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DIFFERENTIABILITY OF VOLUMES OF DIVISORS

AND A PROBLEM OF TEISSIER

SÉBASTIEN BOUCKSOM, CHARLES FAVRE, MATTIAS JONSSON

Abstract. We give an algebraic construction of the positive intersec-
tion products of pseudo-effective classes first introduced in [BDPP], and
use them to prove that the volume function on the Néron-Severi space
of a projective variety is C

1-differentiable, expressing its differential as
a positive intersection product. We also relate the differential to the
restricted volumes introduced in [ELMNP3, Ta]. We then apply our dif-
ferentiability result to prove an algebro-geometric version of the Diskant
inequality in convex geometry, allowing us to characterize the equality
case of the Khovanskii-Teissier inequalities for nef and big classes.
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Introduction

The volume of a line bundle L on a projective variety X of dimension n
is a nonnegative real number measuring the positivity of L from the point
of view of birational geometry. It is defined as the growth rate of sections
of multiples of L:

vol(L) := lim sup
k→∞

n!

kn
h0(X, kL)

and is positive iff the linear system |kL| embeds X birationally in a projective
space for k large enough; L is then said to be big.

The volume has been studied by several authors, and the general theory
is presented in detail and with full references in [L, §2.2.C]. In particular, it
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is known that the volume only depends on the numerical class of L in the
real Néron-Severi space N1(X), and that it uniquely extends to a continuous

function on this whole space, such that vol1/n is homogeneous of degree 1,
concave on the open convex cone of big classes, and zero outside.

Given its fundamental nature, it is quite natural to ask what kind of reg-
ularity besides continuity the volume function exhibits in general. In the
nice survey [ELMNP1], many specific examples were investigated, leading
the authors to conjecture that the volume function is always real analytic
on a ”large” open subset of the big cone. Our concern here will be the dif-
ferentiability of the volume function. The simple example of P2 blown-up in
one point already shows that the volume function is not twice differentiable
on the entire big cone in general. Our main result is

Theorem A. The volume function is C1-differentiable on the big cone of
N1(X). If α ∈ N1(X) is big and γ ∈ N1(X) is arbitrary, then

d

dt

∣

∣

∣

∣

t=0

vol(α + tγ) = n〈αn−1〉 · γ.

The right-hand side of the equation above involves the positive intersec-
tion product 〈αn−1〉 ∈ N1(X)∗ of the big class α, first introduced in the
analytic context in [BDPP]. We shall return to its algebraic definition later
in this introduction, when discussing our method of proof.

We then proceed to show that the derivative of the volume in the direction
of a class determined by a prime divisor can also be interpreted as a restricted
volume, as introduced and studied in [ELMNP3]. Recall that if V is a
subvariety of X, the restricted volume on V of a line bundle L on X measures
the growth of sections in H0(V, kL|V ) that extend to X. It is defined as

volX|V (L) := lim sup
k→∞

d!

kd
h0(X|V, kL)

where d := dim V and h0(X|V, kL) denotes the rank of the restriction map

H0(X, kL)→ H0(V, kL|V ).

Restricted volumes have recently played a crucial role in the proof of the
boundedness of pluricanonical systems of varieties of general type in [Ta]
and implicitly in [HM]. Here we relate the positive intersection products
with restricted volumes, and show

Theorem B. If D is a prime divisor on the smooth projective variety X and
L is a big line bundle on X, then the restricted volume of L on D satisfies

volX|D(L) = 〈Ln−1〉 ·D.

This statement in particular implies that the restricted volume only de-
pends on the numerical class of both L and D in N1(X). When V is an
irreducible subvariety, [ELMNP3] and [Ta] have independently shown that
the restricted volume volX|V (L) of a big line bundle L can be expressed as the
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asymptotic intersection number of the moving parts of |kL| with the strict
transforms of V on appropriate birational models Xk of X, when L satisfies
an additional positivity assumption along V . The main (and difficult) result
of [ELMNP3] says that volX|V (L) = 0 otherwise. Our contribution in The-
orem B is to show that the asymptotic intersection number along a prime
divisor V = D in fact coincides with the intersection number 〈Ln−1〉 · D
when the additional positivity condition is satisfied, using our differentiabil-
ity result, and that both sides are 0 otherwise, relying on the orthogonality
of Zariski decompositions instead of the main result of [ELMNP3].

Theorems A and B yield the following corollary, which was kindly com-
municated to us by R. Lazarsfeld and M. Mustaţǎ and which inspired our
differentiability result.

Corollary C. If D is a prime divisor on the smooth projective variety X
and L is a big line bundle, then

d

dt

∣

∣

∣

∣

t=0

vol(L + tD) = n volX|D(L).

We also give an application of our differentiability theorem and charac-
terize the equality case in the Khovanskii-Teissier inequalities for big and
nef classes, a problem considered by Teissier in [Te2, p.96] and [Te3, p.139].
Recall that one version of the Khovanskii-Teissier inequalities [Te1] for a pair
of nef classes α, β ∈ N1(X) asserts that the sequence k 7→ log(αk · βn−k) is
concave. Here we prove

Theorem D. If α, β ∈ N1(X) are big and nef classes, then the following
are equivalent:

(i) the concave sequence k 7→ log(αk · βn−k) is affine;

(ii) (αn−1 · β) = (αn)1−
1

n (βn)
1

n ;
(iii) α and β are proportional.

An equivalent formulation is

Corollary E. The function α 7→ (αn)
1

n is strictly concave on the big and
nef cone of N1(X).

Note that when α and β are ample, these results are direct consequences of
the Hodge-Riemann relations, see for instance [Vo, Theorem 6.32]. However,
our approach is different and purely algebraic. In fact, the two statements
above and their proofs are inspired by their counterparts in convex geome-
try [Sch]. When X is a projective toric variety, a big and nef class α ∈ N1(X)
corresponds to a convex polytope in Rn (unique up to translation) with Eu-
clidean volume (αn)/n! > 0. The Khovanskii-Teissier inequalities are known
in this setting as the Alexandrov-Fenchel inequalities for mixed volumes, a
far-reaching generalization of the classical isoperimetric inequality. A differ-
ent, “effective”, strengthening of the isoperimetric inequality was given by
Bonnesen [Bon] (in dimension two) and Diskant [D] (in any dimension). It
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immediately implies the analog of Theorem D in convex geometry; in par-
ticular, equality holds in the isoperimetric inequality iff the convex body is
a ball. The proof by Diskant is based on the differentiability of the volume
function of (inner parallel) convex bodies, a fact established by Alexandrov.
Following the same strategy, and using Theorem A, we prove the following
version of the Diskant inequality in our setting, thus providing a solution
to [Te2, Problem B].

Theorem F. If α, β ∈ N1(X) are big and nef classes and s is the largest
real number such that α− sβ is pseudo-effective, then

(αn−1 · β)
n

n−1 − (αn)(βn)
1

n−1 ≥
(

(αn−1 · β)
1

n−1 − s(βn)
1

n−1

)n
.

Theorem D immediately follows from Theorem F.

Let us now present our method of proof of Theorem A. It is a fundamental
fact that the volume of an arbitrary big line bundle L admits an intersection-
theoretic interpretation, generalizing the equality vol(L) = (Ln) when L is
ample. Indeed, a remarkable theorem of Fujita [Fuj] (see also [DEL]) states
that vol(L) is the supremum of all intersection numbers (An), where A
is an ample Q-divisor and E is an effective Q-divisor on a modification
π : Xπ → X such that π∗L = A + E.

In view of this result, it is natural to put all birational models of X on
equal footing, and study numerical classes defined on all birational models
at the same time. Being purely algebraic, this technique extends to any
projective variety over any algebraically closed field of characteristic zero.

More precisely, we introduce the Riemann-Zariski space X of X as the
projective limit of all birational models of X. A (codimension p numerical)
class in X is then a collection of (codimension p numerical) classes in each
birational model of X that are compatible under push-forward. The set of
all these classes is an infinite dimensional vector space that we denote by
Np(X). It naturally contains the space CNp(X), the union of the spaces
Np(Xπ) of numerical classes of codimension p cycles of all birational models
Xπ of X. One can extend to CN1(X) the usual notions of pseudo-effective,
big and nef classes. Note that related objects have already been introduced
in the context of Mori’s minimal model program by Shokurov [Sh]. The
notion of b-divisors, crucial to his approach, can be interpreted as divisors
on X. Chow groups on the Riemann-Zariski space also appeared in the work
of Aluffi [A] and numerical classes in [BFJ1, C, M] in the case of surfaces.
See also [FJ, BFJ2] for a local study.

