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Abstract

Hand gesture recognition is a promising research area often used in appli-

cations of human-computer interactions in the medical field. In this pa-

per, we present a novel approach to differentiate gestures based on an arc-

length parametrization and a curvature analysis of 3D trajectories. This new

method called Dynamic Arc Length Warping (DALW) can outperform clas-

sic Multi Dimensional-Dynamic Time Warping (MD-DTW) algorithm as it

is truly invariant to sensor location and more tolerant to temporal distor-

tions. Experimental validation of the algorithm is presented using different

gestures and sensors in biomedical applications: an exoskeleton apparatus,
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surgical gestures captured by an instrumented laparoscopic device and fi-

nally, a birth simulator with an instrumented forceps. A basic perceptron

multilayer neural network was implemented in order to perform the classi-

fication. Results involve an average increase of 7.14% in the classification

rates by using DALW distance, compared to the classical MD-DTW.

Keywords: Gesture Classification; Curvature Analysis; Dynamic Arc

Length Warping; Hand Motion Tracking.

1. Introduction

Accurate hand gesture detection and tracking have been a challenging

problem with medical applications in human-computer interfaces, motion

capture, and scene understanding [35, 19]. In fact, the latest advances, in

the fields of pattern recognition and computer vision, have made that hand

gesture classification approach becomes an option to assess competences in

simulation-based environments [18, 13].

Different strategies have been proposed to acquire the relevant informa-

tion of gestures recognition systems. Some approaches use hardware devices

including vision systems, torque and force sensors, or EMG electrodes in or-

der to facilitate the extraction of comprehensible features, such as kinematic,

dynamic or electrical variables to characterize each gesture [27, 38, 36].

In order to carry out the comparison, a local analysis has been proposed

on numerous occasions to provide a qualitative description [24, 8]. In this

particular analysis, the complete medical procedure is decomposed and seg-
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mented into smaller units. Under such approach, measures of motor per-

formance are recorded including kinematic and kinetic measurements, such

as position, velocity, acceleration, and force/torque values [25, 9]. Results,

obtained in this field, have shown, in both open and MIS (Minimally Invasive

Surgery) simulators, a correlation between movements made and objective

skill measurements in simulation (Spearman coefficient 0.53) [6, 7]. Based on

this idea, force/torque recordings have differentiated trajectories performed

by novice from expert surgeons in a porcine model of MIS [29]. In this line

of thought, the methodology developed in [30], based on a subset of hid-

den Markov modeling, has been proposed. The force/torque measurements

were used to specify force/torque signatures associated to different categories

of tool/tissue interactions, resulting in a surgical performance index which

represents a ratio of statistical similarity among different surgeons. It is im-

portant to note that results associated to this method, require large data

sets to be decomposed manually. In [31], on the other hand, the acquisition,

storage, analysis, and classification are based on kinematic and dynamic data

of surgeon’s hand postures during a simulated operation.

However, some problems have been found using sensor data (position,

speed, strength, etc) during the classification process. One of them is based

on data synchronization, because signals involved could have different sizes.

In this case, a point by point comparison may provide unreliable results.

In order to overcome this problem, several strategies have been proposed

in order to shrink or expand data along the time axis. In particular, ap-
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proaches like Dynamic Time Warping (DTW) [17, 1] or Longest Common

Subsequence (LCSS) [14, 34] can compute the optimal alignment between 2

sequences. Numerous researches, using these strategies, have been developed

in the area of gesture recognition, describing their advantages compared to

classical recognition approaches [28, 3]. As a case in point, Pham et al [26]

use DTW to match and compare the curvature of two 3D trajectories.

However, these strategies to synchronize and analyze trajectories from

surgical movements include a time parametrization for each path [12]. Con-

sequently, this idea implies that gestures are not time invariant, and paths

that follow identical trajectories at different velocities have different char-

acteristics. Additionally, 3D position coordinates are not invariant under

rotation and scaling transformations which could cause errors during the

synchronization.

