Medical gesture recognition using dynamic arc length warping - Archive ouverte HAL
Article Dans Une Revue Biomedical Signal Processing and Control Année : 2019

Medical gesture recognition using dynamic arc length warping

Résumé

Hand gesture recognition is a promising research area often used in applications of human–computer interactions in the medical field. In this paper, we present a novel approach to differentiate gestures based on an arc-length parametrization and a curvature analysis of 3D trajectories. This new method called dynamic arc length warping (DALW) can outperform classic multi dimensional-dynamic time warping (MD-DTW) algorithm as it is invariant to sensor location and more tolerant to temporal distortions. Experimental validation of the algorithm is presented using different gestures and sensors in biomedical applications: an exoskeleton apparatus, surgical gestures captured by an instrumented laparoscopic device and finally, a birth simulator with an instrumented forceps. A basic perceptron multilayer neural network was implemented in order to perform the classification. Results involve an average increase of 7.14% in the classification rates by using DALW distance, compared to the classical MD-DTW.
Fichier principal
Vignette du fichier
Paper_DALW5.pdf (4.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02108054 , version 1 (20-10-2024)

Identifiants

Citer

Jenny Cifuentes, Minh Tu Pham, Richard Moreau, Pierre Boulanger, Flavio Prieto. Medical gesture recognition using dynamic arc length warping. Biomedical Signal Processing and Control, 2019, 52, pp.162-170. ⟨10.1016/j.bspc.2019.04.022⟩. ⟨hal-02108054⟩
65 Consultations
3 Téléchargements

Altmetric

Partager

More