We then introduce the notion of positive intersection product

〈α1 · . . . · αp〉 ∈ Np(X)

of big classes α1, . . . , αp ∈ CN1(X), defined as the least upper bound of the
products β1 · . . . · βp of nef classes βi on modifications π : Xπ → X such
that βi ≤ π∗αi. Although this product is non-linear, it is homogeneous
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and increasing in each variable, and continuous on the big cone. In this
terminology, Fujita’s theorem is equivalent to the relation

vol(α) = 〈αn〉

for any big class α ∈ N1(X). Using the easy but fundamental inequality

vol(A−B) ≥ (An)− n(An−1 · B)

for any two nef Cartier classes A,B ∈ CN1(X), we deduce a sub-linear
control for the volume function vol(α + tγ) ≥ vol(α) + tn〈αn−1〉 · γ + O(t2)
for any two Cartier classes α, γ ∈ CN1(X) such that α is big, from which we
easily infer Theorem A. As an immediate consequence, we get the following
orthogonality relation

〈αn〉 = 〈αn−1〉 · α

for any psef class α ∈ CN1(X), which was the crucial point in the dual
characterization of pseudo-effectivity of [BDPP].

In a similar vein, the proof of Theorem B is based on a suitable gener-
alization of Fujita’s theorem for restricted volumes, obtained independently
in [ELMNP3] and [Ta]. If D is a prime divisor on a smooth projective vari-
ety X, we say that a line bundle L is D-big if there exists a decomposition
L = A+E, where A is an ample Q-divisor and E is an effective Q-divisor on
X whose support does not contain D. The generalization of Fujita’s theo-
rem expresses the restricted volume of a D-big line bundle as the supremum
of all intersection numbers An−1 ·Dπ, where π : Xπ → X is a modification,
Dπ denotes the strict transform of D, A is an ample Q-divisor and E is an
effective Q-divisor on Xπ whose support does not contain Dπ and such that
π∗L = A + E. In Section 4, we again interpret this result in the framework
of the Riemann-Zariski space and define the restricted positive intersection
product

〈α1 · . . . · αp〉|D

of D-big classes αi on X as a numerical class of the Riemann-Zariski space
D associated to D, in such a way that the restricted positive intersection
product 〈Ln−1〉|D coincides with the asymptotic intersection number ||Ln−1 ·
D|| of L and D as introduced in [ELMNP3] if L is D-big. The generalized
Fujita theorem mentioned above then reads

volX|D(L) = 〈Ln−1〉|D

when L is D-big, and Theorem B asserts that the restricted positive inter-
section product 〈Ln−1〉|D coincides with the intersection number 〈Ln−1〉 ·D.

The former is computed as a limit as k → ∞ of intersection numbers
of the form An−1

k · Dk with Ak an ample Q-divisor ≤ π∗
kL on a blow-up

πk : Xk → X and Dk the strict transform of D on Xk, and the latter
is then the limit of An−1

k · π∗
kD. We easily deduce from this relation that
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〈Ln−1〉|D ≤ 〈L
n−1〉 ·D. The reverse inequality is obtained by showing that

lim sup
t→0+

1

t
(vol(L)− vol(L− tD)) ≤ n volX|D(L),

building on the basic relation h0(X,L) = h0(X,L−D) + h0(X|D,L). This
yields Theorem B in the D-big case. When L is big but not D-big, we
prove that the inequality 〈Ln−1〉 · D ≥ volX|D(L) still holds, and that

〈Ln−1〉 · D = 0, as a consequence of the orthogonality relation mentioned
above. We get in particular that volX|D(L) = 0 when L is not D-big, thus
reproving by a different method a special case of the main (and difficult)
result of [ELMNP3].

Let us briefly indicate the structure of our article. We introduce numerical
classes in the Riemann-Zariski space in Section 1, and study their positivity
properties. The positive intersection product is then defined in Section 2.
We turn to the volume function on the set of psef classes in the Riemann-
Zariski space in Section 3. In particular, this section contains the proof of the
Differentiability Theorem, and its applications to the characterization of the
equality case in the Khovanskii-Teissier inequalities: Theorems D and F and
Corollary E. We also include in Section 3.4 an informal discussion making a
link between positive intersection products and Zariski-type decompositions
for psef classes, intended to shed further light on our construction. The paper
concludes with a presentation of the restricted volume from the Riemann-
Zariski point of view in Section 4, allowing us to prove Theorem B and
Corollary C.

Acknowledgment. It is a great pleasure to thank the authors of [ELMNP3]
for sharing their work with us. Their ideas have obviously had a great
influence on the present paper. In particular, the statement of Corollary C
was suggested to us by R. Lazarsfeld and M. Mustaţǎ, and they informed us
after completion of the present paper that they had independently obtained
a proof of it. We also thank B. Teissier for explaining the history of the
problems considered here; S. Takayama for interesting discussions and for
sharing his preprint; and F. Wittke for spotting a mistake in a previous
version of the paper.

1. Classes on the Riemann-Zariski space

1.1. The Riemann-Zariski space. Let X be a projective variety. Since
we shall deal with classes living on arbitrary modifications of X, it is conve-
nient to introduce the following terminology. By a blow-up of X, we mean
a birational morphism π : Xπ → X, where Xπ is a smooth projective va-
riety. If π and π′ are two blow-ups of X, we say that π′ dominates π,
and write π′ ≥ π, if there exists a birational morphism (necessarily unique)
µ : Xπ′ → Xπ such that π′ = π ◦ µ. This endows the set of blow-ups of X
with a partial order relation. By the Hironaka desingularization theorem,
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this ordered set is nonempty and forms a directed family. The Riemann-
Zariski space of X is the projective limit

X := lim
←−
π

Xπ.

We refer to [ZS, Va] for a thorough discussion of the structure of this space,
which is introduced here merely in order to make later definitions more
suggestive.

1.2. Weil and Cartier classes. For any smooth projective variety Y of
dimension n, and any integer 0 ≤ p ≤ n, let Np(Y ) be the real vector
space of numerical equivalence classes of codimension p cycles. It is a finite
dimensional space. Any birational morphism µ : Y ′ → Y induces in a
contravariant way a pull-back morphism

µ∗ : Np(Y )→ Np(Y ′) ;

and in a covariant way a push-forward morphism

µ∗ : Np(Y ′)→ Np(Y ).

There is an intersection pairing Np(Y )×Nn−p(Y )→ R, which is preserved
under pull-back by birational morphisms, and for which push-forward and
pull-back are adjoint to each other. We refer to [Ful, Chapter 19] for further
details on the space Np and its link with the cohomology groups Hp,p in the
case of a complex projective variety.

We now consider an arbitrary projective variety X. The inverse family
of blow-ups π : Xπ → X induces two families of arrows between the spaces
Np(Xπ): one is the inverse family with push-forward morphisms as arrows
µ∗ : Np(Xπ′) → Np(Xπ), whenever µ : Xπ′ → Xπ, and the other is the
direct family with pull-back morphisms as arrows µ∗ : Np(Xπ)→ Np(Xπ′).

Definition 1.1.

• The space of p-codimensional Weil classes on the Riemann-Zariski
space X is defined as the projective limit

Np(X) := lim
←−
π

Np(Xπ)

with arrows defined by push-forward. It is endowed with its projective
limit topology, which will be called the weak topology.
• The space of p-codimensional Cartier classes on X is defined as the

inductive limit

CNp(X) := lim
−→
π

Np(Xπ)

with arrows induced by pull-back. It is endowed with its inductive
limit topology, which will be called the strong topology.



8 SÉBASTIEN BOUCKSOM, CHARLES FAVRE, MATTIAS JONSSON

The terminology stems from the fact that Weil divisors are meant to be
pushed-forward, whereas Cartier divisors are meant to be pulled-back. Note
that these spaces are infinite dimensional as soon as dim X ≥ 2 and p 6= 0, n.

A Weil class α ∈ Np(X) is by definition described by its incarnations
απ ∈ Np(Xπ) on each smooth birational model Xπ of X, compatible with
each other by push-forward. Convergence of a sequence (or a net) αn → α
in the weak topology means αn,π → απ in Np(Xπ) for each π.