The approach proposed in this paper includes a data parametrization

of position trajectories, taking into account the cumulative arc-length. In

particular, transformation to cumulative arc-length parametrization does not

exclude information in comparison with the time-domain representation of a

signal, since this conversion is analogous to a time normalization operation.

Specifically, this parametrization describes a traversal at unit-speed of every

trajectory [10]. This fact supports the main advantages of this strategy, based

on the alternative to compare similar trajectories, carried out at different

velocities, and analyzing the corresponding movements independently of a

sensor coordinate system. Finally, a curvature calculation is performed in
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order to carry out the gesture analysis and recognition, which is invariant

under sensor coordinate systems. In addition, this method allows to reduce,

as well, the dimensionality of the problem from 3D to 1D. This reduction,

in particular, can simplify the classification problem and makes easier to

implement and understand. The experimental results are focused on the

acquisition and classification of diverse medical gestures using three different

devices.

This paper is organized as follows. Section 2 presents the mathematical

foundation of the algorithm. Section 3 describes the algorithm in detail.

Section 4 reports experimental results and a comparison to classical dynamic

time warping technique. And finally, in Section 5, we conclude and propose

future directions.

2. Mathematical Background

In this section, the mathematical basis of the proposed approach is pre-

sented. The emphasis is on 3D-trajectories transformation to a space-time

invariant signal, used to obtain the comparison between different gestures.

2.1. Time Series with Cumulative Arc-length Parametrization

A 4D-trajectory P is defined by (x, y, z, t), represented as a vector by

r⃗(t) = [x(t), y(t), z(t)] in 3D-space where time t ∈ [a, b] is then a depen-

dent parametric variable. The difficulty of classical time parametrization is

that movements are not time-dependent as for example a circular gesture is
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basically independent of the rotation speed. A different way to parametrize

space, which is independent of coordinate system and time, is using the con-

cept of cumulative arc-length. This variable depends on the total length L of

each 3D-trajectory from the beginning to the end of the gesture [ta, tb] and

is specified by:

S =

tb

∫

ta

∣∣r⃗′(t)∣∣dt, (1)

where r⃗′(t) is the first derivative of the signal with respect to time. P can

be reparameterized by using a normalized parameter s called the cumulative

arc-length s, designated by:

s =
1

S

t

∫

ta

∣∣r⃗′(t)∣∣dt, (2)

where s ∈ [0,1]. The parametrization of each signal, using time, means that

movements are not time invariant, and trajectories that follow identical paths

at different speeds are substantially different. Parametrization, proposed in

this work, overcomes this problem, using the cumulative arc length informa-

tion, which characterizes the curve shape and does not depend on a particular

coordinate system.

2.2. Trajectory Curvature

Given a point, the curvature vector r⃗′′(s) of a trajectory is determined

as the rate of change of the unit tangent vector with respect to cumulated
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arc-length. Curvature κ, on that premise, is defined as the length of the

curvature vector as follows:

κ(s) = ∣∣r⃗′′(s)∣∣. (3)

To be specific, the curvature, at a given point, in a trajectory is a mea-

sure of how fast the curve modifies the direction at that point. However,

when parametrization using the cumulative arc-length is implemented, final

trajectory is sampled at unequal intervals in space (see Figure 1). Conse-

quently, classical techniques of numerical differentiation cannot be applied

to calculate the curvature.

One way to overcome this problem is fitting the data using polynomial

functions. Under this approach, a second-order Lagrange polynomial inter-

polation strategy is implemented to fit each group of 3 adjacent points. This

interpolation technique is selected in this work because it has the following

advantages:

1. Simplicity: The Lagrange interpolating polynomial is computed with-

out solving a simultaneous-equations system;

2. Roundoff: The Lagrange interpolating polynomial is more tolerant to

roundoff compared to other polynomial interpolation techniques;

3. Unequally Spaced Data: The most important reason of using this strat-

egy is that it does not require evenly spaced sampled data signals.

