
HAL Id: hal-02103943
https://hal.science/hal-02103943

Submitted on 19 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Type-Based Complexity Analysis of Probabilistic
Functional Programs (Technical Report)

Martin Avanzini, Ugo Dal Lago, Alexis Ghyselen

To cite this version:
Martin Avanzini, Ugo Dal Lago, Alexis Ghyselen. Type-Based Complexity Analysis of Probabilistic
Functional Programs (Technical Report). [Research Report] INRIA Sophia Antipolis; University of
Bologna; ENS Lyon. 2019. �hal-02103943�

https://hal.science/hal-02103943
https://hal.archives-ouvertes.fr


Type-Based Complexity Analysis
of Probabilistic Functional Programs (Technical Report)

MARTIN AVANZINI, INRIA Sophia Antipolis

UGO DAL LAGO, University of Bologna, INRIA Sophia Antipolis

ALEXIS GHYSELEN, ENS Lyon

We show that complexity analysis of probabilistic higher-order functional programs can be carried out

compositionally by way of a type system. The introduced type system is a significant extension of linear

dependent types. On the one hand, the presence of probabilistic effects requires adopting a form of dynamic
distribution type, subject to a coupling-based subtyping discipline. On the other hand, recursive definitions are

proved terminating by way of ranking functions. We prove not only that the obtained system, called dℓRPCF,
provides a sound methodology for average case complexity analysis, but is also extensionally complete, in the

sense that all average case polytime Turing machines can be encoded as a term typable in dℓRPCF.

1 A PROBABILISTIC FUNCTIONAL LANGUAGE EXTENDING AFFINE PCF
In this section we introduce the programming language dℓRPCF that we consider throughout this

work. It is basically an affine version of Plotkin’s, extended with an operator Unif for sampling from

uniform, discrete distributions. The type system we introduce in this section does not guarantee

any complexity propriety.

Statics: The sets of terms, values and types are generated by the following grammars:

Terms t ,u ::= v | v w | let x = t in u | match v with { z 7→ t | s 7→ w }

| let ⟨x ,y⟩ = v in t

Values v,w ::= x | z | s(v) | Unif | λx .t | fix x .v | ⟨v,w⟩

Types T ,U ::= Nat | T ⊸ U | T ⊗ U

Terms are restricted to A-normal forms. In this setting, the application t u is recovered by let x =
t in let y = u in x y. Apart from our sampling operator Unif, the constructors are standard. We

follow the usual convention where application t u binds to the left, whereas λ-abstraction λ.t binds
to the right. Terms which are not values are called active. For an integer n ∈ N, we denote with n
the value s(. . . , s(z), . . . ), with n occurrences of s. The capture free substitution of variable x by

value v in t is denoted t[x := v].
We impose a linear typing regime on terms. The typing rules are presented in Figure 1. The

statement Γ | Θ ⊢ t : T means that under the (linear) typing context Γ and the global typing context
Θ the term t receives the type T . Here, a typing context Γ is a non-ordered sequence of the form

x1 : T1 . . . xn : Tn . The union of two linear type contexts Γ and ∆, denoted Γ,∆, is defined only if for
each variable x with (x : T ) ∈ Γ and (x : U ) ∈ ∆, it holds thatT = U = Nat. Global type contexts Θ,
used to treat recursive functions, are either empty or consist of a unique hypothesis x : T ⊸ U . In

rule Fix, ℓΓ denotes a typing context where all variables are given the type Nat. For closed terms t ,
we abbreviate ∅ | ∅ ⊢ t : T by ⊢ t : T . We remark that this affine type system permits duplication

of values of base type, whereas duplication of values of functional types is prohibited.

Authors’ addresses: Martin Avanzini, INRIA Sophia Antipolis; Ugo Dal Lago, University of Bologna, INRIA Sophia Antipolis;

Alexis Ghyselen, ENS Lyon.

2019. XXXX-XXXX/2019/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


:2 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

(x : T ) ∈ Γ or (x : T ) ∈ Θ

Γ | Θ ⊢ x : T
(Ax)

Γ | Θ ⊢ z : Nat
(Zero)

Γ | Θ ⊢ v : Nat

Γ | Θ ⊢ s(v) : Nat
(Succ)

Γ | Θ ⊢ Unif : Nat ⊸ Nat
(Unif)

Γ | Θ ⊢ v : T ⊸ U ∆ | Θ ⊢ w : T

Γ,∆ | Θ ⊢ v w : U
(App)

Γ,x : T | Θ ⊢ t : U

Γ | Θ ⊢ λx .t : T ⊸ U
(Abs)

ℓΓ | (x : T ⊸ U ) ⊢ v : T ⊸ U

Γ, ℓΓ | Θ ⊢ fix x .v : T ⊸ U
(Fix)

Γ | Θ ⊢ t : T ∆,x : T | Θ ⊢ u : U

Γ,∆ | Θ ⊢ let x = t in u : U
(Let)

Γ | Θ ⊢ v : T ∆ | Θ ⊢ w : U

Γ,∆ | Θ ⊢ ⟨v,w⟩ : T ⊗ U
(⊗i )

Γ | Θ ⊢ v : T ⊗ T ′ ∆,x : T ,y : T ′ | Θ ⊢ t : U

Γ,∆ | Θ ⊢ let ⟨x ,y⟩ = v in t : U
(⊗e )

Γ | Θ ⊢ v : Nat ∆ | Θ ⊢ t : T ∆ | Θ ⊢ w : Nat ⊸ T

Γ,∆ | Θ ⊢ match v with { z 7→ t | s 7→ w } : T
(Match)

Fig. 1. Affine type system for probabilistic PCF

Dynamics: Following [Dal Lago and Grellois 2017], we can give dℓRPCF an operational semantics

in terms of a binary relation⇒ on distributions. On the non-probabilistic fragment of our language,

i.e., on terms without any occurrences of Unif, the semantics can be seen isomorphic to the usual

(weak) call-by-value reduction relation.

A (discrete) valuation on a countable set X is a function v : X → [0,+∞]. The support of v
is given by Supp(v) ≜ {x ∈ X | v(x) > 0}. It is called finite if its support is finite. The set of

valuations on X is denoted V (X ). We may denote a valuation v also by {v(x) : x}x ∈Supp(v) or
{v(x1) : x1, . . . ,v(xn) : xn} when Supp(v) = {x1, . . . ,xn} is finite. Scalar multiplication p · v and

finite sum

∑
i ∈I vi are defined point-wise. A (discrete) distribution onX is a valuationD : X → [0, 1]

such that

∑
D ≜

∑
x ∈X D(x) ≤ 1. It is called proper if

∑
D = 1. The set of distributions is closed

under scalar multiplication, but not necessarily under finite sum. We define the relation ≤ on

distributions such that D ≤ E if D(x) ≤ E(x) for all x ∈ X . For a distribution D on terms,

Da +a/v Dv indicates the decomposition of D, i.e. D = Da +Dv , so that the supports of Da and

Dv consist of active terms and values, respectively.

The reduction relation ⇒ is itself based on an auxiliary relation →, depicted in Figure 2, which

maps active terms to distributions. If t → {p1 : t1, . . . ,pn : tn}, then ti should be understood as a

one-step reduct of t with probability pi . All rules but the one defining Unif follow the standard

operational semantics of PCF. A term Unif n reduces to the uniform distribution on (0,n) wrt. →.

Based on the auxiliary relation →, the relation ⇒ is given by the following inference rule.

D = {pi : ti | i ∈ I} +a/v Dv ∀i ∈ I, ti → Ei

D ⇒ Dv +
∑

i ∈I pi · Ei

The type system is coherent with the reduction rules, in particular, the type system enjoys subject

reduction and progress in the following sense.

Proposition 1.1 (Subject Reduction and Progress). Let t be such that ⊢ t : T holds.

(1) If t → {pi : ti | i ∈ I} (with pi > 0 for all i) then for all i ∈ I, we have ⊢ ti : T .
(2) The term t is in normal form for→ if and only if t is a value.

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :3

(λx .t) v → {1 : t[x := v]} (fix x .w) v → {1 : w[x := fix x .w] v}

Unif n → { 1

n+1 :m | 0 ≤ m ≤ n}

match z with { z 7→ t | s 7→ w } → {1 : t} match s(v) with { z 7→ t | s 7→ w } → {1 : w v}

let x = v in t → {1 : t[x := v]} let ⟨x ,y⟩ = ⟨v,w⟩ in t → {1 : t[x := v][y := w]}

t → {pi : ti | i ∈ I}

let x = t in u → {pi : let x = ti in u | i ∈ I}

Fig. 2. Reductions rules on distributions

Subject reduction, i.e. Property 1.1.1, implies in particular that distributions of well typed terms

are closed under ⇒ reductions.

We denote with⇒∗
the reflexive and transitive closure of⇒, and we denote with⇒n

the nth
iteration of the reduction relation ⇒. We remark that the set of finite distributions is closed under

⇒. Finally, let D ⇒v Ev if D ⇒ Ea +a/v Ev , and similarly the relations ⇒n
v and ⇒∗

v are defined

in terms of⇒n
and⇒∗

, respectively. Note that ifD ⇒n
v En where n ∈ N, then Em ≤ En whenever

m ≤ n. Likewise, we define the relation ⇒a . The semantics of a term is a distribution on values

defined as JtK = sup {D | t ⇒∗
v D}. This is a well-posed definition because distributions form an

ωCPO.

Example 1.2 (Biased Random Walk). For two terms t and u, let us denote by t ⊕n u the term

let p = Unif n in (match p with { z 7→ t | s 7→ λq.u }) for fresh variables p and q. Then t ⊕n u
reduces with probability

1

n+1 to t , and with probability
n

n+1 to u. Consider the term

rwalk ≜ fix rw .λn.match n with { z 7→ z | s 7→ λm.rw (s(s(m))) ⊕2 rw m } .

Its recursive calls gives a biased random walk, with rwalk n + 1 reducing to rwalk n + 2 with

probability
1

3
, and with probability

2

3
to rwalk n. For any n ∈ N, rwalk n reduces to z almost surely,

and hence Jrwalk nK = {1 : z}.

In this work, we are interested in average case complexity analysis, in terms of reduction steps.

In a probabilistic setting, the reduction length from a term t can be understood as a random variable

St on N ∪ {∞}, with P(S = n) being the probability that t evaluates to normal form in n steps,

or diverges in the case n = ∞. The expected runtime of a term t is then defined in terms of its

expectation

E(St ) ≜
∞∑
n=0

P(St > n) .

Here, P(St > n) gives the probability that a reduction takes strictly more than n steps. In our

setting, this probability is expressed by

∑
Dn

a , for D
n
a the distribution of active terms reachable

in n steps from t , i.e., t ⇒n
a Dn

a . This motivates the following definition, compare [Avanzini et al.

2018] for further justification of this definition.

Definition 1.3 (Expected Runtime). The expected runtime of a term t is defined by E(t) ≜∑∞
n=1(

∑
Dn

a ) where D
n
a is the distribution on active terms such that t ⇒n

a Dn
a .

, Vol. 1, No. 1, Article . Publication date: January 2019.



:4 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

We remark that E(v) = 0 for any valuev , and if t → {pi : ti | i ∈ I} then E(t) = 1+
∑

i ∈I pi ·E(ti ).

2 THE TYPE SYSTEM
This section is devoted to introducing the main object of study of this paper, dℓRPCF, a monadic,

linear dependent type system for reasoning about expected runtimes. This system borrows ideas

from the dependent type system dℓPCF introduced by Dal Lago and Petit [Dal Lago and Petit

2012] for reasoning about the runtime of deterministic programs and from the affine, monadic type

system introduced by Dal Lago and Grellois [Dal Lago and Grellois 2017] for proving almost sure

termination of probabilistic programs.

2.1 Indexes, Types and Subtyping
As in the case of linear dependent types, base types are annotated with refinement constraints.

Constraints are formed over index terms, i.e., first-order terms generated freely from a set of index
symbols I and index variablesV , denoted by f ,д, . . . and a,b, . . . respectively. Each symbol f ∈ I

is associated with a natural number ar(f ), its arity.

Definition 2.1 (Indices). Natural indices I , J , . . . and rational indices P ,Q, . . . are generated from

function symbols I and index variablesV according to the following grammar:

I , J ≜ a | f (I1, . . . , Iar(f )) |
∑
a≤I

J | maxa≤I J P ,Q ≜
I

J
.

We useA,B, . . . to denote natural and rational indices. We assume that each function symbol f ∈

I comes equipped with an interpretation Jf K : Nar(f ) → N. We do not put any constraints on these

functions, apart from computability. Given a valuation ρ : V → N, the interpretation of symbols

is extended homomorphically to indices: JaKρ ≜ ρ(a) for index variables a, Jf (I1, . . . , In)Kρ ≜

Jf K(JI1Kρ , . . . , JInKρ ) and J IJ Kρ ≜
JIKρ
JJ Kρ

if JJKρ , 0. In the case JJKρ = 0, J IJ Kρ is undefined. Note

that for any valuation ρ and index A, JAKρ is computable. We suppose that I contains for each

n ∈ N a constant n interpreted by JnK ≜ n as well as symbols + and · interpreted as addition and

multiplication, respectively. For an index I over variables a1, . . . ,ak and J over a1, . . . ,ak ,b, we
define a special symbol

∑
b≤I J with an interpretation satisfying J

∑
b≤I JKρ =

∑
n≤JIKρ JJKρ[b 7→n].

Likewise, we define the maximum of a bounded sequence. We will often, by an abuse of notation,

use operations on rational indexes. For example,
I
J +

I ′
J ′ denotes the rational index

I ·J ′+I ′ ·J
J ·J ′ . For

an index A, we define the substitution of a in A by a natural index J , that we note A{J/a}, in the

obvious way.

