Chiral sound waves in strained Weyl semimetals - Archive ouverte HAL Access content directly
Journal Articles Physical Review Research Year : 2019

Chiral sound waves in strained Weyl semimetals


We show that a strained wire of a Weyl semimetal supports a new type of gapless excitation, the chiral sound wave (CSW). It is a longitudinal charge density wave analog to the chiral magnetic wave predicted in the quark-gluon plasma but driven by an elastic axial pseudo-magnetic field. It involves the axial-axial-axial contribution to the chiral anomaly which couples the chiral charge density to the elastic axial gauge field. The chiral sound is unidirectional: it propagates along the elastic magnetic field and not in the opposite direction. The CSW may propagate for long distances as it does not couple directly to quickly dissipating electromagnetic plasmons, while its damping is controlled by the slow chirality flip rate. We propose an experimental setup to directly detect the chiral sound, which is excited by mechanical vibrations of the crystal lattice in the GHz frequency range. Our findings contribute to a new trend, the chiral acoustics, in strained Weyl semimetals.
Fichier principal
Vignette du fichier
1904.09113.pdf (1.11 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02109227 , version 1 (09-11-2020)



Maxim N. Chernodub, María A. H. Vozmediano. Chiral sound waves in strained Weyl semimetals. Physical Review Research, 2019, 1, pp.032040. ⟨10.1103/PhysRevResearch.1.032040⟩. ⟨hal-02109227⟩
89 View
51 Download



Gmail Facebook Twitter LinkedIn More