The second order polynomial can be analytically differentiated twice using
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Figure 1: Arc-length and time parameterization

the following procedure: firstly, a Lagrange interpolating polynomial is used

to fit each group of 3 adjacent points:

fn(s) = Li−1(s)pn(si−1) +Li(s)pn(si) +Li+1(s)pn(si+1), (4)

fn(s) =
(s − si)(s − si+1)

(si−1 − si)(si−1 − si+1)
pn(si−1) +

(s − si−1)(s − si+1)

(si − si−1)(si − si+1)
pn(si)

+

(s − si−1)(s − si)

(si+1 − si−1)(si+1 − si)
pn(si+1), (5)
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where fn is denoted as the Lagrange polynomial function for each coordi-

nate x, y, and z, respectively. Li, on the other hand, is the Lagrange basis

function, and pn are the points to interpolate for each axis. The Lagrange

polynomial is differentiated twice for the purpose of calculating the curvature

values of each trajectory:

f ′n(s) =
(s − si) + (s − si+1)

(si−1 − si)(si−1 − si+1)
pn(si−1) +

(s − si−1) + (s − si+1)

(si − si−1)(si − si+1)
pn(si)+

(s − si−1) + (s − si)

(si+1 − si−1)(si+1 − si)
pn(si+1), (6)

f ′n(s) =
2s − si − si+1

(si−1 − si)(si−1 − si+1)
pn(si−1) +

2s − si−1 − si+1
(si − si−1)(si − si+1)

pn(si)+

2s − si−1 − si
(si+1 − si−1)(si+1 − si)

pn(si+1), (7)

f ′′n (s) =
2pn(si−1)

(si−1 − si)(si−1 − si+1)
+

2pn(si)

(si − si−1)(si − si+1)
+

2pn(si+1)

(si+1 − si−1)(si+1 − si)
, (8)

where si−1, si, si+1 is the cumulative arc length for 3 consecutive points.

2.3. Filtering Process

A low-pass filter, without phase shift and without magnitude distortion,

is required in order to reduce the noise. This filter is implemented using a
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non-causal zero-phase digital filter, which processes the input data using an

IIR low-pass Butterworth filter in both, forward and reverse direction.

The cut-off frequency ωc of the low-pass filter must be set to prevent the

magnitude distortion on the filtered signals within the trajectory bandwidth.

A second filter is implemented to remove the higher frequency noise. Its

cut-off frequency is determined experimentally by analyzing the FFT (Fast

Fourier Transform) of each component of trajectories. Through this analysis,

the frequency for which the magnitude values are less than 15% of the maxi-

mum, is computed (see Figure 2). The maximum value of these frequencies is

used in order to avoid missing significative information for each coordinate.

It is important to note that, in practice, for a real-time application, an online

filtering technique should be taking into account [15, 16].

Figure 2: Fourier transform of each coordinate (Example).

3. Dynamic Arc-Length Warping Algorithm

Based on the formulation described in the previous section, numerical

derivatives of two trajectories r⃗1(s) and r⃗2(s′) are computed in order to calcu-
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late the corresponding curvatures. From this perspective, the aim of DALW

is to compare two curvature sequences κ1 = {κ1(s1), κ1(s2), κ1(s3), ..., κ1(sl)}

of length l ∈ IN and κ2 = {κ2(s′1), κ2(s
′

2), κ2(s
′

3), ..., κ2(s
′

m)} of length m ∈ IN.

Based on this idea, a local dissimilarity matrix F is defined. The matrix ele-

ments measure the distance between the curvature values κ1(si) and κ2(s′j),

according to a chosen norm. In this case, the Euclidean norm is used for con-

venience. This local similarity metric is defined between any pair of elements

κ1(si) and κ2(s′j) using the following expression:

F (i, j) = (κ1(si) − κ2(s
′

j))
2
≥ 0 (9)

In general, F (i, j) is small (low cost) if κ1(si) and κ2(s′j) are similar

to each other and otherwise F (i, j) is large (high cost). Calculating the

local cost measure between two sequences κ1 and κ2 conducts to a local

dissimilarity matrix by F. This process provides a basis to find an alignment

between κ1 and κ2 by minimizing the overall cost function. A warping path

of a curvature κn is defined by φn(k), k = 1,2, ...,W (Equation 10).