On the other hand, the relation µ∗µ
∗α = α when µ is a birational mor-

phism shows that there is an injection

CNp(X)→ Np(X)

i.e. a Cartier class is in particular a Weil class. Concretely, a Weil class α is
Cartier iff there exists π such that its incarnations απ′ on higher blow-ups
Xπ′ are obtained by pulling-back απ. We will call such a π a determination
of α. Conversely, there are natural injective maps

Np(Xπ) →֒ CNp(X)

which extend a given class β ∈ Np(Xπ) to a Cartier class by pulling it
back, and of course this Cartier class is by construction determined by π.
In the sequel, we shall always identify a class β ∈ Np(Xπ) with its image in
CNp(X).

Note that the topology induced on CNp(X) by the weak topology of
Np(X) is coarser than the strong topology. By definition, a map on CNp(X)
is continuous in the strong topology iff its restriction to each of the finite
dimensional subspaces Np(Xπ) is continuous.

Finally we note that

Lemma 1.2. The natural continuous injective map

CNp(X)→ Np(X)

has dense image (in the weak topology).

Proof. If α ∈ Np(X) is a given Weil class, then we can consider the Cartier
classes απ determined by the incarnation of α on Xπ, and it is obvious that
the net απ converges to α in the weak topology as π →∞, since απ and α
have by definition the same incarnation on Xπ. �

1.3. Divisors. We shall refer to the space CN1(X) := lim
−→π

N1(Xπ) as the
Néron-Severi space of X. Its elements are related to the so-called b-Cartier
divisors on X, in the sense of Shokurov [Sh, I]. These are by definition
elements of the inductive limit

CDiv(X) := lim
−→
π

Div(Xπ)

of the spaces of (Cartier) R-divisors on each Xπ. According to our present
point of view, we will change the terminology and call an element of CDiv(X)
a Cartier divisor on X.
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It is then immediate to see that the Néron-Severi space CN1(X) is the
quotient of CDiv(X) modulo numerical equivalence. In particular, a Cartier
divisor D on X itself, however singular this space, induces a Cartier class in
CN1(X).

1.4. Positive classes. When Y is a smooth projective variety, we define the
psef cone (a short-hand for pseudo-effective cone) of Np(Y ) as the closure
of the convex cone generated by effective codimension p cycles.

Proposition 1.3. For any smooth projective variety Y , Np(Y ) is a finite
dimensional real vector space in which the psef cone is convex, closed, strict
(i.e. ±α psef implies α = 0) and has a compact basis (i.e. the set of classes
β ∈ Np(Y ) with α− β psef is compact for every psef class α).

Proof. The fact that Np(Y ) is finite dimensional is proved in [Ful, Example
19.1.4]. By definition, the psef cone is convex and closed. Any strict closed
convex cone in a finite dimensional space has a compact basis, so it remains
to prove that the psef cone is strict. If α ∈ Np(Y ) is psef, then clearly α ·h1 ·
. . . · hn−p ≥ 0 for all ample classes hi on Y . Therefore if ±α are psef, we get
that α is zero against any complete intersection class, i.e. α·β1 ·. . . ·βn−p = 0
for all classes βi ∈ N1(Y ) (since any such class can be written as a difference
of ample classes). Now if f : Z → Y is a surjective smooth morphism, ±f∗α
is also psef, and thus also zero against any complete intersection class on
Z. Applying this to f : Z = P(E) → Y for a vector bundle E on Y yields
that α is zero against the (n − p)-th Segre class of any vector bundle E on
Y , which is the push-forward of the appropriate power of the tautological
line bundle of P(E). Since such Segre classes generate Nn−p(Y ), this finally
shows that α is zero in Np(Y ). �

In the sequel, we shall write α ≥ 0 when α ∈ Np(Y ) is a psef class. If
µ : Y ′ → Y is a birational morphism, the push forward µ∗α ∈ Np(Y ) of
a psef class α ∈ Np(Y ′) is also psef, thus we can introduce the following
definition.

Definition 1.4. A Weil class α ∈ Np(X) is psef iff all its incarnations
απ ∈ Np(Xπ) are psef.

The set of all psef classes is a strict convex cone in Np(X) that is closed
in the weak topology. We will write α ≥ 0 if α ∈ Np(X) is psef.

Proposition 1.5. The psef cone has compact basis. In other words, if
α ∈ Np(X) is a given psef class, the set of Weil classes β ∈ Np(X) such that
0 ≤ β ≤ α is compact (in the weak topology).

Proof. The set in question is the projective limit of the corresponding sets
Kπ := {γ ∈ Np(Xπ) | 0 ≤ βπ ≤ απ}, and each of these sets is compact as
recalled above, so the result follows from the Tychonoff theorem. �

We now consider positive Cartier classes on X. If Y is a projective variety,
recall [L, §1.4.C] that the nef cone of N1(Y ) is the closure of the cone of
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classes determined by ample divisors. A nef class is thus psef. The interior
of the psef cone of N1(Y ) is called the big cone. If µ : Y ′ → Y is a birational
morphism, then a class α ∈ N1(Y ) is nef (resp. psef, big) iff µ∗α is. This
property enables us to extend the definitions to the Riemann-Zariski space.

Definition 1.6. A Cartier class α ∈ CN1(X) is said to be nef (resp. psef,
big) iff its incarnation απ is nef (resp. psef, big) for some determination π
of α.

The set of psef classes of CN1(X) will be called the psef cone of CN1(X).
It is obviously a closed convex cone, and in fact it coincides with the inverse
image of the psef cone of N1(X) under the continuous injection CN1(X)→
N1(X). In other words, a Cartier class α ∈ CN1(X) is psef as a Cartier class
iff it is psef as a Weil class, thus the terminology chosen is not ambiguous.

Proposition 1.7. The psef cone of CN1(X) is the closure of the big cone,
i.e. the set of big classes. The big cone is the interior of the psef cone.

Proof. The analogous statement is true in each space N1(Xπ), so the re-
sult follows easily from the behavior of psef and big classes under pull-back
recalled above and the definition of the strong topology. �

The set of nef classes of CN1(X) will be called the nef cone of CN1(X).
It is a closed convex cone.

Remark 1.8. A b-divisor is b-big (resp. b-nef) in the terminology of Shoku-
rov iff its class in CN1(X) is big (resp. nef).

Remark 1.9. There is no ”ample cone” on X, i.e. the interior of the nef
cone of CN1(X) is empty. Indeed, if α is a nef class determined by π, then
for any strictly higher blow-up π′ ≥ π its incarnation απ′ ∈ N1(Xπ′) lies on
the boundary of the nef cone.

Remark 1.10. One can also define the nef cone in N1(X) as the closure
in the weak topology of the nef cone of CN1(X): see [BFJ2] for details in a
similar situation.

1.5. Toric varieties. Let X be an n-dimensional projective toric variety,
see [O] for background. If we restrict to toric blow-ups π : Xπ → X in
the definitions above, we obtain a toric Riemann-Zariski space Xtor and a
toric Néron-Severi space CN1(Xtor) ⊂ CN1(X). One easily checks that
CN1(Xtor) is canonically isomorphic to the space of functions g : NR → R

that are piecewise linear with respect to some rational fan decomposition of
NR, modulo linear forms. Here as usual NR = N ⊗Z R, where N = Zn is
the lattice of 1-parameters subgroups of the torus (C∗)n.

To a piecewise linear function g as above is associated its Newton polytope
Nw(g) in the dual space MR = N∗

R
. It is defined as the set of linear forms

m ∈ MR such that m ≤ g everywhere on NR. This polytope only depends
on the cohomology class α ∈ CN1(Xtor), up to translation, thus we will
denote it by Nw(α) = Nw(g). It is a standard fact in toric geometry that:
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(i) α is psef iff Nw(α) is nonempty;
(ii) α is big iff Nw(α) has nonempty interior;
(iii) α is nef iff g is convex.

Note that when α is nef, g is equal to the maximum of all linear forms
lying in Nw(α). A toric nef class can hence be recovered from its Newton
polytope, and we can identify toric nef classes and polytopes in MR = Rn

with rational maximal faces, up to translation.

