Type-Based Complexity Analysis of Probabilistic Functional Programs (Technical Report) - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2019

Type-Based Complexity Analysis of Probabilistic Functional Programs (Technical Report)

Résumé

We show that complexity analysis of probabilistic higher-order functional programs can be carried out compositionally by way of a type system. The introduced type system is a significant extension of linear dependent types. On the one hand, the presence of probabilistic effects requires adopting a form of dynamic distribution type, subject to a coupling-based subtyping discipline. On the other hand, recursive definitions are proved terminating by way of ranking functions. We prove not only that the obtained system, called dℓRPCF, provides a sound methodology for average case complexity analysis, but is also extensionally complete, in the sense that all average case polytime Turing machines can be encoded as a term typable in dℓRPCF.
Fichier principal
Vignette du fichier
lics-techreport.pdf (885.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02103943 , version 1 (19-04-2019)

Identifiants

  • HAL Id : hal-02103943 , version 1

Citer

Martin Avanzini, Ugo Dal Lago, Alexis Ghyselen. Type-Based Complexity Analysis of Probabilistic Functional Programs (Technical Report). [Research Report] INRIA Sophia Antipolis; University of Bologna; ENS Lyon. 2019. ⟨hal-02103943⟩
113 Consultations
111 Téléchargements

Partager

More