κ
′

n(sj) = κn(sφ(k)), (10)

where κ
′

n is a new curvature array, W is the length of the warping path, and

the sj value corresponds to the previous signature value at sk.
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Using this notation, the warping functions φ1(k) and φ2(k) re-map the

cumulative arc-length index of κ1 and κ2, respectively. Given φ, the total

distance between the warped arc-length series can be calculated as:

d(k) =
W

∑

k=1

1

αφ(k)
(κ1(sφ1(k)) − κ2(sφ2(k)))

2

Mφ (11)

where αφ(k) is a per-step weighting coefficient and Mφ is a normalization

constant, which allows distances to be comparable along different paths.

Regarding to per-step weighting coefficient αφ, it allows to include dif-

ferent non-negative weights to vertical, horizontal, and diagonal directions

based on particular preferences. In this proposed work, the weighting func-

tions introduced in [32], were used (Equation 12). This function allows an

equal preference for alignments, both in vertical and horizontal direction,

which is also higher than the preference for an alignment in the diagonal

direction.

αφ(k) = φ1(k) − φ1(k − 1) + φ2(k) − φ2(k − 1) (12)

The value of Mφ, on the other side, depends on the application and in

most cases, it is defined as the length of the path, but it can also be omitted

[33].

The optimal warping corresponds to the warping φ1(k∗) and φ2(k∗) that
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minimizes the distance:

DALW (κ1, κ2) = d(k
∗
), (13)

where k∗ describes the index of the computed optimal warping path.

This result is equivalent to the similarity measure calculated between

paths using DALW. This optimization problem is successfully solved by

means of a dynamic programming technique [2].

Usually, constraints are imposed on the warping function φn(k) in order

to ensure consistent optimal paths:

1. Boundary Condition: This criterion controls the beginning and the

ending points of each trajectory.

Beginning point ∶ φ1(1) = φ2(1) = 1

Ending point ∶ φ1(W ) = l ; φ2(W ) =m

2. Monotonicity Condition: The order of measurements acquired for each

variable has a significative importance to the meaning of arc length. For

this reason, it is required to impose a suitable monotonicity-constraint

to keep the respective order in the arc length:

φ1(k + 1) ≥ φ1(k) and φ2(k + 1) ≥ φ2(k)

3. Step size Condition: This requirement restricts the warping path from

long jumps (shifts in arc length axis) while signals are aligned. Basic

step size condition is used and is formulated as:

∣φ1(k + 1) − φ1(k)∣ ≤ 1 and ∣φ2(k + 1) − φ2(k)∣ ≤ 1
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The proposed approach (summarized in Figure 3) computes the arc length

dynamic warping to match 2 curvature sequences. Using the information,

associated to the alignment between each pair of points, the reconstruction

between the original 3D-trajectories is carried out.

Start

C
u
m
u
l
a
t
i
v
e
 
A
r
c
-
L
e
n
g
t
h

P
a
r
a
m
e
t
r
i
z
a
t
i
o
n
 
(
C
u
r
v
a
t
u
r
e
)

Parametrization based on cumulative arc-length
(Equation 2)

F
i
l
t
e
r
i
n
g
 
P
r
o
c
e
s
s

D
y
n
a
m
i
c
 
A
r
c
 
L
e
n
g
t
h
 
W
a
r
p
i
n
g

End

r(t)=[x(t), y(t), z(t)]

r(s) - Unequally spaced

Lagrange Interpolating Polynomial
(Equation 5)

r(s) - Polynomial

Derivative Computation 
(Equation 8)

r''(s) - Polynomial

Curvature Calculation
(Equation 3)

k(s) 

IIR Butterworth filter

k(s) 

Low Pass Filter
(Based on the Fourier Fast Transform)

k(s) (Filtered) 

Local dissimilarity Matrix Definition
(Equation 9)

F(i,j)

Local cost measure minimization
(Equation 11) 

d(k)

Optimal warping path computation
(Equation 13)

DALW(k1,k2)

Figure 3: Dynamic Arc Lenth Warping Strategy.
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DALW time complexity is O(mn), which is the same as classical DTW,

compared to O(3mn) for MD-DTW. Empirically, both algorithms take ap-

proximately the same time. Previous works regarding to this topic have

proposed a variety of optimizations for DTW [23]. Although, this discussion

is not presented here for brevity, it is important to note that can be applied

for DALW as well.