2. Positive intersection product

2.1. Intersections of Cartier classes. On a smooth projective variety Y ,
the intersection product of p classes α1, . . . , αp ∈ N1(Y ) defines an element
α1 · . . . · αp ∈ Np(Y ). Recall that for any birational morphism µ : Y ′ → Y ,
we have µ∗α1 · . . . · µ

∗αp = µ∗(α1 · . . . · αp), see [Ful, Chapter 19].
We now define the intersection product of p Cartier classes α1, . . . , αp ∈

CN1(X) having a common determination on Xπ as the Cartier class in
CNp(X) determined by α1,π · . . . · αp,π. Since the intersection product is
preserved by pull-back, this is independent on the choice of determination.
It is moreover continuous for the strong topology on CN1(X).

Remark 2.1. By the projection formula we have f∗(f
∗α · β) = α · f∗β

for any birational morphism f between smooth projective varieties. It is
thus possible to extend the intersection product to a bilinear map CNp(X)×
Nq(X) → Np+q(X). In the case p = 1 and q = n − 1, we get a pairing
CN1(X) × Nn−1(X) → R, and under this pairing the psef cone of Nn−1(X)
is the dual of the nef cone in CN1(X).

When the αi are nef classes, it is easy to see that α1 · . . . ·αp ∈ CNp(X) ⊂
Np(X) is psef. More generally, we have

Lemma 2.2. If αi ∈ CN1(X), 1 ≤ i ≤ p are Cartier classes with α1 psef
and αi nef for i ≥ 2, then their intersection product α1 · . . . · αp ∈ Np(X) is
psef.

Proof. By continuity, it is enough to check this when for some common
determination π, the class α1 is represented on Xπ by a effective divisor and
the αi are represented by very ample divisors for i ≥ 2. But then the result
is clear. �

The lemma implies the following monotonicity property which will be
crucial in what follows.

Proposition 2.3. Let αi and α′
i, 1 ≤ i ≤ p, be nef classes in CN1(X), and

suppose that αi ≥ α′
i for i = 1, . . . , p. Then we have

α1 · . . . · αp ≥ α′
1 · . . . · α

′
p

in Np(X).
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Proof. By successively replacing each αi by α′
i and using the symmetry of

the intersection product, it is enough to consider the case where αi = α′
i

for i ≥ 2. But then (α1 − α′
1) · α2 · . . . · αp ≥ 0 since α1 − α′

1 is psef by
assumption. �

As a consequence, we get the following useful uniformity result.

Corollary 2.4. Let α1, . . . , αn ∈ CN1(X) be arbitrary Cartier classes, and
suppose that for some 0 ≤ p ≤ n αi is nef for i ≤ p, and that we are given a
nef class ω ∈ CN1(X) such that ω ± αi is nef for each i > p. Then we have

|(α1 · . . . · αn)| ≤ Cn(α1 · . . . · αp · ω
n−p)

for some constant Cn only depending on n.

Proof. Write αi as the difference of two nef classes βi := αi + ω and ω for
i > p. Expanding out the product of the αi, we see that it is enough to
bound terms of the form (α1 · . . . ·αp ·βi1 · . . . ·βik ·ω

n−p−k). But we also have
βi ≤ 2ω by assumption, thus the result follows from Proposition 2.3. �

2.2. Positive intersections of big classes. The aim of this section is to
justify

Definition 2.5. If α1, . . . , αp ∈ CN1(X) are big classes, their positive in-
tersection product

〈α1 · . . . · αp〉 ∈ Np(X)

is defined as the least upper bound of the set of classes

(α1 −D1) · . . . · (αp −Dp) ∈ Np(X)

where Di is an effective Cartier Q-divisor on X such that αi −Di is nef.

We shall see in Proposition 2.13 that one can in fact replace the Di by
arbitrary psef Cartier classes.

To justify the definition above, we rely on two lemmas. Recall that a
partially ordered set is directed if any two elements can be dominated by a
third. Dually, it is filtered if any two elements dominate a third.

Lemma 2.6. Let α ∈ CN1(X) be a big Cartier class. Then the set D(α) of
effective Cartier Q-divisors D on X such that α−D is nef is nonempty and
filtered.

Lemma 2.7. Let V be a Hausdorff topological vector space and K a strict
closed convex cone, with associated partial order relation ≤. Then any
nonempty directed subset S ⊂ V that is contained in a compact subset of
V admits a least upper bound with respect to ≤.

The existence of the least upper bound in Definition 2.5 is then obtained
by applying Lemma 2.7 to V = Np(X), K = the psef cone and S = {(α1 −
D1) · . . . · (αp − Dp) with Di ∈ D(αi)}. The fact that S is directed is a
consequence of Lemma 2.6 and Proposition 2.3, and S is contained in the
compact set (see Proposition 1.5) of classes ≤ ωp if ω is any Cartier class
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determined in a common determination of the αi, and sufficiently big so that
ω ≥ αi for all i.

Proof of Lemma 2.6. Since α is big, one can find an effective Q-divisor D
on a determination Xπ of α such that απ − D is ample, and this proves
that D(α) is nonempty. In order to prove that it is filtered, we will show
that given two effective Q-divisors D1,D2 such that α − Di are nef, the
Weil Q-divisor D := min(D1,D2) on X, defined coefficient-wise, is in fact
Cartier and that α−D is nef. First, we can assume that α and the Di are
determined on X. By homogeneity, we can also assume that the Di have
integer coefficients. We then have the following characterization of D. If
we introduce the ideal sheaf I := OX(−D1) + OX(−D2), then it is easy
to see that the incarnation Dπ of D = min(D1,D2) on a blow-up Xπ is
the divisorial part of the ideal IOXπ . This shows that D is Cartier and
determined in Xπ if IOXπ is a principal ideal sheaf, which is the case as
soon as π dominates the normalized blow-up of I. Since nefness is a closed
condition, in order to show that α−D is nef, we can add an arbitrarily small
ample class to α and reduce by homogeneity to the case where α = c1(L)
for some line bundle L on Xπ such that L−Di are globally generated on X.
It then follows that OX(L) ⊗ I is also globally generated on X, and thus
that π∗L−D is globally generated on Xπ. In particular, it is nef, and this
concludes the proof of the lemma. �

Proof of Lemma 2.7. The assumption that S is directed means that it is a
net with respect to the order relation ≤. Obviously, any accumulation point
of this net is a least upper bound for S; in particular there can be at most
one such accumulation point. But since this net lives in a compact set, it
admits an accumulation point, and therefore converges towards the least
upper bound of S. �

Remark 2.8. We have shown above that min(D1,D2) is a Cartier divi-
sor on X for any two effective Cartier Q-divisors Di on X. The relation
min(D1,D2) = min(D1 +E,D2 +E)−E then shows that the min (and thus
also the max) of arbitrary Cartier Q-divisors on X is Cartier. All this fails,
however, for arbitrary Cartier R-divisors, as can be seen already in the toric
setting.

2.3. Continuity properties. We now proceed by describing some general
properties of the positive intersection product.

Proposition 2.9. The positive intersection product

(α1, . . . , αp) 7→ 〈α1 · . . . · αp〉 ∈ Np(X)

is symmetric, homogeneous of degree 1, and super-additive in each variable.
Moreover it varies continuously on the p-fold product of the big cone of
CN1(X).
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Note that in general the positive intersection product is not linear in each
variable, as can be already seen for the map α 7→ 〈α〉 on surfaces, using its
interpretation in terms of the Zariski decomposition, see Section 3.4 below.

Proof. Only the continuity statement is not clear. Let αi ∈ CN1(X), 1 ≤
i ≤ p, be big classes and ε > 0. Since αi lies in the interior of the psef cone,
we have εαi ≥ ±γi for every small enough Cartier class γi ∈ CN1(X). It
follows that

(1− ε) αi ≤ αi + γi ≤ (1 + ε) αi

and thus

(1− ε)p 〈α1 · . . . · αp〉 ≤ 〈(α1 + γ1) · . . . · (αp + γp)〉 ≤ (1 + ε)p 〈α1 · . . . · αp〉

for γi small enough, which concludes the proof. �

We now extend the definition of the positive intersection product as fol-
lows.

Definition 2.10. If α1, . . . , αp ∈ CN1(X) are psef classes, their positive
intersection product

〈α1 · . . . · αp〉 ∈ Np(X)

is defined as the limit

lim
ε→0+

〈(α1 + εω) · . . . · (αp + εω)〉

where ω ∈ CN1(X) is any big Cartier class.