Definition 2.2 (Constraints on Indexes). Let ϕ ⊆ V be a set of index variables. A constraint C
on ϕ is an expression of the form A R B where A,B are indexes with free variables in ϕ. Here, R
denotes a relation between integers or rationals. Usually, we use relations in the set {≤, <,=,,}
but we could use any computable relation. Finite sets of constraints are denoted by Φ. We say that

an index valuation ρ : ϕ → N satisfies a constraint A R B, in notation ρ ⊨ A R B, if JAKρ and JBKρ
are defined and JAKρ R JBKρ holds. Likewise, ρ ⊨ Φ if ρ ⊨ A R B holds for all (A R B) ∈ Φ. In the

same way, we say that ϕ;Φ ⊨ A R B when for any ρ : ϕ → N such that ρ ⊨ Φ then ρ ⊨ A R B.

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :5

Definition 2.3 (Linear Dependent Types). Linear dependent types σ ,τ and dynamic distribution
types (DDTs) µ,ν are defined as follows:

linear dependent types σ ,τ ≜ Nat(a | Φ) | σ ⊗ τ | σ⊸

arrow types σ⊸ ≜ σ ⊸ µ | ∀a : Φ.σ⊸

dynamic distribution types µ,ν ≜ {P : σ | a ≤ I }

A type Nat(a | Φ) represents the set of naturals n for which Φ{n/a} is true. It should thus be

understood as an existential type binding a, with a occurring free in Φ. For instance, Nat(a | a ≤ n)
represents a natural number between zero and n ∈ N, and more generally, Nat(a | a ≤ J ) would
represent naturals bounded by J . For brevity, we may abbreviate withNat(I ) the typeNat(a | a = I ),
specifically, Nat(b) denotes Nat(a | a = b).

Our type system admits polymorphism over indices in the form of bounded universal quantifica-

tion over function types. The variable a in a type ∀a : Φ.σ⊸ can be free in Φ and σ⊸, whereas it is

bound in ∀a : Φ.σ⊸. We will sometimes abbreviate an arrow type σ⊸ as ∀a : Φ.σ ⊸ µ, with a

being a list of index variables and Φ a list of sets of constraints.

Finally, the dynamic distribution type {P : σ | a ≤ I } can be understood as a monadic type for

probabilistic computations which yield with probability P an element of type σ .
In the dynamic distribution type, a can be free in P and σ but not in I , and it will be considered

bound in {P : σ | a ≤ I }. For instance, the DDT { 1

I+1 : Nat(b) | b ≤ I } represents a probabilistic
computation that evaluates to a natural number uniformly distributed in the interval from 0 to I .
This is indeed the type that our system will assign to the term Unif t , where t is of type Nat(I ).
We may abbreviate with σ the DDT {1 : σ | a ≤ 0} representing a dirac distribution, for a not

occurring free in σ . Thereby, we may assign to terms of function type that exhibit no probabilistic

behaviour the usual type τ ⊸ σ , instead of τ ⊸ {1 : σ | a ≤ 0}.

Types in general are indicated by ζ , ξ , . . . . We consider types equal modulo renaming of bound

variables and denote by ζ {I/a} the capture-avoiding substitution of the index variable a by I in the

type ζ . All types are defined under some restrictions, such as the fact that the sum of probabilities

in a distribution must be equal to 1. These restrictions are captured in our notion of valid type, see

Figure 3. Notice that if an index A is valid under ϕ;Φ, then for all valuations ρ : ϕ → N such that

ρ ⊨ Φ, JAKρ is well defined. From now on, given a context ϕ;Φ, we will only consider valid types

without always reminding it.

2.2 Subtyping
Since our type annotations give a form of refinement, it should always be possible to relax a

refinement to a more liberal one. To this end, we introduce a subtyping relation on types. The core

of our subtyping relation, presented in Figure 4 is fairly standard. A type Nat(a | Φ1) is a subtype of

Nat(a | Φ2) if Φ1 implies Φ2. One natural way to extend subtyping to DDTs is to lift the subtyping

relation component-wise, i.e. {P : σ | a ≤ I } is a subtype of {P : τ | a ≤ I } if σ is a subtype of

τ , for all a = 0, . . . , I . Although simple, this extension is too rigid to deal with more interesting

functions. Instead, our treatment of subtyping for DDTs is based on the notion of probabilistic
coupling, already studied in computer science [Barthe et al. 2017].

Intuitively, in the coupling S ◁⊑ ⟨{P : σ | a ≤ I }&{Q : τ | b ≤ J }⟩, S can be seen as a distribution

over the set {(σ ,τ ) | a ≤ I ,b ≤ J ,σ R τ } and S denotes the fraction of the probability P for σ that

will contribute to the probabilityQ for τ . For example, if σ R τ and σ ′ R τ , then { 1
2
: σ , 1

2
: σ ′} and

{ 1
4
: σ , 1

4
: σ ′, 1

2
: τ } are coupled by the distribution { 1

4
: (σ ,τ ), 1

4
: (σ ′,τ ), 1

4
: (σ ,σ ), 1

4
: (σ ′,σ ′)}.

Subtyping is extended to function types in the standard way: σ ⊸ µ ⊑ τ ⊸ ν holds if µ ⊑ ν
and σ ⊑ τ . Then for quantification, on the right we internalize quantification in the set of variables

, Vol. 1, No. 1, Article . Publication date: January 2019.



:6 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

Indices and constraints:
FV(I ) ⊆ ϕ

ϕ;Φ ⊢ I valid

ϕ;Φ ⊢ I valid ϕ;Φ ⊢ J valid ϕ;Φ ⊨ J , 0

ϕ;Φ ⊢ I
J valid

ϕ;Φ ⊢ A valid ϕ;Φ ⊢ B valid

ϕ;Φ ⊢ A R B valid

ϕ;Φ ⊢ A R B valid for all (A R B) ∈ Φ′

ϕ;Φ ⊢ Φ′ valid
Types:

a < ϕ (ϕ,a);Φ ⊢ Φa valid

ϕ;Φ ⊢ Nat(a | Φa ) valid

ϕ;Φ ⊢ σ valid ϕ;Φ ⊢ τ valid

ϕ;Φ ⊢ σ ⊗ τ valid

ϕ;Φ ⊢ σ valid ϕ;Φ ⊢ τ valid

ϕ;Φ ⊢ σ ⊸ τ valid

a < ϕ (ϕ,a);Φ ⊢ Φa valid (ϕ,a); (Φ,Φa ) ⊢ σ⊸ valid (ϕ,a); (Φ,Φa ) ⊨ a ≤ I for some index I

ϕ;Φ ⊢ ∀a : Φa .σ⊸ valid

ϕ;Φ ⊢ I valid (ϕ,a); (Φ,a ≤ I ) ⊢ P valid (ϕ,a); (Φ,a ≤ I ) ⊢ σ valid ϕ;Φ ⊨
∑
a≤I P = 1

ϕ;Φ ⊢ {P : σ | a ≤ I } valid

Fig. 3. Validity of indices, constraints and types

and constraints, and on the left subtyping correspond to finding an instantiation for the quantified

variable. Finally, we add the conversion rule. Informally, this rule describe that a function of type

Nat(a | Φa) ⊸ µ could be given equivalently the type ∀a : Φa .Nat(a) ⊸ µ.

Example 2.4 (Subtyping for Arrow Types). We give a common example of subtyping for arrow

types: ⊢ (∀a : a ≤ I .Nat(a) ⊸ Nat(a)) ⊑ Nat(b | b ≤ I ) ⊸ Nat(c | c ≤ I ).

Nat(b | b ≤ I ) ▷ b : (b ≤ I ).Nat(b)

b; (b ≤ I ) ⊨ b ≤ I b; (b ≤ I ) ⊢ Nat(b) ⊸ Nat(b) ⊑ Nat(b) ⊸ Nat(c | c ≤ I )

b; (b ≤ I ) ⊢ (∀a : a ≤ I .Nat(a) ⊸ Nat(a)) ⊑ Nat(b) ⊸ Nat(c | c ≤ I )

⊢ (∀a : a ≤ I .Nat(a) ⊸ Nat(a)) ⊑ ∀b : (b ≤ I ).Nat(b) ⊸ Nat(c | c ≤ I )

⊢ (∀a : a ≤ I .Nat(a) ⊸ Nat(a)) ⊑ Nat(b | b ≤ I ) ⊸ Nat(c | c ≤ I )

And then we can conclude easily. The important point is the use of conversion rule. This

conversion allows us to "extract" the elements of Nat(b | b ≤ I ) in order to use them in the

instantiation for the ∀− L rule. Notice that without conversion, there is no instantiation J of a such

that ⊢ Nat(b | b ≤ I ) ⊑ Nat(J )

This definition of subtyping still verifies the conditions to be a preorder, as explained by the

following lemma.

Lemma 2.5 (Subtyping and Preorder). Let ϕ be an set of index variables and Φ be a set of
constraints. Let ζ , ζ ′, ζ ′′ be valid types under ϕ;Φ. Then ϕ;Φ ⊢ ζ ⊑ ζ and if ϕ;Φ ⊢ ζ ⊑ ζ ′ and
ϕ;Φ ⊢ ζ ′ ⊑ ζ ′′ then ϕ;Φ ⊢ ζ ⊑ ζ ′′.

In order to work more conveniently with subtyping in the technical parts, we combine all

conversion and rule for arrow types into one. This is described by the rules in Figure 5. We prove

that this subtyping system and the previous one are equivalent. The only interesting cases are arrow

types. First, we show how to simulate this alternative rule in the original type system. Notice that

elements can be simulated by a chain of conversion rules and ∀ − R rules, as the only difference

between conversion and elements is the fact that conversion deals with a tensor type one by one

whereas elements does everything simultaneously.

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :7

Conversion:

Nat(a | Φ) ▷ a : Φ.Nat(a)

σ ▷ a : Φ.σ ′

σ ⊗ τ ▷ a : Φ.(σ ′ ⊗ τ )

τ ▷ a : Φ.τ ′

σ ⊗ τ ▷ a : Φ.(σ ⊗ τ ′)

Conversion Rule:
σ ▷ a : Φa .σ

′ a < ϕ ϕ;Φ ⊢ τ ⊑ ∀a : Φa .σ
′ ⊸ µ

ϕ;Φ ⊢ τ ⊑ σ ⊸ µ
(Conv)

Coupling

(ϕ,a,b); (Φ,a ≤ I ,b ≤ J ) ⊢ S valid (ϕ,b); (Φ,b ≤ J ) ⊨
∑
a≤I S = Q

(ϕ,b); (Φ,a ≤ I ) ⊨
∑
b≤ J S = P (ϕ,a,b); (Φ,a ≤ I ,b ≤ J , S , 0) ⊢ σ ⊑ τ

ϕ;Φ ⊢ S ◁⊑ ⟨{P : σ | a ≤ I }&{Q : τ | b ≤ J }⟩
(Coupling)

Structural Rules:
(ϕ,a); (Φ,Φ1) ⊨ Φ2

ϕ;Φ ⊢ Nat(a | Φ1) ⊑ Nat(a | Φ2)
(Nat)

ϕ;Φ ⊢ τ ⊑ σ ϕ;Φ ⊢ µ ⊑ ν

ϕ;Φ ⊢ σ ⊸ µ ⊑ τ ⊸ ν
(⊸)

ϕ;Φ ⊢ σ1 ⊑ τ1 ϕ;Φ ⊢ σ2 ⊑ τ2

ϕ;Φ ⊢ σ1 ⊗ σ2 ⊑ τ1 ⊗ τ2
(⊗)

ϕ;Φ ⊨ Φa {I/a} ϕ;Φ ⊢ σ {I/a} ⊑ τ

ϕ;Φ ⊢ ∀a : Φa .σ ⊑ τ
(∀-L) (ϕ,a); (Φ,Φa ) ⊢ σ ⊑ τ

ϕ;Φ ⊢ σ ⊑ ∀a : ϕa .τ
(∀-R)

∃S,ϕ;Φ ⊢ S ◁⊑ ⟨µ&ν⟩

ϕ;Φ ⊢ µ ⊑ ν
(DDT)

Fig. 4. Subtyping Rules

elements(Nat(a | Φa )) = a;Φa ;Nat(a) elements(σ⊸) = ·; ·;σ⊸

elements(σ ) = ϕ;Φ;τ elements(σ ′) = ϕ ′;Φ′
;τ ′ ϕ ∩ ϕ ′ = ∅

elements(σ ⊗ σ ′) = (ϕ,ϕ ′); (Φ,Φ′); (τ ⊗ τ ′)

elements(τ ) = ϕτ ;Φτ ;τ
′

I such that (ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊨ Φa {I/a}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ τ
′ ⊑ σ {I/a}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ µ{I/a} ⊑ ν

ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀b : Φb .τ ⊸ ν

Fig. 5. Alternative Subtyping Rules

elements(τ ) = ϕτ ;Φτ ;τ
′

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ σ {I/a} ⊸ µ{I/a} ⊑ τ ′ ⊸ ν

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊨ Φa {I/a}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ ∀a : Φa .σ ⊸ µ ⊑ τ ′ ⊸ ν

(ϕ,b); (Φ,Φb ) ⊢ ∀a : Φa .σ ⊸ µ ⊑ τ ⊸ ν

ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀b : Φb .τ ⊸ ν

Now we need to prove the converse, if ϕ;Φ ⊢ σ⊸ ⊑ τ⊸ can be derived in the original subtype

system, then it can be derived in the alternative one. We prove this by induction on the original

subtype system.

, Vol. 1, No. 1, Article . Publication date: January 2019.



