tilde{B}_{i} \rightarrow X
$$

branched over $D_{j}+D_{k}$ (here $\tilde{B}_{1}=\tilde{B}$). For $i=1,2$, above the $16(-2)$-curves of the branch locus of $\pi_{i}: \tilde{B}_{i} \rightarrow X$ there are $16(-1)$-curves. Let $\tilde{B}_{i} \rightarrow B_{i}$ be the contraction map, so that the surface $B_{i}(i=1,2)$ is an Abelian surface. The divisors $D_{i}, L_{i}, i \in\{1,2,3\}$ are the data of a bi-double cover

$$
\pi: V \rightarrow X
$$

which is a $(\mathbb{Z} / 2 \mathbb{Z})^{2}$-Galois cover of X branched over the curves $A_{1}^{\prime}, A_{i}, i \geq 1$. By classical formulas, the surface V has invariants

$$
\begin{aligned}
& \chi\left(O_{V}\right)=4 \cdot 2+\frac{1}{2} \sum L_{i}^{2}=k \\
& K_{V}^{2}=\left(\sum L_{i}\right)^{2}=8 k-30 .
\end{aligned}
$$

The surface V contains $30(-1)$-curves, which are above the 15 curves $A_{i}, i>1$. The surface V is smooth if and only if the intersection of A_{1} and A_{1}^{\prime} is transverse, i.e. if Conjecture 26 holds. Let us suppose that this is indeed the case, then one has moreover the formula

$$
p_{g}(V)=p_{g}(X)+\sum h^{0}\left(X, L_{i}\right)
$$

The space $H^{0}\left(X, L_{i}\right)$ is 0 for $i=1,2$ because the double covers branched over $D_{2}+D_{3}$ or $D_{1}+D_{3}$ are Abelian surfaces $B_{i}(i=1,2)$ and $1=p_{g}\left(B_{i}\right)=p_{g}(X)+$ $h^{0}\left(X, L_{i}\right) \geq 1$. It remains to compute $h^{0}\left(X, L_{3}\right)$. The divisor $L_{3}=A_{1}+A_{1}^{\prime}$ is big and nef (see section 2). By Riemann-Roch, one has

$$
\chi\left(L_{3}\right)=\frac{1}{2} L_{3}^{2}+2=k+2 .
$$

By Serre duality and Mumford vanishing Theorem, $h^{1}\left(L_{3}\right)=h^{1}\left(L_{3}^{-1}\right)=0$. Moreover $h^{2}\left(L_{3}\right)=h^{0}\left(-L_{3}\right)=0$, thus $h^{0}\left(L_{3}\right)=k+2$ and therefore $p_{g}(V)=k+3$. Let $V \rightarrow Z$ be the blow-down map of the $30(-1)$-curves on V which are above the 15 (-2)-curves $A_{i}, i>1$ in X. We thus obtain:

Proposition 27. Suppose that A_{1} and A_{1}^{\prime} intersect transversally. The surface Z has general type and its invariants are

$$
\chi=k, K_{Z}^{2}=8 k, p_{g}(Z)=k+3, \text { and } q=4
$$

The surface Z is minimal as we see by using the rational map of Z onto the Abelian surface B_{1}.
Remark 28. The surface Z satisfies

$$
c_{1}^{2}=2 c_{2}=8 k .
$$

Among surfaces with $c_{1}^{2}=2 c_{2}$ there are surfaces whose universal covers is the bidisk $\mathbb{H} \times \mathbb{H}$. For $k=1$, it turns out that Z is the product of two genus 2 curves, thus its universal cover is $\mathbb{H} \times \mathbb{H}$. For $k=2$, we obtain the so-called Schoen surfaces, whose universal cover is not $\mathbb{H} \times \mathbb{H}$ (see [7], [24]).

Let (W, ω) be a smooth projective algebraic variety of dimension $2 n$ over \mathbb{C} equipped with a holomorphic $(2,0)$-form of maximal rank $2 n$. Let us recall that a n dimensional subvariety $Z \subset W$ is called Lagrangian if the restriction of ω to Z is trivial. We remark that

Proposition 29. The surface Z is a Lagrangian surface in $B_{1} \times B_{2}$.
Proof. In [5], Bogomolov and Tschinkel associate a Lagrangian surface to the data of Kummer surfaces $S_{1}=\operatorname{Km}\left(A_{1}\right), S_{2}=\operatorname{Km}\left(A_{2}\right)$ and a $K 3$ surface S such that there is a rational map $S \rightarrow S_{i}, i=1,2$.
In our situation, we take $S_{1}=S_{2}=S=\operatorname{Km}(B)$, we consider the Kummer structure $\operatorname{Km}\left(B_{1}\right)$ for S_{1} and the Kummer structure $\operatorname{Km}\left(B_{2}\right)$ (see also Remark 9) for S_{2}, and the identity map for $S \rightarrow S_{i}$.
According to [5, Section 3], the bi-double cover Z is a sub-variety of $B_{1} \times B_{2}$ which is Lagrangian.