This definition makes sense, because the positive intersection products on
the right-hand side decrease as ε decreases to 0. In particular they lie in
a compact subset of Np(X), so it is easy to see that the limit in question
exists. Furthermore, if ω′ is another big class, then there exists C > 0 such
that C−1ω ≤ ω′ ≤ Cω, and this shows that the limit is independent of the
choice of the big class ω.

Remark 2.11. The extension of the positive intersection product is not
continuous up to the boundary of the psef cone in general, see Example 3.8.
It is however upper semi-continuous in the appropriate sense.

An important property of the positive intersection product is that it co-
incides with the usual intersection product on nef classes.

Proposition 2.12. If α1, . . . , αp ∈ CN1(X) are nef classes, then

〈α1 · . . . · αp〉 = α1 · . . . · αp.

Proof. When the αi are big and nef, the divisor D = 0 is allowed in Defini-
tion 2.5, thus Proposition 2.3 immediately yields the desired equality. The
general case follows, since ω can be chosen to be big and nef in Defini-
tion 2.10, in which case the big classes αi + εω are also nef. �

In view of this result and monotonicity, we get the following characteri-
zation of the positive intersection product of big classes.
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Proposition 2.13. If α1, . . . , αp ∈ CN1(X) are big Cartier classes, their
positive intersection product 〈α1 · . . . · αp〉 ∈ Np(X) is the least upper bound
of the set of all intersection products

β1 · . . . · βp ∈ Np(X)

with βi ∈ CN1(X) a nef class such that βi ≤ αi.

Remark 2.14. We do not know if this result still holds for arbitrary psef
classes in general. It does hold when the αi admit a Zariski decomposition,
see Section 3.4.

2.4. Concavity properties. The intersection products of nef classes sat-
isfy several remarkable inequalities, whose proofs are based on the Hodge
index theorem. We refer to [L, §1.6] for their statements. Thanks to Propo-
sition 2.13, we can transfer them to the positive intersection product on big
classes, and by approximation to psef classes. This yields the following two
results.

Theorem 2.15 (Khovanskii-Teissier inequalities). If α1, · · · , αn ∈ CN1(X)
are psef classes, then we have

〈α1 · . . . · αn〉 ≥ 〈α
n
1 〉

1

n · · · 〈αn
n〉

1

n .

More generally, we have

〈α1 · . . . · αn〉 ≥ 〈α
p
1 · αp+1 · . . . · αn〉

1

p · · · 〈αp
p · αp+1 · . . . · αn〉

1

p

for every 1 ≤ p ≤ n.

Note that this implies in particular that the sequence k 7→ log〈αk · βn−k〉
is concave for any two psef classes α, β ∈ CN1(X).

Theorem 2.16. The function α 7→ 〈αn〉1/n is concave and homogeneous on
the psef cone. More generally, given psef classes αp+1, · · · , αn, the function

α 7→ 〈αp · αp+1 · · · · · αn〉
1/p

is homogeneous and concave on the psef cone of CN1(X).

3. The volume function

3.1. Continuity properties. Recall that the volume of a line bundle L on
X is defined by

vol(L) = lim sup
k→∞

n!

kn
h0(X, kL).

As explained in the introduction, Fujita’s theorem [Fuj] can be stated as
follows.

Theorem 3.1 (Fujita’s theorem). If L is any big line bundle on X, then

vol(L) = 〈Ln〉.
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Since the function α 7→ 〈αn〉 is homogeneous of degree n and continuous
on the big cone, it follows that it coincides with the (necessarily unique)
continuous and n-homogeneous extension of the volume function to the big
cone as constructed (using different arguments) in [L, §2.2.C]. Now positive
intersection products are not continuous up to the boundary of the psef cone
in general, see Example 3.8, and it is thus remarkable that the following
holds:

Theorem 3.2. The function α 7→ 〈αn〉 is strongly continuous on the psef
cone of CN1(X) and vanishes on its boundary (and only there).

This result follows from [L, Cor 2.2.45], and is also proved for arbitrary
(1, 1)-classes using analytic techniques in [Bou1]. Note that since α 7→ 〈αn〉
is nonnegative and upper semi-continuous up to the boundary of the psef
cone, its continuity follows in fact from its vanishing on the boundary. All
in all we get that the function vol : CN1(X)→ R defined by

vol(α) := 〈αn〉

when α is psef, and
vol(α) := 0

when α is not psef, is continuous and coincides with the volume function
defined in [L, §2.2.C].

3.2. Proof of Theorem A. Let us first recall the following fundamental
Morse-type inequality:

Proposition 3.3. For any two nef Cartier classes A,B ∈ CN1(X), we have

vol(A−B) ≥ (An)− n(An−1 · B)

We refer to [L, Proof of Theorem 2.2.15] for an elementary algebraic proof
using the interpretation of the volume in terms of growth of sections. As
an immediate consequence, we get the following sub-linear control of the
volume near a nef class:

Corollary 3.4. Let β ∈ CN1(X) be a nef class, and γ ∈ CN1(X) an
arbitrary Cartier class. If ω ∈ CN1(X) is a given nef and big class such
that β ≤ ω and ω ± γ is nef, then we have

vol(β + tγ) ≥ (βn) + nt(βn−1 · γ)− Ct2

for every 0 ≤ t ≤ 1 and some constant C > 0 only depending on (ωn).

Proof. We claim that (β + tγ)n = (βn) + nt(βn−1 · γ) + O(t2) for 0 ≤ t ≤ 1,
with O only depending on (ωn). Indeed, O is controlled by (βk · γn−k),
k = 0, . . . , n − 2, and thus by (βk · ωn−k) thanks to Proposition 2.4, which
in turn is bounded by (ωn) according to Proposition 2.3 since β ≤ ω. Now
we write β + tγ as the difference of the two nef classes A := β + t(γ + ω)
and B := tω. Then we also have

(β + tγ)n = (A−B)n = (An)− n(An−1 · B) + O(t2)
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with O only depending on (ωn). Indeed, this O is controlled by (Ak ·ωn−k),
k = 0, . . . , n− 2, and we have A ≤ 3ω, so we again get a control in terms of
(ωn) only. All in all we thus have

(An)− n(An−1 · B) = (βn) + nt(βn−1 · γ) + O(t2)

and the result now follows from an application of Proposition 3.3 to β+tγ =
A−B. �

We are now in a position to prove our main result, Theorem A. We thus
consider a big Cartier class α ∈ CN1(X) and an arbitrary Cartier class
γ ∈ CN1(X), and fix a sufficiently nef and big class ω ∈ CN1(X) such that
α ≤ ω and ω±γ is nef. If β ≤ α is a nef Cartier class, then a fortiori β ≤ ω,
and we deduce from Corollary 3.4 that

vol(α + tγ) ≥ vol(β + tγ) ≥ (βn) + nt(βn−1 · γ)− Ct2

for every 0 ≤ t ≤ 1 and some constant C > 0 only depending on (ωn).
Taking the supremum over all such nef classes β ≤ α yields

vol(α + tγ) ≥ vol(α) + nt〈αn−1〉 · γ − Ct2,

for some C > 0 only depending on (ωn). This holds for every 0 ≤ t ≤ 1, and
in fact also for every −1 ≤ t ≤ 1, merely by replacing γ by −γ. Exchanging
the roles of α + tγ ≤ 2ω and α = (α + tγ) + t(−γ), this yields

vol(α) ≥ vol(α + tγ)− nt〈(α + tγ)n−1〉 · γ − Ct2,

for some possibly larger C > 0 also depending only on (ωn). The combina-
tion of these two inequalities immediately shows that

d

dt

∣

∣

∣

∣

t=0

vol(α + tγ) = n〈αn−1〉 · γ

as desired, because 〈(α + tγ)n−1〉 converges to 〈αn−1〉 by Proposition 2.9,
α being big. We have thus shown that the volume admits a directional
derivative in any direction, and that this derivative is given by the linear
form n 〈αn−1〉 ∈ N1(X)∗. On the big cone, this form varies continuously, so
vol is of class C1.

Remark 3.5. In fact, we have proved that the volume function admits
a directional derivative in any direction in the infinite dimensional space
CN1(X), which is induced by a continuous linear form on CN1(X). In par-
ticular, the restriction of vol to any finite dimensional subspace is C1.