:8 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

•
τ ▷ b : Φb .τ

′ b < ϕ ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀b : Φb .τ
′ ⊸ ν

ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ τ ⊸ ν
(Conv)

By induction hypothesis, we have :

elements(τ ′) = (b ′,ϕτ ); (b
′ = b,Φτ );τ

′′

I such that (ϕ,b,b ′ϕτ ); (Φ,b
′ = b,Φb ,Φτ ) ⊨ Φa {I/a}

(ϕ,b,b ′,ϕτ ); (Φ,Φb ,b
′ = b,Φτ ) ⊢ τ

′′ ⊑ σ {I/a}

(ϕ,b,b ′,ϕτ ); (Φ,Φb ,b
′ = b,Φτ ) ⊢ µ{I/a} ⊑ ν

ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀b : Φb .τ
′ ⊸ ν

The form of elements(τ ′) can be explained by the previous conversion rule, this singleton

typeNat(b) in τ ′ leads to this index variable b ′ and the constraint b ′ = b. Thus, in comparison,

elements(τ ) = (b,ϕτ ); (Φb ,Φτ );τ
′′{b/b ′}. Thus, by merging this two variables b and b ′, we

can derive

elements(τ ) = (b,ϕτ ); (Φb ,Φτ );τ
′′

I such that (ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊨ Φa {I/a}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ τ
′′ ⊑ σ {I/a}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ µ{I/a} ⊑ ν

ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ τ ⊸ ν

And this concludes this case.

•
ϕ;Φ ⊢ τ ⊑ σ ϕ;Φ ⊢ µ ⊑ ν

ϕ;Φ ⊢ σ ⊸ µ ⊑ τ ⊸ ν
(⊸)

We can derive the proof

elements(τ ) = ϕτ ,Φτ ;τ
′ (ϕ,ϕτ ); (Φ,Φτ ) ⊢ τ

′ ⊑ σ (ϕ,ϕτ ); (Φ,Φτ ) ⊢ µ ⊑ ν

ϕ;Φ ⊢ σ ⊸ µ ⊑ τ ⊸ ν

The weakening lemma for subtyping can be proved directly. Also, the fact that ϕ;Φ ⊢ τ ⊑ σ
implies (ϕ;ϕτ ); (Φ,Φτ ) ⊢ τ

′ ⊑ σ can be proved directly by induction on τ and by definition

of elements. This concludes this case.
•

ϕ;Φ ⊨ Φa {I/a} ϕ;Φ ⊢ (∀a : Φa .σ ⊸ µ){I/a} ⊑ ∀b : Φb .τ ⊸ ν

ϕ;Φ ⊢ ∀a : Φa .(∀a : Φa .σ ⊸ µ) ⊑ ∀b : Φb .τ ⊸ ν
(∀-L)

By induction hypothesis, we have

elements(τ ) = ϕτ ;Φτ ;τ
′

I such that (ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊨ Φa {I/a}{I/a}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ τ
′ ⊑ σ {I/a}{I/a}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ µ{I/a}{I/a} ⊑ ν

ϕ;Φ ⊢ (∀a : Φa .σ ⊸ µ){I/a} ⊑ ∀b : Φb .τ ⊸ ν

This gives us directly

elements(τ ) = ϕτ ;Φτ ;τ
′

(I , I ) such that (ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊨ (Φa ,Φa ){(I , I )/(a,a)}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ τ
′ ⊑ σ {(I , I )/(a,a)}

(ϕ,b,ϕτ ); (Φ,Φb ,Φτ ) ⊢ µ{(I , I )/(a,a)} ⊑ ν

ϕ;Φ ⊢ ∀(a,a) : (Φa ,Φa ).σ ⊸ µ ⊑ ∀b : Φb .τ ⊸ ν

This concludes this case

•
(ϕ,b); (Φ,Φb ) ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀b : Φb .τ ⊸ ν

ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀b : Φb .(∀b : Φb .τ ⊸ ν )
(∀-R)

By induction hypothesis we have

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :9

elements(τ ) = ϕτ ;Φτ ;τ
′

I such that (ϕ,b,b,ϕτ ); (Φ,Φb ,Φb ,Φτ ) ⊨ Φa {I/a}

(ϕ,b,b,ϕτ ); (Φ,Φb ,Φb ,Φτ ) ⊢ τ
′ ⊑ σ {I/a}

(ϕ,b,b,ϕτ ); (Φ,Φb ,Φb ,Φτ ) ⊢ µ{I/a} ⊑ ν

(ϕ,b); (Φ,Φb ) ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀b : Φb .τ ⊸ ν

And we obtain directly the derivation

elements(τ ) = ϕτ ;Φτ ;τ
′

I such that (ϕ,b,b,ϕτ ); (Φ,Φb ,Φb ,Φτ ) ⊨ Φa {I/a}

(ϕ,b,b,ϕτ ); (Φ,Φb ,Φb ,Φτ ) ⊢ τ
′ ⊑ σ {I/a}

(ϕ,b,b,ϕτ ); (Φ,Φb ,Φb ,Φτ ) ⊢ µ{I/a} ⊑ ν

ϕ;Φ ⊢ ∀a : Φa .σ ⊸ µ ⊑ ∀(b,b) : (Φb ,Φb ).τ ⊸ ν

So the alternative subtyping rule is equivalent to the original one.

2.3 Typing Rules
In order to present typing rules in a clearer way, let us first give some notations on indexes.

We need a way to define the convolution, that is to say to express a distribution over DDTs as

a DDT. To give more intuition about that, we describe an example. Suppose given a term t of
type { 1

i+1 : Nat(a) | a ≤ i} for some integer i , and suppose that, for all a ≤ i and x : Nat(a),
we can give u a type { 1

a+1 : σ | b ≤ a}. Then, we would like to give let x = t in u the type

{ 1

i+1 : { 1

a+1 : σ | b ≤ a} | a ≤ i}, that is to say { 1

(i+1)(a+1) : σ | a ≤ i,b ≤ a}. However, this is not in

a valid form for a DDT: we need to express this using only one variable. In order to do that, we use

a bijection between the sets {(m,m′) | m ≤ i,m′ ≤ m} and {n | n ≤
∑
m≤i (m + 1)}, by describing

the elements of the pair in the lexicographic order (0, 0); (1, 0); (1; 1); (2, 0); . . .
We will now formalize this in the general case to express the convolution {P : µ | a ≤ I }, with

µ = {Q : σ | b ≤ J }. For this, we use the following notations:

Lemma 2.6. Let ϕ be a set of index variables and ρ : ϕ → N be a valuation. Let I be an index with
free variables in ϕ and J an index with free variables in (ϕ,a), with a < ϕ. For K with free variables in
ϕ, we define πa

1
(I , J ,K) and πa

2
(I , J ,K) such that for all ρ : ϕ → N ,

Jπa
1
(I , J ,K)Kρ = sup{m ∈ N |

∑
l<m JJ + 1Kρ[a 7→l ] ≤ JKKρ } and π

a
2
(I , J ,K) = K−

∑
a<π a

1
(I, J ,K )(J+1).

We also define the operation ⋆aI, J such that for K ,K ′ indexes with free variables in ϕ, we have
K ⋆aI, J K

′ =
∑

a<K (J + 1) + K
′. For a valuation ρ : ϕ → N, those functions are bijections between the

sets {n | n ≤
∑
m≤JIKρ JJ + 1Kρ[a 7→m]} and {(m,m′) | m ≤ JIKρ ,m

′ ≤ JJKρ[a 7→m]}

With those notation, we can then define the convolution {P : µ | a ≤ I }.

Definition 2.7 (Convolution). Let ϕ;Φ be a set of index variables and constraints on those variables.

Let a < ϕ be an index variable, I a valid index under ϕ;Φ and P a valid rational index under

(ϕ,a); (Φ,a ≤ I ) such that ϕ;Φ ⊨
∑

a≤I P = 1. Let µ = {Q : σ | b ≤ J } be a valid DDT under

(ϕ,a); (Φ,a ≤ I ). We define the convolution {P : µ | a ≤ I } as the DDT
ν = {(P ·Q){πa

1
(I , J , c)/a}{πa

2
(I , J , c)/b} : σ {πa

1
(I , J , c)/a}{πa

2
(I , J , c)/b} | c ≤

∑
a≤I (J + 1)}.

We can now describe the type system for our calculus. For this we introduce two kind of variables

contexts : linear and valuation contexts.

Definition 2.8 (Linear Contexts). A linear context Γ is a non-ordered sequence Γ = x1 : σ1, . . . xn :

σn . We usually write a context ℓΓ when all those types are Nat types. For two type contexts Γ and

∆, we denote the concatenation of those contexts by Γ,∆. This concatenation is defined if and only

if for each variable x with (x : σ ) ∈ Γ and (x : τ ) ∈ ∆, then σ = τ = Nat(a | Φ) for some Φ.

Definition 2.9 (Valuation Contexts). A valuation context Θ is either empty or a context of the

form y : {P : σ | a ≤ I }. We keep the syntactic definition of DDT but the only difference is that for

validity we do not enforce any condition on the sum of P : it can be 0 or more than 1 in particular,

, Vol. 1, No. 1, Article . Publication date: January 2019.



:10 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

thus this represents a valuation and not a distribution The intuition about y : {P : σ | a ≤ I } is that
P is the expected number of calls to y with type σ . We can then adapt definitions for DDTs such

as couplings, subtyping and convolution to a valuation context. The concatenation Θ + Ψ of two

valuation contexts Θ and Ψ is defined only if Θ = y : {P : σ | a ≤ I }, Ψ = y : {Q : σ | a ≤ I }, and
then Θ + Ψ = y : {P +Q : σ | a ≤ I }.

Typing judgments have the form ϕ;Φ; Γ | Θ ⊢R t : µ, with all types present in Γ,Θ and µ valid

under ϕ;Φ. Active terms are typed with a distribution type µ and values are typed with a linear

dependent type σ . The rational index R is called the weight. It is an indication of the expected

runtime of a term and will be used for type soundness.

The type system is given in Figure 6. The axiom rule for recursion context follows the intuition

given previously: if the expected number of call to y with type σ {J/a} is greater than 1, then y
can be given the type σ {J/a}. In the rule for the introduction of ∀, the maximum is well-defined

and finite since all universal quantification are bounded, as expressed by the definition of validity.

Another interesting rule is the one for pattern matching. The typing of the integer and the first

case is quite intuitive, but for the second one, in the set of constraints Φ′
, a is not free in Φ′

(Φ′

must be valid under (ϕ;Φ)). So, (ϕ,a); (Φ,Φa{a + 1/a}) ⊨ Φ′
express that Φ′

is a set of constraint

deduced form the fact that at least one integer different from 0 satisfies Φa . A detailed example will

be given later. Finally, in the rule for the fixpoint, the different recursive calls to y are expressed

by the valuation type {P : σ⊸{M/b} | a ≤ I }, M being a natural index. And with this description

of recursive calls, we ask for an index Q that satisfies the recurrence relation derived from those

recursive calls. This will also be explained in an example.

2.4 Example
We conclude this section with a simple example demonstrating the use of our type system. Let us

consider again the term for biased random walk:

rwalk ≜ fix rw .λn.match n with { z 7→ z | s 7→ λn′.rw (s(s(n′))) ⊕2 rw n′ } .

We show that we can give this term rwalk the following type : ⊢ rwalk : Nat(J ) ⊸ Nat(0). For the
sake of simplicity, we do not detail the weight of this proof, but we will talk briefly about it later.

We define the function Bool such that Bool(0) = 0 and Bool(n + 1) = 1. This function is very useful

to present index in a simpler form. The first important rule is the one for fixpoint.

b;⊤; · | rw : {
Bool (b)·(a+1)

3
: Nat(b + 1 − 2a) ⊸ Nat(0) | a ≤ 1} ⊢ λn . . . : Nat(b) ⊸ Nat(0)

⊢ fix rw .λn . . . : (Nat(b) ⊸ Nat(0)){J/b}

Let us describe this valuation context. When b = 0, that is to say when we are in the case rwalk 0,

this valuation context expresses that we never call rw . So it means that we stop the recursion. We

can see here a reason why we consider valuation and not distribution. Otherwise, when b , 0,

(that is to say in the case rwalk n with n > 0) this valuation context represents the distribution

rw : { 1
3
: Nat(b + 1) ⊸ Nat(0); 2

3
: Nat(b − 1) ⊸ Nat(0)}. So it expresses that with probability

1

3
,

rwalk will be called with the input n + 1 and with probability
2

3
it will be called with the input

n − 1. One can remark that in this case, the indexM used in the fixpoint describes the reachable

states from b in the Markov chain describing this random walk. From now on, let us call Θ the

valuation context rw : {
Bool (b)·(a+1)

3
: Nat(b + 1 − 2a) ⊸ Nat(0) | a ≤ 1}. We now give the typing

for the match rule:

b; (0 = b); · | Θ ⊢ z : Nat(0)

b;⊤;n : Nat(b) | · ⊢ n : Nat(a | a = b)

(b,a); (a + 1 = b) ⊨ (b ≥ 1)

b; (b ≥ 1); · | Θ ⊢ λn′ · · · : Nat(a | a + 1 = b) ⊸ Nat(0)
b;⊤;n : Nat(b) | Θ ⊢ match n with { z 7→ z | s 7→ λn′ . . . } : Nat(0)

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :11

ϕ;Φ; Γ,x : σ | Θ ⊢0 x : σ
ϕ;Φ ⊨ P{J/a} ≥ 1 ϕ;Φ ⊨ J ≤ I

ϕ;Φ; Γ | y : {P : σ | a ≤ I } ⊢0 y : σ {J/a}

ϕ;Φ ⊨ Φa {0/a}

ϕ;Φ; Γ | Θ ⊢0 z : Nat(a | Φa )

ϕ;Φ; Γ | Θ ⊢R v : Nat(a | Φa )

ϕ;Φ; Γ | Θ ⊢R s(v) : Nat(a | Φa {a − 1/a},a , 0)

