Differentiability of volumes of divisors and a problem of Teissier - Archive ouverte HAL
Article Dans Une Revue Journal of Algebraic Geometry Année : 2009

Differentiability of volumes of divisors and a problem of Teissier

Résumé

We give an algebraic construction of the positive intersection products of pseudo-effective classes first introduced in [BDPP], and use them to prove that the volume function on the Néron-Severi space of a projective variety is C 1-differentiable, expressing its differential as a positive intersection product. We also relate the differential to the restricted volumes introduced in [ELMNP3, Ta]. We then apply our dif-ferentiability result to prove an algebro-geometric version of the Diskant inequality in convex geometry, allowing us to characterize the equality case of the Khovanskii-Teissier inequalities for nef and big classes.
Fichier principal
Vignette du fichier
0608260.pdf (326.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02105201 , version 1 (20-04-2019)

Identifiants

Citer

Sébastien Boucksom, Charles Favre, Mattias Jonsson. Differentiability of volumes of divisors and a problem of Teissier. Journal of Algebraic Geometry, 2009, 18 (2), pp.279-308. ⟨10.1090/S1056-3911-08-00490-6⟩. ⟨hal-02105201⟩
68 Consultations
122 Téléchargements

Altmetric

Partager

More