As a consequence of Theorem A, we get the following orthogonality prop-
erty, which was the key point in the characterization of pseudo-effectivity
in [BDPP].

Corollary 3.6. For any psef class α ∈ CN1(X), we have

〈αn〉 = 〈αn−1〉 · α.
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Proof. It is enough to show this when α is big. Applying Theorem A to
γ := α yields that nα · 〈αn−1〉 coincides with the derivative at t = 0 of
〈(α + tα)n〉 = (1 + t)n〈αn〉, which is of course nothing but n〈αn〉. �

3.3. The Diskant inequality. In this section, we prove the Diskant in-
equality (Theorem F), and its consequences Theorem D and Corollary E on
the characterization of the equality case in the Khovanskii-Teissier inequal-
ities.

Before starting the proof, we formalize one ingredient in the statement
of Diskant inequality, and define the slope of a big class with respect to
another. Recall that since the big cone is the interior of the psef cone by
Proposition 1.7, if α and β are big classes, there exists t > 0 such that
tβ ≤ α.

Definition 3.7. The slope of β with respect to α is defined as

s = s(α, β) = sup{t > 0 | α ≥ tβ}.

Since the psef cone is closed, we have α ≥ sβ, and α− tβ is big for t < s.
Note that α = β iff s(α, β) = s(β, α) = 1.

Proof of Theorem D. Since k 7→ log(αk · βn−k) is concave, (i) and (ii) are
equivalent. Moreover, (iii) trivially implies (i), so it only remains to prove
that (i) implies (iii). By homogeneity we may assume that (αn) = (βn) = 1,
which implies s(α, β) ≤ 1 by Proposition 2.3. From (i) we get (αn−1 ·β) = 1
so Diskant’s inequality gives s(α, β) = 1. By symmetry we get s(β, α) = 1.
Hence α = β. �

Proof of Corollary E. Pick α, β big and nef with ((α + β)n)
1

n = (αn)
1

n +

(βn)
1

n . Then

((α + β)n) =

n
∑

k=0

(

n

k

)

(αk · βn−k)

≤

n
∑

k=0

(

n

k

)

(αn)
k
n (βn)

n−k
n = ((αn)

1

n + (βn)
1

n )n,

so the function k 7→ log(αk · βn−k) must be affine. By Theorem D, this
implies that α and β are proportional. �

Proof of Theorem F. Set αt := α − tβ for t ≥ 0. By the definition of the
slope s = s(α, β), αt is big iff t < s. By Theorem A, f(t) := vol(αt) is
differentiable for t < s, with f ′(t) = −n〈αn−1

t 〉 ·β. We also have f(0) = (αn)
and f(t)→ 0 as t→ s− by continuity so it follows that

(αn) = n

∫ s

t=0
〈αn−1

t 〉 · β dt.

If γt ∈ CN1(X) is a nef class with γt ≤ αt = α− tβ, then γt + tβ ≤ α implies

(γn−1
t · β)

1

n−1 + t(βn)
1

n−1 ≤ (αn−1 · β)
1

n−1



DIFFERENTIABILITY OF VOLUMES OF DIVISORS 19

by Theorem 2.16. Taking the supremum over all such nef classes γt yields

(〈αn−1
t 〉 · β)

1

n−1 + t(βn)
1

n−1 ≤ (αn−1 · β)
1

n−1 ,

by Proposition 2.13. We thus obtain

(αn) ≤ n

∫ s

t=0

(

(αn−1 · β)1/n−1 − t(βn)1/n−1
)n−1

dt

and the result follows since

d

dt

(

(αn−1 · β)
1

n−1 − t(βn)
1

n−1

)n
= n(βn)

1

n−1

(

(αn−1 · β)
1

n−1 − t(βn)
1

n−1

)n−1

�

3.4. Positive intersection and Zariski decomposition. Although the
discussion to follow is strictly speaking not necessary for the understanding
of the rest of the article, we would like to emphasize at this point that there is
a very close relationship between positive intersection products and Zariski-
type decompositions of psef classes. A survey of the different definitions of
Zariski decompositions that have been proposed in higher dimension (and
which all coincide for big classes) is given in [P], and a very complete account
on the existence problem can be found in [N].

For a psef class α ∈ CN1(X), set P (α) := 〈α〉 ∈ N1(X), so that P (α) ≤
α. By definition, any nef Cartier class β ∈ CN1(X) such that β ≤ α
already satisfies β ≤ P (α). One easily deduces that the incarnation of the
Weil class P (α) on each Xπ coincides with the positive part of απ in its
divisorial Zariski decomposition, as first introduced by Nakayama (see [N],
where it is called σ-decomposition), and independently for arbitrary (1, 1)-
classes via analytic tools by the first author in [Bou2]. This means that the
collection of all the divisorial Zariski decompositions in all models gives rise
to a decomposition α = P (α) + N(α) in N1(X), where N(α) is (the class
of) an effective Weil divisor on X.

We will say that α admits a Zariski decomposition if P (α) is a Cartier
class on X. This is equivalent to requiring that the positive part of απ in its
divisorial Zariski decomposition on Xπ is nef for some π, i.e. that P (α) is a
nef Cartier class on X, a situation called ”generalized Fujita decomposition”
in [P]. When psef classes α1, . . . , αp admit a Zariski decomposition, it is
clear that

〈α1 · . . . · αp〉 = P (α1) · . . . · P (αp)

The Fujita theorem and the orthogonality relation (Corollary 3.6) can thus
be formulated respectively as

vol(α) = P (α)n and P (α)n−1 ·N(α) = 0

when α admits a Zariski decomposition (the terminology ”orthogonality
relation” in fact stems from this second equality).

In dimension n = 2, it follows from classical results that Zariski decom-
positions always exist. However, in higher dimensions, psef (or even big)
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Cartier classes do not admit a Zariski decomposition in general. A counter-
example is constructed in [N], in which α is the big Cartier class induced
by the tautological line bundle on X := PS(L1 ⊕ L2 ⊕ L3), the Li being
appropriate line bundles on an abelian surface S.

In the general case where classes do not necessarily admit Zariski decom-
positions, one can interpret the construction of positive intersection products
as making sense of the intersection P1 · . . . ·Pp of the Weil classes Pi = P (αi),
even though it is definitely not possible to make sense of the intersection of
arbitrary Weil classes on X.

Using the existence and characterization of Zariski decompositions on sur-
faces recalled above, we can give the following counter-example to continuity
of positive intersection products up to the boundary of the psef cone.

Example 3.8. Let X be any projective surface with infinitely many excep-
tional curves, i.e. irreducible curves Ck such that (C2

k) < 0 (for instance
the blow-up of P2 at 9 points). If ω is a given ample class on X and
tk := (ω · Ck)

−1 > 0, then βk := tkCk is bounded in N1(X), thus we can
assume that it converges to a non-zero class β ∈ N1(X). Since the Ck are
distinct, the limit β is nef, and thus P (β) = β. But as Ck is contractible,
we get P (βk) = 0, which shows that α 7→ P (α) is not continuous at β. If
α is any ample class on X, we have 〈α · βk〉 = α · P (βk) = 0, whereas
〈α ·β〉 = α ·β 6= 0, and this shows indeed that the positive intersection prod-
uct is not continuous at (α, β). Note that β lies on the boundary of the psef
cone.

Beyond surfaces, toric varieties constitute an important class of varieties
on which Zariski decompositions always exist. Indeed, if X is a projective
toric variety, then the nef part of a toric psef class α ∈ CN1(Xtor) is just the
toric nef class P (α) ∈ CN1(Xtor) associated to the Newton polytope Nw(α)
of α (cf. Section 1.5). In other words, if g is the homogeneous function
on Rn corresponding to α, which is piecewise linear with respect to some
rational fan decomposition Σ of Rn, then its nef part corresponds to its
convex minorant, i.e. the largest homogeneous and convex function h ≤ g.
This function h is also piecewise linear with respect to some refinement Σ′

of the fan Σ. This means that if α is determined on some toric blow-up
Xπ of X, the Cartier class P (α) is determined on some higher toric blow-
up π′ ≥ π, which cannot be taken to be π in general (as was the case
for surfaces). On the other hand, for each fixed π the map α 7→ P (α) is
piecewise linear on the psef cone of N1(Xπ) with respect to the Gel’fand-
Kapranov-Zelevinskij decomposition of [OP]. This implies in particular that
the volume vol(α) = P (α)n is piecewise polynomial on the psef cone of
N1(Xπ), as explained in [ELMNP2].