ϕ;Φ; Γ | Θ ⊢1 Unif : Nat(I ) ⊸ { 1

I+1 : Nat(a) | a ≤ I }
ϕ;Φ; Γ,x : σ | Θ ⊢R t : µ

ϕ;Φ; Γ | Θ ⊢R+1 λx .t : σ ⊸ µ

ϕ;Φ; Γ | Θ ⊢R v : σ ⊸ µ ϕ;Φ;∆ | Ψ ⊢R′ w : σ

ϕ;Φ; Γ,∆ | Θ + Ψ ⊢R+R′ v w : µ

ϕ;Φ; Γ | Θ ⊢R v : σ ϕ;Φ;∆ | Ψ ⊢R′ w : τ

ϕ;Φ; Γ,∆ | Θ + Ψ ⊢R+R′ ⟨v,w⟩ : σ ⊗ τ

(ϕ,a); (Φ,Φa ); Γ | Θ ⊢R v : σ⊸

ϕ;Φ; Γ | Θ ⊢maxa:Φa (R) v : ∀a : Φa .σ⊸

ϕ;Φ; Γ | Θ ⊢R v : ∀a : Φa .σ⊸ ϕ;Φ ⊨ Φa {I/a}

ϕ;Φ; Γ | Θ ⊢R v : σ⊸{I/a}

ϕ;Φ; Γ | Θ ⊢R v : σ ⊗ τ ϕ;Φ;∆,x : σ ,y : τ | Ψ ⊢R′ t : µ

ϕ;Φ; Γ,∆ | Θ + Ψ ⊢1+R+R′ let ⟨x ,y⟩ = v in t : µ

ϕ;Φ; Γ | Θ ⊢R t : ν ϕ;Φ ⊢ (∆ | Ψ) ⊑ (Γ | Θ) ϕ;Φ ⊢ ν ⊑ µ ϕ;Φ ⊨ R ≤ R′

ϕ;Φ;∆ | Ψ ⊢R′ t : µ

ϕ; (Φ,Φa {0/a});∆ | Ψ ⊢R t : µ

ϕ;Φ; Γ | Θ ⊢R′ v : Nat(a | Φa )

(ϕ,a); (Φ,Φa {a + 1/a}) ⊨ Φ′

ϕ; (Φ,Φ′);∆ | Ψ ⊢R w : Nat(a | Φa {a + 1/a}) ⊸ µ

ϕ;Φ; Γ,∆ | Θ + Ψ ⊢1+R+R′ match v with { z 7→ t | s 7→ w } : µ

ϕ;Φ; Γ | Θ ⊢R′ t : {P : σ | a ≤ I } (ϕ,a); (Φ,a ≤ I , P , 0);∆,x : σ | y : ν ⊢R u : µ

ϕ;Φ; Γ,∆ | Θ + (y : {P : ν | a ≤ I }) ⊢
1+R′+

∑
a≤I ,P,0 P ·R let x = t in u : {P : µ | a ≤ I }

(ϕ,b);Φ ⊨ Q ≥ 1 + R +
∑
a≤I,P,0 P ·Q{M/b}

(ϕ,b);Φ; ℓΓ | y : {P : σ⊸{M/b} | a ≤ I } ⊢R v : σ⊸

ϕ;Φ; Γ, ℓΓ | Θ ⊢Q {J /b } fix y.v : σ⊸{J/b}

Fig. 6. Type System for dℓRPCF

The variable n has type Nat(b). Thus, when we know that n is a successor, in the second branch of

the match, we can prove that b ≥ 1. This is expressed by (b,a); (a + 1 = b) ⊨ (b ≥ 1). So we can use

this hypothesis (b ≥ 1) in the second branch of the match. Remark also that when b ≥ 1, the type

Nat(a | a + 1 = b) is equivalent to Nat(b − 1).

For the sake of simplicity, we now show informally how to use the probabilistic choice ⊕2. This

operator (or more precisely the let operator) allow us to "split" the valuation context according to

the probabilities of each branch of this probabilistic choice. Thus, the valuation context Θ can be

split into two valuation context Ψ1 and Ψ2 if Θ correspond to the convolution { 1
3
: Ψ1;

2

3
: Ψ2}. As Θ

represents rw : { 1
3
: Nat(b + 1) ⊸ Nat(0); 2

3
: Nat(b − 1) ⊸ Nat(0)} we can take

Ψ1 = rw : {1 : Nat(b + 1) ⊸ Nat(0)} and Ψ2 = rw : {1 : Nat(b − 1) ⊸ Nat(0)} used to type

rw (s(s(n′))) and rw n′ respectively. Formally, the intuition given above correspond to a subtyping

rule for valuation context.

Finally, for the weight of this proof, the subterm

λn.match n with { z 7→ z | s 7→ λn′.rw (s(s(n′))) ⊕2 rw n′ }

, Vol. 1, No. 1, Article . Publication date: January 2019.



:12 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

can be typed with a constant weight equals to 7. Thus, the fixpoint rule gives us the inequation

b;⊤ ⊨ Q ≥ 8 +
∑

a≤1
Bool (b)·(a+1)

3
·Q{b + 1 − 2a/b}. That is to say,

⊨ Q{0/b} ≥ 8 and b; (b ≥ 1) ⊨ Q ≥ 8 + 1

3
·Q{b + 1/b} + 2

3
·Q{b − 1/b}. This relation is thus very

close to the expression of the expected time of a random walk. A solution of this inequation is

Q = 8(3b + 1).

3 TYPE SOUNDNESS
We now show the type soundness of our calculus. For this, we show that the weight described in

the type system in Figure 6 is a bound on the expected runtime of a term. As we proved that they

are equivalent, we work with the alternative subtyping rule.

3.1 Weakening, Contraction and Index Substitution
We first present general proprieties on indexes, types and typing derivation. Especially, we show

that the use of a set of index variable ϕ and a set of constraint Φ corresponds intuitively to a

universal quantification over all variable ϕ that satisfies Φ.

Lemma 3.1 (Weakening). Let ϕ;Φ be a set of index variables and constraints. Let ϕ ′ be a set of
index variables disjoint from ϕ. Let Φ′ be a set of constraint valid under (ϕ,ϕ ′);Φ.
(1) If ϕ;Φ ⊨ A R B then (ϕ,ϕ ′); (Φ,Φ′) ⊨ A R B.
(2) If ϕ;Φ ⊢ ζ valid then (ϕ,ϕ ′);Φ,Φ′ ⊢ ζ valid.
(3) If ϕ;Φ ⊢ ζ ⊑ ξ then (ϕ,ϕ ′); (Φ,Φ′) ⊢ ζ ⊑ ξ .
(4) If ϕ;Φ; Γ | Θ ⊢R t : µ then for all ϕ ′,Φ′, Γ′ such that the concatenation Γ, Γ′ are defined,

we have (ϕ,ϕ ′); (Φ,Φ′); Γ, Γ′ | Θ ⊢R t : µ. Moreover, if Θ = ∅ then for any Θ′ we have
(ϕ,ϕ ′); (Φ,Φ′); Γ, Γ′ | Θ′ ⊢R t : µ

The first point comes from the definition of ⊨. Then, points 2,3 and 4 are proved by induction on

the definition of validity, definition of subtyping and typing derivation. All cases are direct.

Lemma 3.2 (Constraint Contraction). Let (ϕ;Φ) be a set of index variables and constraints. Let
C be a constraint on ϕ such that ϕ;Φ ⊨ C .

(1) If ϕ; (Φ,C) ⊨ A R B then ϕ;Φ ⊨ A R B.
(2) If ϕ; (Φ,C) ⊢ ζ valid then ϕ;Φ ⊢ ζ valid.
(3) If ϕ; (Φ,C) ⊢ ζ ⊑ ξ then ϕ;Φ ⊢ ζ ⊑ ξ .
(4) If ϕ; (Φ,C); Γ | Θ ⊢R t : µ then ϕ;Φ; Γ | Θ ⊢R t : µ.

Again, the first point comes from the definition of ⊨ and the other ones are proved by induction.

All cases are rather direct using the weakening lemma. This shows that set of constraints work as

expected: if a constraint does not add any information, then it can be removed. Finally, we show

that we can instantiate index variables in ϕ.

Lemma 3.3 (Index Substitution). Let (ϕ,a);Φ be a set of index variables and constraints. Let K
be a natural index with free variables in ϕ.
(1) For a valuation ρ : ϕ → N, we have for all index A with free variables in (ϕ,a),

JA{K/a}Kρ = JAKρ[a 7→JKKρ ]
. Moreover, ρ ⊨ Φ{K/a} iff ρ[a 7→ JKKρ ] ⊨ Φ.

(2) If (ϕ,a);Φ ⊨ A R B then ϕ;Φ{K/a} ⊨ (A{K/a}) R (B{K/a}).
(3) If (ϕ,a);Φ ⊢ ζ valid then ϕ;Φ{K/a} ⊢ ζ {K/a} valid.
(4) If (ϕ,a);Φ ⊢ ζ ⊑ ξ then ϕ;Φ{K/a} ⊢ ζ {K/a} ⊑ ξ {K/a}.
(5) If (ϕ,a);Φ; Γ | Θ ⊢R t : µ then ϕ;Φ{K/a}; Γ{K/a} | Θ{K/a} ⊢R {K/a } t : µ{K/a}.

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :13

The first point comes from the definition of J·Kρ . Then, the other points are proved by induction.

This is rather direct using the fact that, for all index I with free variables in (ϕ,a,b), J with free

variable in (ϕ,a) and K with free variable in ϕ, we have I {J/b}{K/a} = I {K/a}{J {K/a}/b}.

3.2 Proprieties of Values and Substitution Lemmas
We now present the usual substitution lemmas in the case of our calculus. In order to do that, we

show the rule of values in our calculus.

Lemma 3.4 (Progress). Let ϕ;Φ; · | · ⊢R t : µ. Then t is normal for→ if and only if t is a value v .

This is not surprising as it correspond exactly to the Lemma 1.1 in the simple type system. A

particular kind of values that interest us are integers values and their type. We can show that the

type Nat(a | Φa) is indeed the set of integers n such that Φa{n/a}.

Lemma 3.5 (Integers Values). Let v be a value such that ϕ;Φ; · | · ⊢R v : Nat(a | Φa), then v = n
for some integer n and ϕ;Φ ⊨ Φa{n/a}. Reciprocaly, for any n such that ϕ;Φ ⊨ Φa{n/a}, we can give
the typing ϕ;Φ; · | · ⊢0 n : Nat(a | Φa).

This is proved by induction on the typing rule for the first proposition. The second proposition

is rather direct. Then, we work on the definition of elements. Intuitively, elements describe the
elements of a type, and subtyping correspond to inclusion between types. Thus, we obtain the

following lemma:

Lemma 3.6 (Subtyping and Elements). Let σ ,τ be valid types under ϕ;Φ such that ϕ;Φ ⊢ σ ⊑ τ .
Then, we have elements(σ ) = ϕ ′

;Φσ ;σ
′ and elements(τ ) = ϕ ′

;Φτ ;τ
′ such that (ϕ,ϕ ′); (Φ,Φσ ) ⊨ Φτ

and (ϕ,ϕ ′); (Φ,Φσ ) ⊢ σ
′ ⊑ τ ′.

The fact that we can give the same set of index variable ϕ ′
for the two elements is just a matter

of renaming, as σ and τ have the same form by subtyping. We prove this by induction on σ (and τ ).
If σ is an arrow type, this is direct by definition of elements. If σ is a tensor type, this is rather

direct by induction hypothesis, by definition of subtyping for tensor and by weakening. If σ is

Nat(a | Φa) for some Φa , then this is exactly the definition of subtyping of integers. We can now

show the link between elements and typed values.

Lemma 3.7 (values and Elements). Let v be a value such that ϕ;Φ; · | · ⊢R v : σ . Suppose
that elements(σ ) = a;Φa ;τ . Then there exists an instantiation I of a valid under ϕ;Φ such that
ϕ;Φ ⊨ Φa{I/a} and ϕ;Φ; · | · ⊢R v : τ {I/a}.

We prove this by induction on the type σ . If σ is an arrow type then this is direct by definition

of elements. Let us detail the two other cases.

• Nat: If σ = Nat(a | Φa). By definition, elements(σ ) = a;Φa ;Nat(a). By Lemma 3.5, v = n for

some integer n and ϕ;Φ ⊨ Φa{n/a}. Thus, we can take n for instantiation of a and again by

Lemma 3.5, as ϕ;Φ ⊨ (a′ = n){n/a′}, we can give the typing ϕ;Φ; · | · ⊢0 n : Nat(a){n/a}.
This concludes the case.

• Tensor: If σ = σ0 ⊗ σ1, then the typing ϕ;Φ; · | · ⊢R v : σ0 ⊗ σ1 can be given a particular form.

Indeed, by reflexivity and transitivity of subtyping, any chain of subtyping rule is equivalent

to exactly one subtyping rule. As σ is not an arrow type, subtyping is the only possible non

syntax-directed rule, and the only way to give a value a tensor type is if this value is a tensor

of value and by using a tensor introduction rule. Thus, we have the typing

ϕ;Φ; · | · ⊢R0
v0 : τ0 ϕ;Φ; · | · ⊢R1

v1 : τ1

ϕ;Φ; · | · ⊢R0+R1
⟨v0,v1⟩ : τ0 ⊗ τ1

ϕ;Φ ⊨ R0 + R1 ≤ R

ϕ;Φ ⊢ τ0 ⊗ τ1 ⊑ σ0 ⊗ σ1

ϕ;Φ; · | · ⊢R v = ⟨v0,v1⟩ : σ0 ⊗ σ1

, Vol. 1, No. 1, Article . Publication date: January 2019.