Let us now discuss what is happens if we do not make assumption on the transversality of the intersection of A_{1} and A_{1}^{\prime}. Let us denote by \mathbb{A}_{m} a surface singularity with germ

$$
\left\{x^{m+1}=y^{2}+z^{2}\right\}
$$

and by \mathfrak{a}_{m} a curve singularity with germ $\left\{x^{m+1}=y^{2}\right\}$.
Since A_{1}, A_{1}^{\prime} are smooth, the singularities of $A_{1}+A_{1}^{\prime}$ are of type $\mathfrak{a}_{2 m-1}, m>0$. Let s be a $\mathfrak{a}_{2 m-1}$-singularity of $A_{1}+A_{1}^{\prime}$. Recall that B_{1} is the cover of X branched over $\sum_{i=1}^{16} A_{i}$. The curve singularity above s in $\pi_{1}^{*} A_{1}^{\prime} \subset \tilde{B}_{1}$ is a \mathfrak{a}_{m-1} singularity (see e.g. [4, Table 1, P. 109]).
Thus above the singularity s of type $\mathfrak{a}_{2 m-1}$ of $A_{1}+A_{1}^{\prime}$, the surface V has a singularity of type \mathbb{A}_{m-1}, (where in fact a \mathbb{A}_{0} (resp. \mathfrak{a}_{0}) point is a smooth point).
The singularities \mathbb{A}_{m} are $A D E$ singularities and by the Theorem of Brieskorn on simultaneous resolution of singularities, they do not change the values of K^{2}, χ and p_{g} of the surface \tilde{V} which is the minimal resolution of V (we consider the two successive double covers $V \rightarrow \tilde{B}_{1}$ and $\left.\tilde{B}_{1} \rightarrow X\right)$.
Thus the surface Z obtained by taking the minimal desingularisation of V and the contraction of the 30 exceptional curves has the same invariants $\chi(Z), K_{Z}^{2}$ and $p_{g}(Z)$ as if the intersection of A_{1} and A_{1}^{\prime} was transverse. We observe that the image of the natural map $Z \rightarrow B_{1} \times B_{2}$ is also a Lagrangian surface by [5, Section 3].

Let α_{m} be the number of $\mathfrak{a}_{2 m-1}$ singularities on $A_{1}+A_{1}^{\prime}$. Using Miyaoka's bound on the number of quotient singularities on a surface of general type (here to be the surface B_{3}, the double cover of X branched over $A_{1}+A_{1}^{\prime}$), one gets:

$$
\sum\left(n-\frac{1}{n}\right) \alpha_{n} \leq \frac{4}{3} k .
$$

For $k=1$, a configuration of $6 \mathfrak{a}_{1}$ singularities on $A_{1}+A_{1}^{\prime}$ is the only possibility. For $k=2$, the possibilities are

$$
10 \mathfrak{a}_{1}, 8 \mathfrak{a}_{1}+\mathfrak{a}_{3}, 7 \mathfrak{a}_{1}+\mathfrak{a}_{5}
$$

but we know from explicit computations in [24] that for a generic Abelian surface polarized by M with $M^{2}=6$, the singularities of $A_{1}+A_{1}^{\prime}$ are $10 \mathfrak{a}_{1}$. For $k=3$ the possibilities are

$$
14 \mathfrak{a}_{1}, 12 \mathfrak{a}_{1}+\mathfrak{a}_{3}, 10 \mathfrak{a}_{1}+2 \mathfrak{a}_{3}, 11 \mathfrak{a}_{1}+\mathfrak{a}_{5}, 10 \mathfrak{a}_{1}+\mathfrak{a}_{7}
$$

4.3. The H-constant of the curve Γ. Let X be a surface, \mathcal{P} be a non-empty finite set points on X and let $\bar{X} \rightarrow X$ be the blow-up of X at \mathcal{P}. For a curve C let $\bar{C}_{\mathcal{P}}$ be the strict transform of C on \bar{X}. The H-constant of C is defined by

$$
H(C)=\inf _{\mathcal{P}} \frac{\left(\bar{C}_{\mathcal{P}}\right)^{2}}{\# \mathcal{P}}
$$

and the H-constant of X is $H(X)=\inf _{C} H(C)$, where the infimum is taken over reduced curves. The H-constants have been introduced for studying the bounded negativity Conjecture, which predicts that there exists a bound b_{X} such that for any reduced curve C on X, one has $C^{2} \geq b_{X}$.

Let A be the generic Abelian surface polarized by M with $M^{2}=k(k+1)$ and let Γ be the curve with a unique singularity which is of multiplicity $4 k+2$ and is in the numerical equivalence class of $4 M$. One computes immediately

$$
H(\Gamma)=\Gamma^{2}-(4 k+2)^{2}=-4
$$

For the moment, one do not know curves on Abelian surfaces which have H constants lower than -4 . We use these curves in a more thorough study of curves with low H-constants in [26].