We conclude this section by describing the relationship between positive
products and Brunn-Minkowski theory. If L is a big line bundle on some
toric blow-up Xπ, then h0(X,L) is equal to the number of integral points in
the Newton polytope Nw(L) ⊂ Rn. Since Nw(kL) = kNw(L), it follows that
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vol(L)
n! = limk→∞ h0(X, kL)/kn equals the Euclidean volume of Nw(L). This

then extends by linearity and continuity to show that if αi ∈ CN1(Xtor),
i = 1, . . . , n are psef toric classes, the positive intersection product 〈α1 · . . . ·
αn〉 = P (α1) · . . . · P (αn) is nothing but the mixed volume of their Newton
polytopes Nw(αi) as defined in Brunn-Minkowski theory (up to the factor
n!), see [Sch].

4. Restricted volumes

4.1. Restriction of positive intersection products to divisors. ¿From
now on, we assume that X is a projective normal variety, and let D be a
prime divisor on X. In this situation, we want to define a restriction map
from classes on the Riemann-Zariski space X of X to classes on the Riemann-
Zariski space D of D. For Cartier classes, this is easily done as follows. Since
X is normal, any blow-up of X is an isomorphism over the generic point of
D, and can be dominated by a blow-up π : Xπ → X such that the strict
transform Dπ of D on Xπ is smooth, by embedded resolution of singulari-
ties. The corresponding system of restriction maps Np(Xπ) → Np(Dπ) is
compatible under pull-back, and thus defines a continuous restriction map
on Cartier classes

CNp(X)→ CNp(D)

α 7→ α|D.

It is however not possible to extend this map to a continuous linear map on
Weil classes Np(X)→ Np(D) α 7→ α|D in general. Indeed, such a continuous
extension is necessarily unique by density of Cartier classes, and writing a
given Weil class α ∈ Np(X) as a limit of Cartier classes α = limπ απ as in
Lemma 1.2 shows that α 7→ α|D should satisfy

(α|D)π = απ|Dπ

for every blow-up π of X. But this relation already fails for Cartier classes,
as can be seen for instance if X is P2, D is a line and α is the Cartier class
on X determined by the strict transform of D on the blow-up Xπ of X at a
point of D.

The goal of this section will be to show that it is possible to define the
restriction to D of positive intersection products 〈α1 ·. . .·αp〉 ∈ Np(X) of psef
classes αi ∈ CN1(X) under a suitable positivity assumption with respect to
D. The main point is that the positive intersection product of big classes
αi ∈ CN1(X) is by definition a monotone limit of Cartier classes of the form
β1 · . . . ·βp with βi ≤ αi a nef Cartier class. We can therefore try to define the
restriction of 〈α1 · . . . ·αp〉 to D as the monotone limit of the Cartier classes
(β1 · . . . · βp)|D. The trouble is that monotonicity is meant with respect to
pseudo-effectivity, which is in general destroyed upon restricting to D. We
thus introduce the following definitions.

Definition 4.1. If D is a prime divisor on a normal projective variety Y ,
we say that a class α ∈ N1(Y ) is D-psef and write α ≥D 0 iff it belongs to
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the closed convex cone generated by effective divisors whose support does not
contain D. A class α is D-big if it lies in the interior of the D-psef cone.

It is clear that if α is D-psef then α|D is psef. Note also that a D-psef
class is in particular psef, and thus that a D-big class is in particular big.

Remark 4.2. If α ∈ N1(Y ) is psef, then:

• α is D-psef iff D is not contained in the restricted base locus (or
non-nef locus) of α, see [ELMNP2, Bou2];
• α is D-big iff D is not contained in the augmented base locus (or

non-ample locus) of α, see [ELMNP2, Bou2].

If µ : Y ′ → Y is a birational morphism, and if D′ denotes the strict
transform of D, then µ∗α is D′-psef iff α ∈ N1(Y ) is D-psef. Considering
again a normal projective variety X and a prime divisor D on X, it follows
that the following definition makes sense:

Definition 4.3. A class α ∈ CN1(X) is D-psef (resp. D-big) iff there exists
a determination π of α such that απ ∈ N1(Xπ) is Dπ-psef (resp. Dπ-big).

We will write α ≥D 0 if α ∈ CN1(X) is D-psef. Note that a class in
CN1(X) is D-big iff it belongs to the interior of the D-psef cone in the
strong topology.

Proceeding as in Section 2, one shows that the following definition makes
sense.

Definition 4.4. If α1, . . . , αp ∈ CN1(X) are D-big classes, one defines their
restricted positive intersection product on D

〈α1 · . . . · αp〉|D ∈ Np(D)

as the least upper bound of the set of classes

(β1 · . . . · βp)|D ∈ Np(D)

where βi ∈ CN1(X) is a nef class such that βi ≤D αi.

Remark 4.5. The D-big classes αi ∈ CN1(X) restrict to big classes αi|D ∈
CN1(D), so we can also consider their positive intersection on D, to wit
〈α1|D · . . . · αp|D〉 ∈ Np(D). It is the least upper bound of the set of classes
γ1 · . . . ·γp ∈ Np(D) where γi ∈ CN1(D) is nef and such that γi ≤ αi|D. The
point of Definition 4.4 above is that we only consider nef classes γi ≤ αi|D
that are restrictions to D of nef classes βi ≤D αi on X. In particular, it
follows that

〈α1 · . . . · αp〉|D ≤ 〈α1|D · . . . · αp|D〉

in Np(D), but equality does not hold in general.

Since the restricted positive intersection product is homogeneous and in-
creasing in each variable (with respect to ≥D), continuity holds as in Propo-
sition 2.9.
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Proposition 4.6. The restricted positive intersection product 〈α1 · . . . ·
αp〉|D ∈ Np(D) depends continuously on the D-big classes αi ∈ CN1(X).

Again the definition can be extended to D-psef classes αi ∈ CN1(X) by
setting

〈α1 · . . . · αp〉|D := lim
ε→0+

〈(α1 + εω) · . . . · (αp + εω)〉|D

for ω ∈ CN1(X) a D-big class. Indeed, the limit in question does not depend
on the choice of ω. It depends upper semi-continuously on the D-psef classes
αi, but continuity does not hold up to the boundary in general.

Proposition 4.7. If α1, . . . , αp ∈ CN1(X) are nef, then

〈α1 · . . . · αp〉|D = (α1 · . . . · αp)|D

We also note that the concavity properties of Section 2.4 also hold in this
setting, again because the Khovanskii-Teissier inequalities for nef classes
hold on D.

We will use the following easy inequality:

Proposition 4.8. Let D be a prime divisor on X and assume that D is
also Cartier. If α1, . . . , αn−1 ∈ CN1(X) are D-psef classes, then we have

〈α1 · . . . · αn−1〉|D ≤ 〈α1 · . . . · αn−1〉 ·D.

Proof. It is enough consider the case of D-big classes αi. Pick βi ∈ CN1(X)
a nef class with βi ≤D αi. If π is a determination of βi, then

(β1 · . . . · βn−1)|D = β1,π · . . . · βn−1,π ·Dπ ≤

≤ β1,π · . . . · βn−1,π · π
∗D ≤ 〈α1 · . . . · αn−1〉 ·D,

where Dπ denotes as before the strict transform of D on Xπ. The desired
inequality follows by taking the supremum over all such nef classes βi. �

We can now give the following characterization of D-big classes.

Theorem 4.9. If α ∈ CN1(X) is big and D-psef, then α is D-big iff
〈αn−1〉|D > 0.