:14 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

Let us pose elements(τ0) = a0;Φ0;τ
′
0
and elements(τ1) = a1;Φ1;τ

′
1
. By induction hypothesis,

there exists instantiations I 0 of a0 and I 1 of a1 such that ϕ;Φ ⊨ Φ0{I 0/a0} and

ϕ;Φ ⊨ Φ1{I 1/a1} and ϕ;Φ; · | · ⊢R0
v0 : τ ′

0
{I 0/a0} and ϕ;Φ; · | · ⊢R1

v1 : τ ′
1
{I 1/a1}. By

Lemma 3.6, we have elements(σ0⊗σ1) = (a0,a1);Φσ ;σ
′
such that (ϕ,a0,a1); (Φ,Φ0,Φ1) ⊨ Φσ

and (ϕ,a0,a1); (Φ,Φ0,Φ1) ⊢ τ ′
0
⊗ τ ′

1
⊑ σ ′

. Thus, by Lemma 3.3 and Lemma 3.2, we obtain

ϕ;Φ ⊨ Φσ {I 0, I 1/a0,a1} and ϕ;Φ ⊢ (τ ′
0
⊗ τ ′

1
){I 0, I 1/a0,a1} ⊑ σ ′{I 0, I 1/a0,a1}. By subtyping,

from the proof ϕ;Φ; · | · ⊢R0+R1
⟨v0,v1⟩ : (τ

′
0
⊗ τ ′

1
){I 0, I 1/a0,a1} we can obtain the proof

ϕ;Φ; · | · ⊢R ⟨v0,v1⟩ : σ
′{I 0, I 1/a0,a1}, and this concludes the case.

We can now present the substitution lemmas for our calculus. In our reduction rules, the only

terms that are used in a substitution are values, thus we can restrict substitution lemmas to values.

There are two kind of substitution in this calculus. First, a standard substitution corresponding to

non-monadic types.

Lemma 3.8 (Substitution Lemma for Linear Contexts). Suppose that we have a proof
ϕ;Φ; Γ,x : σ | Θ ⊢R t : µ and a proof ϕ;Φ; · | · ⊢R′ v : σ then we can derive the proof
ϕ;Φ; Γ | Θ ⊢R+R′ t[x := v] : µ

The lemma is essentially a consequence of linearity of the type system. In order to prove this

we distinguish two cases. If σ = Nat(a | Φa) for some Φa , then x is duplicable. However, by the

previous lemma, v = n for some n ∈ N. So we have a proof ϕ;Φ; · | · ⊢0 v : Nat(a | Φa). This weight

equals to 0 implies that we have ϕ;Φ; Γ | Θ ⊢R t[x := v] : µ. Otherwise, x : σ appears in only one

context in a concatenation Γ,∆ and we can use the induction hypothesis on the branches where x
appears.

The other substitution is the one for valuation contexts, in which variable are give a dynamic

valuation type. For this let us first give a notation for indexes that we will use in the proof.

Definition 3.9 (Extract). Let ϕ be a set of index variables, a < ϕ, and I an index with free variables

in ϕ and J an index with free variable in (ϕ,a). We define ext(a, I , J ) as an index with free variables

in ϕ such that ϕ;
∑

a≤I J , 0 ⊨ (ext(a, I , J ) ≤ I ) ∧ (J {ext(a, I , J )/a} , 0) and

(ϕ,a); (a ≤ I , J = 0) ⊨ ext(a, I , J ) = 0. Intuitively, for ρ : ϕ → N, when J
∑

a≤I JKρ is non-null, then

Jext(a, I , J )Kρ is an integer n smaller than JIKρ such that JJKρ[a 7→n] is non-null. Note that with this

definition, there is not a unique choice for Jext(a, I , J )Kρ , but when we do not say otherwise, we

just take the smaller integer verifying those conditions.

Lemma 3.10 (Substitution Lemma for Valuation Contexts). Suppose that
ϕ;Φ; Γ | y : {P : σ | a ≤ I } ⊢R′ t : µ and (ϕ,a); (Φ,a ≤ I , P , 0); · | · ⊢R v : σ . Then
ϕ;Φ; Γ | · ⊢R′+

∑
a≤I ,P,0 P ·R t[y := v] : µ.

Proof.We prove this by induction on the typing of t . We detail some non-trivial cases.

• Axiom: Suppose we have the typing :

ϕ;Φ ⊨ P{J/a} ≥ 1 ϕ;Φ ⊨ J ≤ I

ϕ;Φ; Γ | y : {P : σ | a ≤ I } ⊢0 y : σ {J/a}

And suppose (ϕ,a); (Φ,a ≤ I , P , 0); · | · ⊢R v : σ . By Lemma 3.3, we obtain

ϕ; (Φ, J ≤ I , P{J/a} , 0); · | · ⊢R {J /a } v : σ {J/a}. As ϕ;Φ ⊨ J ≤ I and ϕ;Φ ⊨ P{J/a} ≥ 1, by

Lemma 3.2, we obtain ϕ;Φ; · | · ⊢R {J /a } v : σ {J/a}. By weakening, we obtain

ϕ;Φ; Γ | · ⊢R {J /a } y[y := v] : σ {J/a}. As ϕ;Φ ⊨ 1 ≤ P{J/a} and ϕ;Φ ⊨ J ≤ I , we have
ϕ;Φ ⊨ R{J/a} ≤ (P · R){J/a} ≤

∑
a≤I,P,0 P · R and we can conclude this case by subtyping.

• Application: Suppose we have the typing :

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :15

ϕ;Φ; Γ | y : {P : σ | a ≤ I } ⊢R0
w0 : σ ⊸ µ ϕ;Φ;∆ | y : {Q : σ | a ≤ I } ⊢R1

w1 : σ

ϕ;Φ; Γ,∆ | y : {(P +Q) : σ | a ≤ I } ⊢R0+R1
w0 w1 : µ

And suppose (ϕ,a); (Φ,a ≤ I , P +Q , 0); · | · ⊢R v : σ . By weakening, we obtain

(ϕ,a); (Φ,a ≤ I , P +Q , 0, P , 0); · | · ⊢R v : σ , and then by contraction, we obtain

(ϕ,a); (Φ,a ≤ I , P , 0); · | · ⊢R v : σ . By induction hypothesis, we have

ϕ;Φ; Γ | · ⊢R0+
∑
a≤I ,P,0 P ·R w0[y := v] : σ ⊸ µ. In the same way, we obtain

ϕ;Φ;∆ | · ⊢R1+
∑
a≤I ,Q,0 Q ·R w1[y := v] : σ . Thus, by using the application rule, we obtain

ϕ;Φ; Γ,∆ | · ⊢R0+R1+
∑
a≤I , (P+Q ),0(P+Q )·R (w0 w1)[y := v] : µ. The same method can be used for

any rule that uses this concatenation Θ + Ψ such as tensor introduction, tensor elimination

and pattern matching.

• Subtyping : Suppose we have the following derivation tree :

ϕ;Φ;∆ | y : {Q : τ | b ≤ J } ⊢R0
t : ν

ϕ;Φ ⊢ ν ⊑ µ, Γ ⊑ ∆ ϕ;Φ ⊨ R0 ≤ R1

ϕ;Φ ⊢ {P : σ | a ≤ I } ⊑ {Q : τ | b ≤ J }

ϕ;Φ; Γ | y : {P : σ | a ≤ I } ⊢R′ t : µ

And we have (ϕ,a); (Φ,a ≤ I , P , 0); · | · ⊢R v : σ . By definition of subtyping, there exists a

rational index S such that ϕ;Φ ⊢ S ◁⊑ ⟨{P : σ | a ≤ I }&{Q : τ | b ≤ J }⟩. By weakening, we

obtain the proof (ϕ,a,b); (Φ,a ≤ I , P , 0,b ≤ J ,Q , 0, S , 0); · | · ⊢R v : σ . By subtyping, we

have (ϕ,a,b); (Φ,a ≤ I , P , 0,b ≤ J ,Q , 0, S , 0); · | · ⊢R v : τ . Let us call H = ext(a, I , S),
with H chosen such that R{H/a} is minimal. By lemma 3.3, we obtain :

(ϕ,b); (Φ,H ≤ I , P{H/a} , 0,b ≤ J ,Q , 0, S{H/a} , 0); · | · ⊢R {H/a } v : τ . Moreover, by

definition we have (ϕ,b); (Q , 0) ⊨ (H ≤ I ) ∧ (S{H/a} , 0).

As (ϕ,a,b); (Φ,a ≤ I ,b ≤ J , S , 0) ⊨ P , 0, we also have

(ϕ,b); (Φ,H ≤ I ,b ≤ J , S{H/a} , 0) ⊨ P{H/a} , 0. Thus, by contraction, we obtain :

(ϕ,b); (Φ,b ≤ J ,Q , 0); · | · ⊢R {H/a } v : τ . Moreover,

(ϕ,b); (Φ,b ≤ J ,Q , 0) ⊨ R{H/a} ≤
∑

a≤I,P,0
S ·R
Q since (Φ,b); (Φ,b ≤ J ) ⊨ Q =

∑
a≤I S

and by definition of H , (ϕ,b,a); (Φ,b ≤ J ,Q , 0,a ≤ I , S , 0) ⊨ R{H/a} ≤ R. Thus,
we have (ϕ,b,a); (Φ,b ≤ J ,Q , 0,a ≤ I ) ⊨ S · R{H/a} ≤ S · R. So, in conclusion, we

obtain (ϕ,b); (Φ,b ≤ J ,Q , 0); · | · ⊢∑
a≤I ,P,0

S ·R
Q

v : τ . By induction hypothesis, we obtain

ϕ;Φ;∆ | · ⊢R0+
∑
b≤ J ,a≤I ,P,0,Q,0 S ·R t[y := v] : ν . Furthermore, we have ϕ;Φ ⊨ R0 ≤ R1

and ϕ;Φ ⊨
∑
b≤ J ,a≤I,Q,0,P,0 S · R =

∑
a≤I,P,0 P · R. So with a subtyping rule, we obtain

ϕ;Φ; Γ | · ⊢R1+
∑
a≤I ,P,0 P ·R t[y := v] : µ, and this concludes this case.

• Let : Suppose we have the typing

ϕ;Φ; Γ | Θ ⊢S ′ t : {P : τ | a ≤ I } (ϕ,a); (Φ,a ≤ I , P , 0);∆,x : τ | y : ν ⊢S u : µ

ϕ;Φ; Γ,∆ | Θ + (y : {P : ν | a ≤ I }) ⊢
1+S ′+

∑
a≤I ,P,0 P ·S let x = t in u : {P : µ | a ≤ I }

We consider Θ = ∅. Let us note ν = {Q : σ | b ≤ J }. By definition of convolution, suppose

given a proof (ϕ, c); (Φ, c ≤
∑

a≤I (J + 1), (P ·Q){πa
1
(I , J , c)/a}{πa

2
(I , J , c)/b} , 0); · | · ⊢R v :

σ {πa
1
(I , J , c)/a}{πa

2
(I , J , c)/b}. By weakening and substitution we obtain

(ϕ,a′,b ′); (Φ,a′ ⋆aI, J b
′ ≤

∑
a≤I (J + 1),a′ ≤ I ,b ′ ≤ J {a′/a}, (P · Q){a′/a}{b ′/b} , 0); · |

· ⊢R {a′⋆aI , J b
′/c } v : σ {a′/a}{b ′/b}. Let us call J ′ = J {a′/a}. By renaming and contraction:

(ϕ,a,b); (Φ,a ≤ I ,b ≤ J , P , 0,Q , 0); · | · ⊢R {a⋆a′I , J ′b/c }
v : σ . By induction hypothesis, we

obtain (ϕ,a); (Φ,a ≤ I , P , 0);∆,x : τ | · ⊢S+
∑
b≤ J ,Q,0 Q ·R {a⋆a′I , J ′b/c }

u[y := v] : µ. Then, using

the rule for let, we obtain the proof

ϕ;Φ; Γ,∆ | · ⊢
1+S ′+

∑
a≤I ,P,0 P (S+

∑
b≤ J ,Q,0 Q ·R {a⋆a′I , J ′b/c })

(let x = t inu)[y := v] : {P : µ | a ≤ I }.

Furthermore,

, Vol. 1, No. 1, Article . Publication date: January 2019.



:16 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

ϕ;Φ ⊨
∑

a≤I,(P ·Q ),0,b≤ J P ·Q · R{a⋆a
′

I, J ′ b/c} =
∑
c≤

∑
a≤I (J+1),(P ·Q ){π a

1
(I, J ,c)/a }{π a

2
(I, J ,c)/b },0 R ·

(P ·Q){πa
1
(I , J , c)/a}{πa

2
(I , J , c)/b}, and this concludes the proof for this case. The case Θ , ∅

is similar.

3.3 Generation Lemma and Subject Reduction
Now, in order to give the subject reduction, we first need to consider the difficult case of values with

an arrow type. Indeed, with the rule for introduction and elimination of quantification, a typing

derivation for a value with an arrow type is not always a subtyping rule below a syntax-directed

rule, such as the λ-abstraction rule, the fixpoint rule or the rule for Unif. Trying to explain what

this possible chain of subtyping, introduction of quantification and elimination of quantification

does is the goal of the following generation lemma.

Lemma 3.11 (Generation Lemma). Suppose given a proof
π

ϕ;Φ; · | · ⊢R v : σ ⊸ µ ϕ;Φ; · | · ⊢R′ w : σ

ϕ;Φ; · | · ⊢R+R′ v w : µ

Then in the canonical representation of π , that is to say π in which before each non-subtyping rule
we have exactly one subtyping rule, for any (ϕ,b); (Φ,Φb ); · | · ⊢R0

v : ∀a : Φa .σ0 ⊸ µ0, there exists
an instantiation Ib , Ia of b,a valid under ϕ;Φ such that ϕ;Φ ⊨ Φb {Ib/b}, ϕ;Φ ⊨ Φa{Ib , Ia/b,a},
ϕ;Φ ⊢ µ0{Ia , Ib/a,b} ⊑ µ and we have a proof ϕ;Φ; · | · ⊢R′ w : σ0{Ia , Ib/a,b}. Furthermore,
ϕ;Φ ⊨ R0{Ib/b} ≤ R.