4. Experimental Results

The strategy, proposed in this paper, has been implemented using dif-

ferent 3D artificial trajectories, obtaining not only efficient quantitative but

also qualitative results in comparison with other techniques such as Multi-

Dimensional Dynamic Time Warping MD-DTW [4]. The objective of this

section is to develop a validation of this method using real generic human

hand gestures (Case 4.1 and 4.3) and real surgical gestures (Case 4.2) based

on position data information.

4.1. Gesture Comparison Using an Exoskeleton

In order to test the algorithm proposed in this work, basic gestures were

analyzed. The position for each trajectory was recorded by means of an upper

extremity exoskeleton [22]. Figure 4 presents the exoskeleton employed and

its kinematic model. The device has 4 degrees of freedom: 3 for the shoulder

(internal-external rotation, abduction-adduction, flexion-extension) and 1 for

the elbow (flexion-extension).
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Figure 4: The upper extremity exoskeleton.

In this work, a total of 10 participants were involved. They were asked

to do two different gestures (10 times each) with their right arm (all subjects

are right handed). The first trajectory was a communication gesture as the

participant wanted to say stop to someone running towards him/her. The

second one was a basic gesture where the participant had to locate his/her

hand as there was a wall in front of him/her. These gestures were chosen

because of their similarity from a kinematic viewpoint. Figure 5 presents an

example of position trajectories for each gesture. This figure illustrates the

motion of a subject’s wrist.

To avoid disturbances for each subject during the experiment, a gravity

compensation technique was implemented to provide the illusion that the

exoskeleton had no weight [21]. Using this device, the displacement of the

subject’s right arm was recorded and gestures were decomposed in different
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Figure 5: Position trajectory for different gestures.

anatomic planes for further studies on human joints. After the acquisition

process of position trajectories, a filtering stage, described in section 2.3, was

implemented.

In order to evaluate the significance of the data, previously described,

a statistical test with a significance level of 5 % was performed. Because

of the sample size, it is not possible to conclude if the data are normally

distributed. For this reason, a nonparametric test was chosen to analyze the

measurements. To be more specific, a Wilcoxon Signed-Rank test was used to

compute the difference between each set of data and analyze these differences

[37]. The Wilcoxon test is then used to test the null hypothesis that two data

sets have the same continuous distribution. In this way, DALW and DTW

distances were calculated between the same and different trajectories, and the

results associated were compared in order to evaluate if data are significantly

different. The p-values for DALW and DTW distances, calculated using the
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comparison between trajectories performed by the same person and different

participants, are 0.0145 and 0.0202, respectively. The results (p-value< 0.05)

show that there is a significant difference between DALW and DTW distances

computed for trajectories associated to only one participant and to different

people. As a result, each pair of trajectories were aligned according to four

different analysis ( Table 1 ).

Table 1: Different Experiments.

Nature of Gestures Carried out by
Same Same person

Different people
Different Same person

Different people

DTW and DALW distances were computed based on position data fol-

lowing these 4 criteria. Results associated to DTW and DALW similarity

values for each experiment, based on position data, can be seen in Figure 6.

Results show the mean, maximum and minimum values of the similarity

measurements, representing the average and range of acquired data, based

on the analysis described in Table 1. Figure 6 presents distances obtained

with both algorithms (DALW and DTW). It is possible to differentiate the

same and different gestures regardless of whether these trajectories were per-

formed by one participant or by different people. Specifically, deviations

generated using the DALW algorithm are smaller than those obtained using

the DTW algorithm, in most cases. These results show it is possible to differ-
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entiate among the gestures proposed in this experimental setup. In addition,

Figure 6 shows that, based on the fact that trajectories, associated to each

gesture, are closely bounded to the people who execute them, it is possi-

ble to get smaller distances, for the experiment involving different gestures

performed by the same participant, compared to the experiments involving

similar gestures performed by different people.