References

[1] Alexeev V., Nikulin V., Del Pezzo and K3 surfaces. MSJ Memoirs, 15. Mathematical Society of Japan, Tokyo, 2006. xvi+149 pp. ISBN: 4-931469-34-5
[2] Artebani M, Sarti A., Taki S., K3 surfaces with non-symplectic automorphisms of prime order, Math. Z. (2011) 268 507-533
[3] Barth W., Nieto I., Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines, J. Algebraic Geom. 3 (1994), no. 2, 173-222
[4] Barth W., Hulek K., Peters A.M., Van de Ven A., Compact complex surfaces, Second edition, Springer-Verlag, Berlin, 2004. xii +436 pp.
[5] Bogomolov F, Tschinkel Y., Lagrangian subvarieties of Abelian fourfolds, Asian J. Math. 4 (2000), no. 1, 19-36.
[6] Bryan J., Oberdieck G., R. Pandharipande R., Yin Q., Curve counting on abelian surfaces and threefolds, to appear in Algebr. Geom.
[7] Ciliberto C., Mendes-Lopes M., Roulleau X., On Schoen surfaces, Comment. Math. Helv. 90 (2015), no. 1, 59-74
[8] Garbagnati A., Sarti A., On symplectic and non-symplectic automorphisms of K3 surfaces, Rev. Mat. Iberoam. 29 (2013), no. 1, 135-162
[9] Garbagnati A., Sarti A., Kummer surfaces and K3 surfaces with $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ symplectic action, Rocky Mountain J., 46 (2016), no. 4, 1141-1205
[10] Gritsenko V., Hulek K., Minimal Siegel modular threefolds, Math. Proc. Cambridge Philos. Soc. 123 (1998), 461-485
[11] Huybrechts D., Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, 158, 2016. xi +485 pp
[12] Hosono S., Lian B.H., Oguiso K., Yau S.T., Kummer structures on a K3 surface - an old question of T. Shioda, Duke Math. J. 120 (2003), no. 3, 635-647
[13] Keum J.H., Automorphisms of Jacobian Kummer surfaces, Compositio Mathematica 107: 269-288, 1997.
[14] Kondo S., The automorphism group of a generic Jacobian Kummer surface, J. Alg. Geom. 7 (1998) 589-609.
[15] Lange H., Principal polarizations on products of elliptic curves, Contemp. Math., 397, Amer. Math. Soc., Providence, RI, 2006.
[16] McMullen C., K3 surfaces, entropy and glue, J. Reine Angew. Math. 658 (2011), 1-25
[17] Morrison D., On K3 surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105-121.
[18] Narasimhan M.S., Nori M.V., Polarisations on an abelian variety, Proc. Ind. Acad. Sci. (Math), Volume 90, Number 2, April 1981, 125-128
[19] Nikulin V., Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 278-293. English translation: Math. USSR. Izv, 9 (1975), 261-275.
[20] Orlov D.O., On equivalences of derived categories of coherent sheaves on abelian varieties, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 3, 131-158; translation in Izv. Math. 66 (2002), no. 3, 569-594
[21] Polizzi F., Monodromy representations and surfaces with maximal Albanese dimension, Bollettino dell'Unione Matematica Italiana, 1-13, 2017
[22] Penegini M., The classification of isotrivially fibred surfaces with $p_{g}=q=2$. Collect. Math., 62(3):239-274, 2011. With an appendix by Sönke Rollenske
[23] Reid M., Chapters on algebraic surfaces, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., vol. 3, Amer. Math. Soc., Providence, RI, 1997, pp. 3-159. MR 1442522 (98d:14049)
[24] Rito C., Roulleau X., Sarti A., On explicit Schoen surfaces, to appear in Algebr. Geom.
[25] Roulleau X., Bounded negativity, Miyaoka-Sakai inequality and elliptic curve configurations, Int Math Res Notices (2017) 2017 (8): 2480-2496
[26] Roulleau X., Curves with low Harbourne constants on Kummer and Abelian surfaces, to appear in Rend. Circ. Mat. Palermo, II. Ser.
[27] Saint-Donat B., Projective models of K3 surfaces. Amer. J. Math. 96 (1974), 602-639
[28] Sarti A., van Geemen B., Nikulin involutions on K3 surfaces, Math. Z. 255 (2007), no. 4, 731-753.
[29] Shioda T., Some remarks on abelian varieties, J. Fac. Sci. Univ. Tokyo, Sect. IA, 24 (1977) 11-21.

Xavier Roulleau,
Aix-Marseille Université, CNRS, Centrale Marseille,
I2M UMR 7373,
13453 Marseille, France
Xavier.Roulleau@univ-amu.fr
Alessandra Sarti
Laboratoire de Mathématiques et Applications, UMR CNRS 7348,
Université de Poitiers, Téléport 2,
Boulevard Marie et Pierre Curie,
86962 FUTUROSCOPE CHASSENEUIL, France
sarti@math.univ-poitiers.fr

[^0]: 2000 Mathematics Subject Classification. Primary: 14J28 ; Secondary: 14J50, 14J29, 14J10.
 Key words and phrases. Kummer surfaces, Nikulin configurations, Hyperelliptic curves on Abelian surfaces.