Proof. We prove this lemma by induction, from bottom to top, on the canonical representation of

π . We first show that any subproof in the canonical representation of π before the syntax-directed

rule has indeed the form (ϕ,ϕ ′); (Φ,Φ′); · | · ⊢R0
v : σ⊸ for some ϕ ′,Φ′,σ⊸. Let us ignore the index

R0 for this first proposition as it does not matter here.

• Base case : The base case, as the induction goes from bottom to top, is ϕ;Φ; · | · ⊢ v : σ ⊸ µ
given in the previous typing. This has indeed to good form.

• Elimination of quantification. Let suppose that the bottom proof has indeed the form

(ϕ,ϕ ′); (Φ,Φ′); · | · ⊢R0
v : σ⊸. Thus we have the typing:

(ϕ,ϕ ′); (Φ,Φ′); · | · ⊢ v : ∀a : Φa .τ⊸ (ϕ,ϕ ′); (Φ,Φ′) ⊨ Φa {I/a}

(ϕ,ϕ ′); (Φ,Φ′); · | · ⊢ v : τ⊸{I/a} (ϕ,ϕ ′); (Φ,Φ′) ⊢ τ⊸{I/a} ⊑ σ⊸

(ϕ,ϕ ′); (Φ,Φ′); · | · ⊢ v : σ⊸

So we have indeed only typing with the form (ϕ,ϕ ′); (Φ,Φ′); · | · ⊢ v : σ⊸ for someϕ ′,Φ′,σ⊸.

• Other cases : Introduction of quantification works in the same way: it only add new variables

and constraints so it does not contradict the form (ϕ,ϕ ′); (Φ,Φ′); · | · ⊢v : σ⊸. The other

cases are the syntax directed-rule. Note that for value with arrow types, there is exactly 3

possibilities : λ- abstraction, fixpoint and Unif, and again those this does not contradict the

form given in the theorem.

Now that we know exactly the shape of those proofs. We can prove the proposition.

• Base case : The base case is direct, for ϕ;Φ; · | · ⊢R v : σ ⊸ µ, a = b = ∅ thus the instantiation

is the null instantiation, and we have indeed ϕ;Φ ⊢ µ ⊑ µ and a proof ϕ,Φ; · | · ⊢R′ w : σ .
Furthermore, ϕ,Φ ⊨ R ≤ R.

• Elimination of quantification : Suppose we have the typing

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :17

(ϕ,b); (Φ,Φb ); · | · ⊢R0
v : ∀c0 : Φ0.(∀c : Φc .τ0 ⊸ ν0) (ϕ,b); (Φ,Φb ) ⊨ Φ0{I/c0}

(ϕ,b); (Φ,Φb ); · | · ⊢R0
v : (∀c : Φc .τ0 ⊸ ν0){I/c0}

(ϕ,b); (Φ,Φb ) ⊢ (∀c : Φc .τ0 ⊸ ν0){I/c0} ⊑ ∀a : Φa .σ0 ⊸ µ0

(ϕ,b); (Φ,Φb ); · | · ⊢R1
v : ∀a : Φa .σ0 ⊸ µ0

With (ϕ,b); (Φ,Φb ) ⊨ R0 ≤ R1. By induction hypothesis, there exists an instantiation Ib , Ia of

b,a such that ϕ;Φ ⊨ Φb {Ib/b}, ϕ;Φ ⊨ Φa{Ia , Ib/a,b}, ϕ;Φ ⊢ µ0{Ia , Ib/a,b} ⊑ µ and we have

a proof ϕ;Φ; · | · ⊢R′ w : σ0{Ia , Ib/a,b}. Furthermore, ϕ;Φ ⊨ R1{Ib/b} ≤ R. By definition of

subtyping, if we denote elements(σ0) = d ;Φd ,σ1, then there exists I c such that

(ϕ,b,a,d); (Φ,Φb ,Φa ,Φd ) ⊨ Φc {I/c0}{I c/c}

(ϕ,b,a,d); (Φ,Φb ,Φa ,Φd ) ⊢ σ1 ⊑ τ0{I/c0}{I c/c}

(ϕ,b,a,d); (Φ,Φb ,Φa ,Φd ) ⊢ ν0{I/c0}{I c/c} ⊑ µ0
Thus, by index substitution, contraction, and definition of elements, we have

elements(σ0{Ia , Ib/a,b}) = d ;Φd {Ia , Ib/a,b};σ1{Ia , Ib/a,b}

(ϕ,d); (Φ,Φd ) ⊨ Φc {Ib/b}{I {Ib/b}/c0}{I c {Ia , Ib/a,b}/c}

(ϕ,d); (Φ,Φd ) ⊢ σ1{Ia , Ib/a,b} ⊑ τ0{Ib/b}{I {Ib/b}/c0}{I c {Ia , Ib/a,b}/c}

(ϕ,d); (Φ,Φd ) ⊢ ν0{Ib/b}{I {Ib/b}/c0}{I c {Ia , Ib/a,b}/c} ⊑ µ0{Ia , Ib/a,b}

By Lemma 3.7, there exists an instantiation Id of d such that ϕ;Φ ⊨ Φd {Ia , Ib/a,b}{Id/d} and

we have a proof ϕ;Φ; · | · ⊢R′ w : σ1{Ia , Ib/a,b}{Id/d}. Let us give the following notation

J c = I c {Ia , Ib , Id/a,b,d} and J = I {Ib/b}. Again by index substitution and contraction :

ϕ;Φ ⊨ Φ0{Ib/b}{J/c0}

ϕ;Φ ⊨ Φc {Ib/b}{J/c0}{J c/c}

ϕ;Φ ⊢ σ1{Ia , Ib/a,b}{Id/d} ⊑ τ0{Ib/b}{J/c0}{J c/c}

ϕ;Φ ⊢ ν0{Ib/b}{J/c0}{J c/c} ⊑ µ0{Ia , Ib/a,b} ⊑ µ

So, the instantiation of b, c0, c is given by Ib , J , J c , then ϕ;Φ ⊢ ν0{Ib/b}{J/c0}{J c/c} ⊑ µ is

given by transitivity of subtyping, and the proof ϕ;Φ; · | · ⊢R′ w : τ0{Ib/b}{J/c0}{J c/c} is

given by subtyping. Finally, ϕ,Φ ⊨ R0{Ib/b} ≤ R by index substitution and transitivity of ≤.

This concludes this case.

• Introduction of quantification : Suppose we have the typing

(ϕ,b, c0); (Φ,Φb ,Φ0); · | · ⊢R0
v : ∀c : Φc .τ0 ⊸ ν0

(ϕ,b); (Φ,Φb ); · | · ⊢maxc
0
:Φ
0
(R0) v : ∀c0 : Φ0.(∀c : Φc .τ0 ⊸ ν0)

(ϕ,b); (Φ,Φb ) ⊢ ∀c0 : Φ0.(∀c : Φc .τ0 ⊸ ν0) ⊑ ∀a : Φa .σ0 ⊸ µ0

(ϕ,b); (Φ,Φb ); · | · ⊢R1
v : ∀a : Φa .σ0 ⊸ µ0

With (ϕ,b); (Φ,Φb ) ⊨maxc0:Φ0
(R0) ≤ R1. By induction hypothesis, there exists an instantia-

tion Ib , Ia of b,a such that ϕ;Φ ⊨ Φb {Ib/b}, ϕ;Φ ⊨ Φa{Ia , Ib/a,b}, ϕ;Φ ⊢ µ0{Ia , Ib/a,b} ⊑ µ

and we have a proof ϕ;Φ; · | · ⊢R′ w : σ0{Ia , Ib/a,b}. Furthermore, ϕ;Φ ⊨ R1{Ib/b} ≤ R. By

definition of subtyping, if we denote elements(σ0) = d ;Φd ,σ1, then there exists I , I c such
that

(ϕ,b,a,d); (Φ,Φb ,Φa ,Φd ) ⊨ Φ0{I/c0}

(ϕ,b,a,d); (Φ,Φb ,Φa ,Φd ) ⊨ Φc {I/c0}{I c/c}

(ϕ,b,a,d); (Φ,Φb ,Φa ,Φd ) ⊢ σ1 ⊑ τ0{I/c0}{I c/c}

(ϕ,b,a,d); (Φ,Φb ,Φa ,Φd ) ⊢ ν0{I/c0}{I c/c} ⊑ µ0
As previously, by Lemma 3.7,there exists an instantiation Id ofd such thatϕ;Φ ⊨ Φd {Ia , Ib/a,b}{Id/d}

, Vol. 1, No. 1, Article . Publication date: January 2019.



:18 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

and we have a proof ϕ;Φ; · | · ⊢R′ w : σ1{Ia , Ib/a,b}{Id/d}. Let us give the following notation

J c = I c {Ia , Ib , Id/a,b,d} and J = I {Ia , Ib , Id/a,b,d}. We obtain :

ϕ;Φ ⊨ Φ0{Ib/b}{J/c0}

ϕ;Φ ⊨ Φc {Ib/b}{J/c0}{J c/c}

ϕ;Φ ⊢ σ1{Ia , Ib/a,b}{Id/d} ⊑ τ0{Ib/b}{J/c0}{J c/c}

ϕ;Φ ⊢ ν0{Ib/b}{J/c0}{J c/c} ⊑ µ0{Ia , Ib/a,b} ⊑ µ
And we can concludes in the same way as the previous case. The only difference, is for the

weight. We have (ϕ,b); (Φ,Φb ) ⊨maxc0:Φ0
(R0) ≤ R1, and so, we have

ϕ;Φ ⊨maxc0:Φ0 {Ib /b }
(R0{Ib/b}) ≤ R1{Ib/b} ≤ R And by definition of maximum, we obtain

ϕ;Φ ⊨ R0{Ib/b}{J/c0} ≤ maxc0:Φ0 {Ib /b }
(R0{Ib/b}) ≤ R1{Ib/b} ≤ R, and this concludes this

case.

• Other cases : The other cases are for the syntax-directed rule, for example λ-abstraction. In
this case, the typing would be :

(ϕ,b); (Φ,Φb );x : τ0 | · ⊢R0
t : ν0

(ϕ,b); (Φ,Φb ); · | · ⊢R0+1 λx .t : τ0 ⊸ ν0 (ϕ,b); (Φ,Φb ) ⊢ τ0 ⊸ ν0 ⊑ ∀a : Φa .σ0 ⊸ µ0

(ϕ,b); (Φ,Φb ); · | · ⊢R1
v : ∀a : Φa .σ0 ⊸ µ0

And so we only need to prove our propriety for the subtyping rule. And this works in the

same way as the previous cases, in which we considered subtyping and another rule. This is

the same idea for all other syntax-directed rule.

This concludes the proof for the generation lemma. We can now give the main theorem of subject

reduction.

Theorem 3.12 (Subject Reduction). If ϕ;Φ; · | · ⊢R t : {P : σ | a ≤ I } and t → {pi : ti | i ∈ I}

(with pi > 0 for all i), then for all i ∈ I, there exists valid rational indexes Pi and Ri such that
ϕ;Φ; · | · ⊢Ri ti : µi with ϕ;Φ ⊢ µi ⊑ {Pi : σ | a ≤ I } and (ϕ,a); (Φ,a ≤ I ) ⊨ P =

∑
i ∈I pi · Pi and

ϕ;Φ ⊨ R ≥ 1 +
∑

i ∈I pi · Ri .

Proof.We prove this by induction on the reduction t → {pi : ti | i ∈ I}. First, we show that it

is sufficient to prove the subject reduction for a typing derivation for t that does not start with
a subtyping rule. Indeed, suppose the subject reduction proved for such typing derivations, and

suppose ϕ;Φ; · | · ⊢R t : {P : σ | a ≤ I } with t → {pi : ti | i ∈ I}. Suppose the typing derivation

has the form:

ϕ;Φ ⊢ R′ ≤ R

ϕ;Φ; · | · ⊢R′ t : {P ′ : σ ′ | a′ ≤ I ′} ϕ;Φ ⊢ {P ′ : σ ′ | a′ ≤ I ′} ⊑ {P : σ | a ≤ I }

ϕ;Φ; · | · ⊢R t : {P : σ | a ≤ I }

By subject reduction, we have for all i ∈ I, ϕ;Φ; · | · ⊢R′
i
t : µ with ϕ;Φ ⊢ µ ⊑ {P ′

i : σ
′ | a′ ≤ I ′}

and (ϕ,a′); (Φ,a′ ≤ I ′) ⊨ P ′ =
∑

i ∈I pi ·P
′
i and ϕ;Φ ⊨ R′ ≥ 1+

∑
i ∈I pi ·R

′
i . Let us call S the rational

index in the coupling given in the proof. We define the rational index Si by

Si = i f (P
′ = 0) then 0 else

S ·P ′
i

P ′ and we define Pi =
∑

a′≤I ′ Si . We have then easily

ϕ;Φ ⊢ Si ◁⊑ ⟨{P ′
i : σ

′ | a′ ≤ I ′}&{Pi : σ | a ≤ I }⟩. Thus,
ϕ;Φ ⊢ µ ⊑ {P ′

i : σ
′ | a′ ≤ I ′} ⊑ {Pi : σ | a ≤ I }. Moreover

(ϕ,a); (Φ,a ≤ I ) ⊨
∑

i ∈I pi ·Pi = P using the fact that (ϕ,a,a′); (Φ,a ≤ I ,a′ ≤ I ′) ⊨
∑

i ∈I pi ·Si = S .
Moreover, ϕ;Φ ⊨ R ≥ R′ ≥ 1 +

∑
i ∈I pi · R

′
i . This concludes the subject reduction in the case of a

subtyping rule. Thus, in the typing ϕ;Φ; · | · ⊢R t : {P : σ | a ≤ I }, we can now suppose that the

first rule is not a subtyping rule.