Figure 6: DTW and DALW distance computed using position data

In order to evaluate the advantages of DALW distances, a basic percep-

tron multilayer neural network was implemented. In this case, the structure
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is defined by an input, associated to the DTW and DALW distances, 10 neu-

rons in a hidden layer, and 4 neurons in the output layer, relating the different

cases summarized in Table 1. Classification rates, associated to the differ-

ent 4 experiments, were 88.1 % for DTW distances and 96.8 % for DALW

distances, which implies a significative improvement by using the approach

proposed in this work.

4.2. Gesture Comparison Using an Instrumented Laparoscopic Device

This section describes the surgical gestures evaluation using a laparo-

scopic training system. Figure 7 shows an instrument prototype that includes

a Yaw-Roll actuated tip, which was employed to record different gestures.

Handle and shaft orientations were decoupled by means of a free ball joint

to improve the ergonomic performance. This disposition allows to explore

the whole intra-abdominal workspace and prevent excessive wrist flexion or

deviation. The robotic instrument configuration that was established is the

Standard Fixed Handle Configuration, where joints were locked in their cen-

tral position [11].

The training system, used in this part of the study, allows to implement

a characteristic configuration of a real surgery where the instrument move-

ments remain confined in a small region of the intra-abdominal workspace.

Five participants without experience were involved in this experiments and

five repetitions were performed for a particular pick-and-place task. Each

experiment included one of five positions in the virtual abdomen to cover the
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Figure 7: Laparoscopic Device.

whole workspace, taking 5 repetitions for each gesture (Figure 8).

Figure 8: Different surgical gestures.

A filtering stage was applied according to the approach explained in Sec-

tion 2.3. p-values for DALW and DTW distances, calculated using the com-
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parison between different and same trajectories, are 0.0106 and 0.0392, re-

spectively. The results (p-value< 0.05) show that there is a significant differ-

ence between DALW and DTW distances computed for different and same

trajectories.

A further analysis includes the calculation of DTW and DALW distances

based on the configuration presented in Table 1. Figure 9 shows the re-

sults associated to the mean, maximum and minimum values of DTW and

DALW distance, representing the data average and range for each group of

experiments.

Results obtained in this section are quite different compared to the generic

gestures described in Section 4.1. In these experiments, trajectories analyzed

for each task are pretty different regardless the participant who performs

them. These results mean that distances associated to the experiments, per-

formed with different gestures by the same person, are higher compared to

the experiments performed with the same gesture by different people, in con-

trast with results presented in Figure 6. As can be seen in the results, the

distance calculated using the DALW algorithm allows an easier recognition

for the experiments involving different gestures than different people. Addi-

tionally, DALW distances present a lower deviation than DTW distances (

See Figure 9), allowing to distinguish more clearly among the different groups

of experiments.

In order to evaluate the advantages of DALW distances in these experi-

ments, a basic perceptron multilayer neural network, described in section 4.1,
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Figure 9: DTW and DALW distances calculated using position values.

was implemented. Classification rates, associated to the different 4 cases (See

Table 1), were 70.1 % for DTW distances and 80.3 % for DALW distances.

Althought, results implies an improvement by using the approach proposed

in this work, is still difficult to distinguish among the 4 classes described pre-

viously. The reason is based on the fact that there is a big difference among

trajectories based on the movement change, compared with the dynamic that

could add the change of participants. Based on this idea, in order to eval-
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uate the classification rates, just based on the differences associated to the

movements, 2 classes were considered: different and same gestures. Results

associated to DTW are described by a classification rate of 91 % and by a

98.8 %, for DALW distances.

4.3. Gesture Comparison Using an Obstetrical Forceps

This section presents an analysis of trajectories, recorded by means of

an instrumented obstetrical forceps coupled with a BirthSIM simulator (

See Figure 10). Using this instrument, a medical practitioner can perform

a transvaginal assessment diagnosis. The BirthSIM simulator comprises an-

thropomorphic models of the fetal head and the maternal pelvis. Meanwhile,

the forceps is instrumented to record the displacements inside the pelvis.