Proof. If α is D-big, then α ≥D ω is for some nef class ω ∈ CN1(X) which is
determined by an ample class on X. We thus have 〈αn−1〉|D ≥ (ω|D)n−1 > 0.
Conversely, assume that α is big and D-psef but not D-big, and let us show
that 〈αn−1〉|D = 0. Upon replacing X by some higher birational model, we
can also assume that α is determined on X, and that X is smooth, so that
D is in particular Cartier. In view of the preceding proposition, the result
will thus follow from the following lemma. �

Lemma 4.10. If D is Cartier on X and α is a big class determined on X
which is not D-big, then 〈αn−1〉 ·D = 0.
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Proof. If ω is an ample class on X, then α − εω is big but not D-psef
for every small enough ε > 0. By continuity, it is thus enough to show
that 〈αn−1〉 · D = 0 for any big class α on X which is not D-psef. But
in that case, D is contained in the non-nef locus of α, i.e. α ≥ P + tD
for some t > 0 if we denote by P the incarnation on X of 〈α〉 (which
coincides with the positive part in the divisorial Zariski decomposition of
α, cf. [Bou2]). It follows that 〈αn−1〉 · α ≥ 〈Pn−1〉 · P + 〈αn−1〉 · tD. But
we also have 〈Pn−1〉 · P = 〈Pn〉 = 〈αn〉 = 〈αn−1〉 · α by the orthogonality
relation (Corollary 3.6) applied to P and α, and thus we get 〈αn−1〉 ·D = 0
as claimed. �

As noticed after Theorem 3.2, this implies:

Corollary 4.11. The function α 7→ 〈αn−1〉|D is continuous on the cone of
big and D-psef classes of CN1(X).

Remark 4.12. The theorem fails when α is not big. For instance, if X
is a smooth surface, D is ample and α ∈ CN1(X) is nef but not big, then
〈α〉|D = α · D > 0 as soon as α is non-zero, but α is not D-big since it is
not even big.

Remark 4.13. The lemma fails if α is not determined on X. For instance,
if X is a ruled surface, D is a ruling and π : Xπ → X is the blow-up of X at
a point p ∈ D, with exceptional divisor E, then the strict transform Dπ of
D can be blown-down by µ : Xπ → X ′. If απ := µ∗ω for some ample class ω
on X ′, then clearly the Cartier class α ∈ CN1(X) determined by απ is nef
and big, but not D-big. However, we have

α ·D = απ · (Dπ + E) = ω ·E′ > 0

with E′ the image of E on X ′.

4.2. Restricted volumes. Let again X be a normal projective variety and
D be a prime divisor. Given a line bundle L on X, we will denote by
h0(X|D,L) the rank of the restriction map

H0(X,L)→ H0(D,L|D).

Recall from the introduction that the restricted volume of L on D is then
defined as

volX|D(L) := lim sup
k→∞

(n− 1)!

kn−1
h0(X|D, kL).

It is thus the growth coefficient of the number of sections of OD(kL) on D
that extend to X. As stated in the introduction, we have

Theorem 4.14 (Generalized Fujita’s Theorem, [ELMNP3, Ta]). If L is a
D-big line bundle, then

volX|D(L) = 〈Ln−1〉|D. (4.1)
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This result is in fact established for a smooth projective variety X, but
it immediately extends to the case when X is merely normal in view of the
relation volX|D(L) = volX′|D′(µ∗L) if µ : X ′ → X is a blow-up and D′ is the
strict transform of D (because µ has connected fibers, X being normal). The
theorem shows in particular that volX|D(L) only depend on c1(L) ∈ N1(X),

and it follows that α 7→ 〈αn−1〉|D is the (necessarily unique) extension of
the restricted volume to a (n− 1)-homogeneous and continuous function on
the open cone of D-big classes.

Using Theorem 4.9, we now extend this to arbitrary big line bundles.

Theorem 4.15. If L is a big and D-psef line bundle then (4.1) holds. In
particular, if L is a big line bundle, then L is D-big iff volX|D(L) > 0.

As noted before, L is D-big iff D is not contained in the augmented base
locus of L. We thus recover with a different proof a special case of the main
result of [ELMNP3]. (The general case deals with irreducible components
of the augmented base locus of any codimension.)

Remark 4.16. If a line bundle L is not D-psef, then clearly volX|D(L) =
0, so the theorem shows that volX|D(L) only depends on the numerical
class of the big line bundle L. It is worthwhile to note that this fails for
non-big line bundles in general. For instance, if D is (Cartier and) am-
ple and L is not big, we have h0(X, kL − D) = 0 for each k, and thus
h0(X|D, kL) = h0(X, kL). Now if X = C1 × C2 is a product of two smooth
curves and L is the sum of the pull-back of an ample bundle L1 on C1 and
the pull-back of a numerically trivial bundle L2 on C2, then volX|D(L) =

lim supk→∞
1
kh0(X, kL) = 0 when L2 is not torsion in Pic0(C2), whereas

volX|D(L) = lim supk→∞
1
kh0(X, kL) = deg L1 > 0 when L2 is torsion.

Note that L is nef, so that we have 〈L〉|D = L ·D = (D · F1) deg L1, where
F1 denotes the fiber of the projection X → C1.

Proof of Theorem 4.15. Let L be an arbitrary D-psef line bundle. We claim
that

〈Ln−1〉|D ≥ volX|D(L). (4.2)

Indeed, if A is an ample divisor on X, then clearly volX|D(L + εA) ≥
volX|D(L) for every rational ε > 0. Since L + εA is D-big, the left-hand

side coincides with 〈(L+ εA)n−1〉|D by Theorem 4.14. Thus (4.2) follows by
letting ε → 0, by definition of 〈Ln−1〉|D for the D-psef class determined by
L.

Now if L is big and D-psef but not D-big, then 〈Ln−1〉|D = 0 by Theo-
rem 4.9, and thus (4.2) gives volX|D(L) = 0, which completes the proof. �

4.3. Proof of Theorem B. Let L be a big line bundle on X. We also
assume that the prime divisor D is Cartier on X, which of course holds if
X is smooth. We have to show that volX|D(L) = 〈Ln−1〉 · D. If L is not
D-big, then the left-hand side is zero by Theorem 4.15, and the right-hand
side is zero by Lemma 4.10. We can thus assume that L is D-big. In that
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case, we have 〈Ln−1〉 · D ≥ 〈Ln−1〉|D = volX|D(L) by Proposition 4.8 and
the generalized Fujita theorem. In order to prove the converse inequality,
we rely on the following two simple remarks. First, for every line bundle
M the kernel of the restriction map H0(X,M) → H0(D,M |D) is precisely
H0(X,M −D), hence

h0(X,M) − h0(X,M −D) = h0(X|D,M). (4.3)

Second, for any effective divisor B whose support does not contain D, multi-
plication by the canonical section σ of H0(X,B) yields injections H0(X,M−
B) →֒ H0(X,M) and H0(D,M−B) →֒ H0(D,M). This implies the second
basic relation:

h0(X|D,M −B) ≤ h0(X|D,M). (4.4)

Now fix an integer k, apply (4.3) to M = kL− jD for j = 0, . . . , k, and sum
all these relations. This gives

h0(X, kL)− h0(X, k(L −D)) =
k−1
∑

j=0

h0(X|D, kL− jD).

Fix a sufficiently ample divisor A not containing D in its support such
that A − D is linearly equivalent to an effective divisor B not containing
D in its support. By repeated use of (4.4), we get h0(X|D, kL − jD) ≤
h0(X|D, kL− jD + jA) = h0(X|D, kL + jB) ≤ h0(X|D, kL + kB) for each
j ≤ k. Hence

h0(X, kL) − h0(X, k(L −D)) ≤ k h0(X|D, k(L + B)).

Dividing by kn, and taking the limit when k →∞, we infer

vol(L)− vol(L−D) ≤ n volX|D(L + B).

Replacing L by kL, and expressing the (restricted) volumes as (restricted)
positive intersection products, we finally conclude that

1

k

(

〈Ln〉 − 〈(L−
1

k
D)n〉

)

≤ n〈(L +
1

k
B)n−1〉|D.

When k → ∞, the left-hand side tends to n 〈Ln−1〉 · D by Theorem A,
whereas the right-hand side converges to n 〈Ln−1〉|D = n volX|D(L) by con-

tinuity (Proposition 4.6). This proves the required inequality 〈Ln−1〉 ·D ≤
volX|D(L) and concludes the proof.

Example 4.17 (Surfaces). In dimension n = 2, a big class α ∈ CN1(X)
is not D-big iff P (α) · D = 0, where P (α) is the nef part of its Zariski
decomposition. In particular, α is always D-big when D is ample (or even
nef by the Hodge index theorem). Now the continuous extension of L 7→
volX|D(L) to the big cone of CN1(X), to wit α 7→ (P (α) ·D), is not C1 in

general on the open cone of D-big classes, because α 7→ P (α) is not C1 in
general, as exemplified by the blow-up of P2 at a point. This means that the
analogue of Theorem A fails for restricted volumes.
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