• Beta reduction : If the term is (λx .t) v , then we have the typing :

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :19

π
ϕ;Φ; · | · ⊢R λx .t : σ ⊸ µ ϕ;Φ; · | · ⊢R′ v : σ

ϕ;Φ; · | · ⊢R+R′ (λx .t) v : µ

Then, by lemma 3.11, for this subproof in π :

(ϕ,b); (Φ,Φb );x : σ0 | · ⊢R0
t : µ0

(ϕ,b); (Φ,Φb ); · | · ⊢R0+1 λx .t : σ0 ⊸ µ0

There exists an instantiation Ib of b such that ϕ;Φ ⊨ Φb {Ib/b} and ϕ;Φ ⊢ µ0{Ib/b} ⊑ µ

and we have a proof ϕ;Φ; · | · ⊢R′ v : σ0{Ib/b}. Furthermore, ϕ;Φ ⊨ (R0 + 1){Ib/b} ≤ R.

By Lemma 3.3 and 3.2, we have a proof ϕ;Φ;x : σ0{Ib/b} | · ⊢R0 {Ib /b }
t : µ0{Ib/b}. Then,

by Lemma 3.8, we obtain a proof ϕ;Φ; · | · ⊢R′+R0 {Ib /b }
t[x := v] : µ0{Ib/b}.And we have

ϕ;Φ ⊨ R + R′ ≥ 1 + R′ + R0{Ib/b}. This concludes this case.
• Tensor : The case for tensor is another application of Lemma 3.8.

• Unif : If the term is Unif n, then we have the typing :

π
ϕ;Φ; · | · ⊢R Unif : σ ⊸ µ ϕ;Φ; · | · ⊢R′ n : σ

ϕ;Φ; · | · ⊢R+R′ Unif n : µ = {Q : τ | b ≤ J }

So, by lemma 3.11, for this subproof in π :

(ϕ,b); (Φ,Φb ); · | · ⊢1 Unif : Nat(I ) ⊸ { 1

I+1 : Nat(a) | a ≤ I }

There exists an instantiation Ib of b such that ϕ;Φ ⊨ Φb {Ib/b} and

ϕ;Φ ⊢ { 1

I {Ib /b }+1
: Nat(a) | a ≤ I {Ib/b}} ⊑ µ and we have a proof

ϕ;Φ; · | · ⊢R′ n : Nat(I {Ib/b}). Furthermore, ϕ;Φ ⊨ 1 ≤ R. By Lemma 3.5, we obtain

ϕ;Φ ⊨ n = I {Ib/b}. We can then take the simpler hypothesis:

ϕ;Φ ⊢ { 1

n+1 : Nat(a) | a ≤ n} ⊑ µ. Recall that the reduction gives us

Unif n → { 1

n+1 : m | m ≤ n}. Letm be an integer such thatm ≤ n. We have the typing

ϕ;Φ; · | · ⊢0 m : Nat(m). Let us call S the rational index such that

ϕ;Φ ⊢ S ◁⊑ ⟨{ 1

n+1 : Nat(a) | a ≤ n}&{Q : τ | b ≤ J }⟩. We define the rational index

Sm = S{m/a} · (n + 1). By index substitution and contraction (for a) and weakening (for c),

we obtain that Sm is valid under (ϕ,b, c); (Φ,b ≤ J , c ≤ 0).

Let us define Qm = Sm . We have that Qm is valid under (ϕ,b); (Φ,b ≤ J ). Moreover,

(ϕ,b); (Φ,b ≤ J ) ⊨
∑
c≤0 Sm = Qm . We have also, using the coupling S ,

(ϕ, c); (Φ, c ≤ 0) ⊨
∑
b≤ J S{m/a} · (n + 1) = 1. Moreover,

(ϕ,b, c); (Φ,b ≤ J , c ≤ 0, S{m/a} , 0) ⊢ Nat(m) ⊑ τ . Finally, all this gives us
ϕ;Φ ⊢ {1 : Nat(m) | c ≤ 0} ⊑ {Qm : τ | b ≤ J }. And we have

(ϕ,b); (Φ,b ≤ J ) ⊨
∑
m≤n

Qm
n+1 =

∑
m≤n S{m/a} =

∑
a≤n S = Q . We have also directly

ϕ;Φ ⊢ R + R′ ≥ 1. This concludes the proof for this case.

• Let value: If the term is let x = v in t , we have the typing:

ϕ;Φ; · | · ⊢R′ v : {1 : σ | c ≤ 0} (ϕ, c); (Φ, c ≤ 0, 1 , 0);x : σ | · ⊢R t : µ

ϕ;Φ; · | · ⊢
1+R′+R {1/c } let x = v in t : µ{1/c}

By index substitution and contraction, we have a proof ϕ;Φ;x : σ | · ⊢R {1/c } t : µ{1/c} and
ϕ;Φ; · | · ⊢R′ v : σ . By lemma 3.8, we have ϕ;Φ; · | · ⊢R′+R {1/c } t[x := v] : µ{1/c}. And this

concludes the case.

• Let active term: Suppose the term is let x = t in u, with t an active term such that

t → {pi : ti | i ∈ I}, so let x = t in u → {pi : let x = ti in u | i ∈ I}. We have the typing

, Vol. 1, No. 1, Article . Publication date: January 2019.



:20 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

ϕ;Φ; · | · ⊢R′ t : {P : σ | a ≤ I } (ϕ,a); (Φ,a ≤ I , P , 0);x : σ | · ⊢R u : µ

ϕ;Φ; · | · ⊢
1+R′+

∑
a≤I ,P,0 P ·R let x = t in u : {P : µ | a ≤ I }

And by induction hypothesis, for all i ∈ I we have a proof ϕ;Φ; · | · ⊢R′
i
ti : νi with

ϕ;Φ ⊢ νi ⊑ {Pi : σ | a ≤ I } and (ϕ,a); (Φ,a ≤ I ) ⊨
∑

i ∈I pi · Pi = P and

ϕ;Φ ⊨ 1 +
∑

i ∈I pi · R
′
i ≤ R′

. Note that the first equality show that

(ϕ,a); (Φ,a ≤ I , Pi , 0) ⊨ P , 0. With this, using weakening and contraction, we obtain the

proof (ϕ,a); (Φ,a ≤ I , Pi , 0);x : σ | · ⊢R u : µ. Using the subtyping rule for t , as t is an
active term, we can derive the proof ϕ;Φ; · | · ⊢R′

i
ti : {Pi : σ | a ≤ I }. Thus, using the let

rule, we obtain the typing ϕ;Φ; · | · ⊢1+R′
i+

∑
a≤I ,Pi ,0 Pi ·R

let x = ti in u : {Pi : µ | a ≤ I }. It is

then easy to see by definition of convolution that the sum over all i ∈ I of the weight for the
DDT of u is equal to the original one in the previous typing. Now we only need to show the

inequality ϕ;Φ ⊨ 1 + R′ +
∑

a≤I,P,0 P · R ≥ 1 +
∑

i ∈I pi · (1 + R
′
i +

∑
a≤I,Pi,0 Pi · R). Again,

this is rather direct using the previous hypothesis on R′
and P and using the fact that Pi , 0

implies P , 0. This concludes this case.

• Match zero: Suppose the term is match z with { z 7→ t | s 7→ w }. We have the typing :

ϕ; (Φ,Φa {0/a}); · | · ⊢R t : µ

ϕ;Φ; · | · ⊢R′ z : Nat(a | Φa )

(ϕ,a); (Φ,Φa {a + 1/a}) ⊨ Φ′

ϕ; (Φ,Φ′); · | · ⊢R w : Nat(a | Φa {a + 1/a}) ⊸ µ

ϕ;Φ; · | · ⊢1+R′+R match z with { z 7→ t | s 7→ w } : µ

By Lemma 3.5, the typing ϕ;Φ; · | · ⊢R′ z : Nat(a | Φa) gives us ϕ;Φ ⊨ Φa{0/a}. So, by
contraction, we have the proof ϕ;Φ; · | · ⊢R t : µ. As ϕ;Φ ⊨ 1 + R′ + R ≥ 1 + R, this concludes
this case.

• Match successor: Suppose the term is match s(v) with { z 7→ t | s 7→ w }. We have the

typing :

ϕ;Φ; · | · ⊢R′ s(v) : Nat(a | Φa )

ϕ; (Φ,Φa {0/a}); · | · ⊢R t : µ

(ϕ,a); (Φ,Φa {a + 1/a}) ⊨ Φ′

ϕ; (Φ,Φ′); · | · ⊢R w : Nat(a | Φa {a + 1/a}) ⊸ µ

ϕ;Φ; · | · ⊢1+R′+R match s(v) with { z 7→ t | s 7→ w } : µ

By Lemma 3.5, the typing ϕ;Φ; · | · ⊢R′ s(v) : Nat(a | Φa) show that s(v) = n + 1 for

some integer n, and ϕ;Φ ⊨ Φa{n + 1/a}. So, we have ϕ;Φ ⊨ (Φa{a + 1/a}){n/a}. Again by

Lemma 3.5, we haveϕ;Φ; · | · ⊢0 v = n : Nat(a | Φa{a+1/a}). Moreover, by index substitution

in the proof (ϕ,a); (Φ,Φa{a + 1/a}) ⊨ Φ′
, we obtain ϕ; (Φ,Φa{a + 1/a}{n/a}) ⊨ Φ′

. Indeed,

recall that a is not free in Φ and Φ′
. Thus, by contraction we have ϕ;Φ ⊨ Φ′

. And again by

contraction, we obtain the proof ϕ;Φ; · | · ⊢R w : Nat(a | Φa{a + 1/a}) ⊸ µ. Then using the

rule for application, we obtain ϕ;Φ; · | · ⊢R w v : µ, and this concludes the case.

• Fixpoint: Suppose the term is (fix x .v) w . We have the proof

π
ϕ;Φ; · | · ⊢R fix x .v : σ ⊸ µ ϕ;Φ; · | · ⊢R′ w : σ

ϕ;Φ· | · ⊢R+R′ (fix x .v) w : µ

In π , consider the subproof :

(ϕ,b,b); (Φ,Φb ) ⊨ Q ≥ 1 + R0 +
∑
a≤I,P,0 P ·Q{M/b}

(ϕ,b,b); (Φ,Φb ); · | y : {P : τ {M/b} | a ≤ I } ⊢R0
v : τ

(ϕ,b); (Φ;Φb ); · | · ⊢Q {J /b } fix y.v : (∀a : Φa .σ0 ⊸ µ0){J/b} = τ {J/b}

By Lemma 3.11, there exists an instantiation Ib , Ia of b,a valid under ϕ;Φ such that

ϕ;Φ ⊨ Φb {Ib/b}

ϕ;Φ ⊨ Φa{J/b}{Ib , Ia/b,a}

ϕ;Φ ⊢ µ0{J/b}{Ib , Ia/b,a} ⊑ µ

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :21

ϕ;Φ; · | · ⊢R′ w : σ0{J/b}{Ib , Ia/b,a}

ϕ;Φ ⊨ Q{J/b}{Ib/b} ≤ R
Then by index substitution and contraction, we have :

(ϕ,b);Φ ⊨ Q{Ib/b} ≥ 1 + R0{Ib/b} +
∑
a≤I {Ib /b },P {Ib /b },0

P{Ib/b} ·Q{Ib/b}{M{Ib/b}/b}

(ϕ,b);Φ; · | y : {P{Ib/b} : τ {Ib/b}{M{Ib/b}/b} | a ≤ I {Ib/b}} ⊢R0 {Ib /b }
v : τ {Ib/b}

ϕ;Φ; · | · ⊢Q {Ib /b }{J {Ib /b }/b }
fix y.v : (∀a : Φa {Ib/b}.σ0{Ib/b} ⊸ µ0{Ib/b}){J {Ib/b}/b}

By using the notation A{Ib/b} = A′
, we have :

(ϕ,b);Φ ⊨ Q ′ ≥ 1 + R′
0
+
∑
a≤I ′,P ′,0 P

′ ·Q ′{M ′/b}

(ϕ,b);Φ; · | y : {P ′ : τ ′{M ′/b} | a ≤ I ′} ⊢R′
0

v : τ ′

ϕ;Φ; · | · ⊢Q ′ {J ′/b } fix y.v : (∀a : Φ
′

a .σ
′
0
⊸ µ ′

0
){J ′/b} = τ ′{J ′/b}

Remark that the premises for this typing do not use the index J ′, so the typing is valid even

if we change this index. For the sake of simplicity, let us denoteM ′
J = M ′{a′/a}{J ′/b}. We

also define P ′
J in the same way. We also note τ ′J = τ

′{M ′
J /b}. By weakening, we obtain the

proof (ϕ,a′); (Φ,a′ ≤ I ′{J ′/b}, P ′
J , 0); · | · ⊢Q {M ′

J /b } fix y.v : τ ′J . By index substitution and

renaming ϕ;Φ; · | y : {P ′
J : τ

′
J | a′ ≤ I ′{J ′/b}} ⊢R′

0
{J ′/b } v : τ ′{J ′/b}. Using Lemma 3.10, we

obtain ϕ;Φ; · | · ⊢R′
0
{J ′/b }+

∑
a′≤I ′{J ′/b},P ′J ,0

P ′
J ·Q

′ {M ′
J /b } v[y := fix y.v] : τ ′{J ′/b}. Then, again

by index substitution and renaming, we have

ϕ;Φ ⊨ Q ′{J ′/b} ≥ 1 + R′
0
{J ′/b} +

∑
a′≤I ′ {J ′/b },P ′

J ,0
P ′
J ·Q

′{M ′
J /b}. Recall that we know:

ϕ;Φ ⊨ Φ
′

a{J
′/b}{Ia/a}

ϕ;Φ ⊢ µ ′
0
{J ′/b}{Ia/a} ⊑ µ

ϕ;Φ; · | · ⊢R′ w : σ ′
0
{J ′/b}{Ia/a}

ϕ;Φ ⊨ Q ′{J ′/b} ≤ R
Let us call S = R′

0
{J ′/b} +

∑
a′≤I ′ {J ′/b },P ′

J ,0
P ′
J ·Q

′{M ′
J /b}. We can construct the proof

ϕ;Φ; · | · ⊢S v[y := fix y.v] : ∀a : Φ
′

a {J
′/b}.σ ′

0
{J ′/b} ⊸ µ ′

0
{J ′/b} ϕ;Φ ⊨ Φ

′

a {J
′/b}{Ia/a}

ϕ;Φ; · | · ⊢S v[y := fix y.v] : σ ′
0
{J ′/b}{Ia/a} ⊸ µ ′

0
{J ′/b}{Ia/a}

By using several instances of the elimination of quantification rule. Then, using the application

rule, we obtain a proof ϕ;Φ; · | · ⊢S+R′ (v[y := fix y.v]) w : µ ′
0
{J ′/b}{Ia/a}, and we have

indeed ϕ;Φ ⊨ R + R′ ≥ Q ′{J ′/b} + R′ ≥ 1 + S + R′
. This concludes the proof for this case.