The whole system uses electromagnetic sensors, with six Degrees of Free-

dom, which can track masked objects. Is important to note that forceps

includes nonmagnetic material to avoid interferences in the device [20].

During these experiments, five obstetric practitioners were asked to carry

out 30 forceps blade placements generating 60 trajectories, for each subject:

30 right blade and 30 left blade position signals. Trajectories were performed

for 15 forceps blade placements in 2 different sessions (Figure 11). For each

movement, the fetal head is located in accordance with the American College

of Obstetrics and Gynecology (ACOG) classification [5] on an outlet OA+4

presentation (Occiput Anterior location and station +4cm from the ischial

spines plan).
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Figure 10: Obstetrical Forceps.

Figure 11: Left and right blade trajectories.
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Once the acquisition process is completed, a low-pass filter is applied, on

the basis of the approach, described in Section 2.3.p-values for DALW and

DTW distances, calculated using the comparison between different and same

trajectories, are 0.0061 and 0.0149, respectively. The results show that there

is a significant difference between DALW and DTW distances computed for

different and same trajectories (p-value< 0.05).

Consequently, DALW and DTW distances were computed for each pair

of trajectories, based on experiments defined in Table 1. Results, associated

to DTW and DALW distances, present the mean, maximum and minimum

values of the similarity measurements, for each experiment (Figure 12).

In this case, results are similar to those obtained in Section 4.2 using

laparoscopic data. For the experiment performed by the same person with

different gestures, distance values are higher compared to the experiment,

performed by different people for the same trajectory. These results can be

explained by the fact that trajectories acquired are quite different compared

to the variation obtained between different participants. Consequently, 2

groups can be differentiated: those that involve different and same gestures,

regardless if they were performed by different people or by the same subject.

In addition, the deviation for both algorithms is smaller compared to the

experiments carried out using the laparoscopic device. This result can be

explained by the amount of gestures available for the analysis.

In order to evaluate the advantages of DALW distances in these experi-

ments, a basic perceptron multilayer neural network, described in section 4.1,
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Figure 12: DTW and DALW distances calculated using position data.

was implemented. Classification rates, associated to the different 4 cases (See

Table 1), were 83.5 % for DTW distances and 88.6 % for DALW distances.

Althought, results implies an improvement by using the approach proposed

in this work, is still difficult to distinguish among the 4 classes described pre-

viously. In this way, the classification was performed, based on those groups

that can be distinguished: different and same gestures. Results associated

to DTW are described by a classification rate of 96.2 % and by a 100 %,

for DALW distances. Finally, as in previous experiments, DALW distances
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facilitates the gestures recognition and classification for every experiment

compared to DTW similarity measures.

5. Conclusion

Hand gesture recognition researches have been widely carried out and

many methods are developed every year, mainly due to their applications in

interactive human-machine interfaces and virtual environments in medicine.

In this work, the proposed algorithm distinguishes trajectories using a

space-time independent parametrization. In particular, this method includes

an arc-length parametrization providing a time independence and a geomet-

ric invariant like curvature, that can vary based on local geometry and not

sensor location. This work includes trajectories carried out repeatedly by

different participants; these data sets are acquired using 3 different devices.

Results obtained suggest that different gestures can be distinguished based

only on position measurements. Main contributions lie in the possibility to

compare similar trajectories carried out at different velocities, based on the

information obtained from the cumulative arc-length warping and the cur-

vature, in order to ensure invariance to the location of the sensor coordinate

system.

On the basis of these results, this new strategy can be used as an useful

technique in the surgical gesture recognition and classification field. Specifi-

cally, experimental results involve an average increase of 7.14% in the classi-

fication rates by using DALW distance compared to the classical MD-DTW.
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In our future work, more complex trajectories are going to be analyzed, in or-

der to evaluate the potential of this approach, differentiating and classifying

surgical gestures.
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