3.4 Multi-Distributions, Reduction Rules and Subject Reduction
Now we would like to give the subject reduction theorem in a form that consider the relation on

distribution ⇒ and show the link with expected runtime. However, we can show informally on a

simple example that this is not as simple as it seems. Indeed, take the term v ⊕1 v . This term will

obviously reduce to {1 : v}. However, we could have two distinct typing derivationϕ;Φ; · | · ⊢R v : σ
and ϕ;Φ; · | · ⊢R′ v : σ ′

and the typing derivation ϕ;Φ; · | · ⊢ R+R′
2

v ⊕1 v : { 1
2
: σ ; 1

2
: σ ′}, and

then the reduction rule does not take into account this multiplicity of typing derivation. The same

problem occurs in [Dal Lago and Grellois 2017]. To take this multiplicity in account, we modify the

reduction rule⇒ on distribution to a reduction rule on multi distribution⇒M , and for example,

we have v ⊕1 v ⇒M {{ 1
2
: v ; 1

2
: v}}. Let us present formally those notions.

Definition 3.13 (Multi-Distribution). A multi-distributionM on a countable set X is a distribution

on a multi-set of X . We can then define the notion of proper and finite multi-distribution as

, Vol. 1, No. 1, Article . Publication date: January 2019.



:22 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

previously. We denote such a multi-distribution by {{M(i) : xi | i ∈ I}} with for all i ∈ I, xi ∈ X
and

∑
i ∈I M(i) ≤ 1.

We can also define as expected the multi-distribution p · M. However, the definition of sum

differs from the previous one for distribution. This time, the "sum" of two multi-distributions is

the disjoint union that we note

∐
. We can also define the decomposition of multi-distributions

into active terms and values as expected. We denote this decomposition with

∐
a/v . We can now

present the distribution represented by a multi-distribution.

Definition 3.14 (Representation). Given a multi distribution M = {{M(i) : xi | i ∈ I}} on X, we

say that M is a representation of a distribution D if ∀x ∈ X , D(x) =
∑

i ∈I,xi=x M(i).

Given a distributionD = {pi : xi | i ∈ I}, we note {D} the multi-distribution {{pi : xi | i ∈ I}}.

Then trivially, {D} is a representation of D. We also give some good proprieties of representation:

Lemma 3.15 (Sum and Representation). IfM is a representation of D andN is a representation
of E, then p · M is a representation of p · D andM

∐
N is a representation of D + E. Moreover, if

M =Ma
∐

a/v Mv andM is a representation of D = Da +a/v Dv thenMv is a representation of
Dv and Ma is a representation of Da

Finally we can give the definition of the reduction rule for multi distribution ⇒MD . For this, we

keep the previous definition of → in Figure 2 and we use this rule :

M = {{pi : ti | i ∈ I}}
∐

a/v Mv ∀i ∈ I, ti → Ei

M ⇒M Mv
∐
(
∐

i ∈I pi · {Ei }}

With the previous lemma, we obtain easily that the multi-distribution obtained by a reduction

step⇒M is a representation of the distribution obtained by a reduction step ⇒.

Lemma 3.16 (Coherence Between Distributions and Multi-Distributions Reductions). If
D ⇒n E then {D} ⇒n

M N with N a representation of E.

We can then give the subject reduction according to this new reduction rule.

Theorem 3.17 (Subject Reduction for Multi-Distributions). Suppose given a proof
ϕ;Φ; · | · ⊢R t : {P : σ | a ≤ I } and {{1 : t}} ⇒n

M {{pi : ti | i ∈ I}} (with pi > 0 for all i), then for
all i ∈ I, there exists valid rational indexes Pi and Ri such that ϕ;Φ; · | · ⊢Ri ti : µi with
ϕ;Φ ⊢ µi ⊑ {Pi : σ | a ≤ I } and (ϕ,a); (Φ,a ≤ I ) ⊨ P =

∑
i ∈I pi · Pi and

ϕ;Φ ⊨ R ≥
n−1∑
m=0

(
∑
Dm

a ) +
∑

i ∈I pi · Ri with Dm
a the distribution such that t ⇒m

a Dm
a .

Proof.We prove this by induction on n. The case n = 0 is trivial. So we consider the case n + 1 for
n ≥ 0. We have a proof ϕ;Φ; · | · ⊢R t : {P : σ | a ≤ I } Let us callM the multi-distribution such that

{{1 : t}} ⇒n
M M. M can be decomposed into M = {{qj : tj | j ∈ J}}

∐
a/v {{pi : vi | i ∈ I}}.

We have tj → Ej = {qj,k : tj,k | k ∈ K}, and so by definition, we have

{{1 : t}} ⇒n
M {{pi : vi | i ∈ I}}

∐
(
∐

j ∈J qj · {{qj,k : tj,k | k ∈ Kj }}).

By induction hypothesis:

• For all i ∈ I, we have ϕ;Φ; · | · ⊢Ri vi : µi with ϕ;Φ ⊢ µi ⊑ {Pi : σ | a ≤ I }.
• For all j ∈ J , we have ϕ;Φ; · | · ⊢Sj tj : νj with ϕ;Φ ⊢ νj ⊑ {Q j : σ | a ≤ I }.
• (ϕ,a); (Φ,a ≤ I ) ⊨ P =

∑
i ∈I pi · Pi +

∑
j ∈J qj ·Q j .

• ϕ;Φ ⊨ R ≥
n−1∑
m=0

(
∑
Dm

a ) +
∑

i ∈I pi · Ri +
∑

j ∈J qj · S j .

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :23

We can now use Theorem 3.12 on the proof ϕ;Φ; · | · ⊢Sj tj : {Q j : σ | a ≤ I } obtained by

subtyping. So, for all j ∈ J , we have

• For all k ∈ Kj , we have ϕ;Φ; · | · ⊢Sj,k tj,k : νj,k with ϕ;Φ ⊢ νj,k ⊑ {Q j,k : σ | a ≤ I }
• (ϕ,a); (Φ,a ≤ I ) ⊨ Q j =

∑
k ∈Kj

qj,k ·Q j,k
• ϕ;Φ ⊨ S j ≥ 1 +

∑
k ∈Kj

qj,k · S j,k

So, in conclusion, we obtain :

• For all i ∈ I, we have ϕ;Φ; · | · ⊢Ri vi : µi with ϕ;Φ ⊢ µi ⊑ {Pi : σ | a ≤ I }
• For all j ∈ J ,k ∈ K , we have ϕ;Φ; · | · ⊢Sj,k tj,k : νj,k with ϕ;Φ ⊢ νj,k ⊑ {Q j,k : σ | a ≤ I }
• (ϕ,a); (Φ,a ≤ I ) ⊨ P =

∑
i ∈I pi · Pi +

∑
j ∈J,k ∈Kj

qj · qj,k ·Q j,k .

• ϕ;Φ ⊨ R ≥
n−1∑
m=0

(
∑
Dm

a ) +
∑

i ∈I pi · Ri +
∑

j ∈J qj · S j

ϕ;Φ ⊨ R ≥
n−1∑
m=0

(
∑
Dm

a ) +
∑

i ∈I pi · Ri +
∑

j ∈J qj · (1 +
∑

k ∈Kj
qj,k · S j,k )

ϕ;Φ ⊨ R ≥
n−1∑
m=0

(
∑
Dm

a ) +
∑

i ∈I pi · Ri +
∑

j ∈J qj +
∑

j ∈J,k ∈Kj
qj · qj,k · S j,k

ϕ;Φ ⊨ R ≥
n∑

m=0
(
∑
Dm

a ) +
∑

i ∈I pi · Ri +
∑

j ∈J,k ∈Kj
qj · qj,k · S j,k

And this concludes this proof.

4 BACK TO OUR EXAMPLE
4.1 Extension of the Type System for Lists
In order to describe our example on probabilistic quicksort, we add to our calculus constructors

and types for lists. Those constructors and those types follow the same mechanic as the one for

integers. Formally, we add the values nil and cons(v,w). We also add the active term

match v with { nil 7→ t | cons 7→ w} . Then reduction is defined as expected.

Definition 4.1 (List Indexes). For lists, we introduce a new kind of indexes : List Indexes. They are

given by the grammar L ::= l | nil | cons(I ,L) | tl(L). The variable l denotes a list variable and tl(L)
is the tail of the list. Remark that, contrary to natural indexes, we restrict the set of functions on

list indexes to the essentials. However, we add new functions for natural indexes, such as len(L)
returning the length of a list and L.(I ) returning the I th element of L if it exists and 0 otherwise.

We will describe other functions when needed.

The, we can describe types for lists in the same way as integers.

Definition 4.2 (Types for Lists). In linear dependent types σ ,τ , we add the type List(l | Φl ), with

l free in Φl . This type follows the same intuition as the type Nat(a | Φa) for integers. Again, we

write List(L) the type List(l | l = L) and we define validity as expected. We also add for arrow

types the quantification over list variables: ∀l : Φ.σ⊸. The counterpart for bounded integer in the

definition of validity is that the length of the list must be bounded and the elements of the list

must be bounded. This shows that this quantification is over a finite set of lists. We will usually use

ranдe(L) in constraints to denote a constraints that must be satisfied by all elements of the list. For

example, a list L satisfies ranдe(L) ≤ I when all elements of the list are smaller than I . Finally, the
definition of conversion and subtyping for those new types are defined as expected.

Now we give the typing rules for list constructors in Figure 7. By validity, in the pattern matching

rule, the variable a does not appear in Φl and Φ′
and the variable l does not appear in Φa and Φ′

.

Again, those rules are just a generalization of the ones for integers.

, Vol. 1, No. 1, Article . Publication date: January 2019.



:24 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

ϕ;Φ ⊨ Φl {nil/l}

ϕ;Φ; Γ | Θ ⊢0 nil : List(l | Φl )

ϕ;Φ; Γ | Θ ⊢R v : Nat(a | Φa ) ϕ;Φ;∆ | Ψ ⊢R′ w : List(l | Φl )
ϕ;Φ; Γ,∆ | Θ + Ψ ⊢R+R′ cons(v,w) : List(l | Φl {tl(l)/l},Φa {l .(0)/a}, l , nil)

ϕ; (Φ,Φ0{nil/l});∆ | Ψ ⊢R t : µ

ϕ;Φ; Γ | Θ ⊢R′ v : List(l | Φ0)

(ϕ,a, l); (Φ,Φ0{cons(a, l)/l}) ⊨ Φa ,Φl ,Φ
′

ϕ; (Φ,Φ′);∆ | Ψ ⊢R w : (Nat(a | Φa ) ⊗ List(l | Φl )) ⊸ µ

ϕ;Φ; Γ,∆ | Θ + Ψ ⊢1+R+R′ match v with { nil 7→ t | cons 7→ w} : µ

Fig. 7. Type System for Dynamic Distribution Types

4.2 Intermediate Terms
We can now detail our example on probabilistic quick sort. We will use λ⟨x ,y⟩.t to denote the term
λz.let ⟨x ,y⟩ = z in t , useful for terms taking a tensor as an input. In the same way, when t is an
active term, we write let ⟨x ,y⟩ = t in u for let z = t in let ⟨x ,y⟩ = z in u.
We remark that for the convolution, if µ = {1 : σ | b ≤ 0}, then {P : µ | a ≤ I } corresponds

to {P{c/a} : σ {c/a} | c ≤ I }, so it is equal to {P : σ | a ≤ I } by renaming. In the same way, the

convolution {1 : µ | a ≤ 0} is µ when a is not free in µ. Thus, we will use a simplified version of

the let rules in some derivation tree with those simple convolutions.

Let us recall a useful function symbol that we will use often for primitive recursion: Bool . Bool is
defined by Bool(0) = 0 and Bool(n+1) = 1, so a recursion context f : {Bool(b) : σ {b −1/b} | a ≤ 0}

expresses that for b ≥ 1, f is called one time with type σ {b − 1/b} and when b = 0, f is never

called. This express exactly what happens in primitive recursion. We also define ¬I = 1 − Bool(I ).

Subtraction of Integers. Now we can give our general terms working on integers and lists. First

we give a term for the subtraction of two integers sub such that sub ⟨n,m⟩ is n −m. The term is

given in Figure 8. For all ϕ;Φ and I , J valid indexes, we have:

ϕ;Φ· ⊢7·(J+1) sub : (Nat(I ) ⊗ Nat(J )) ⊸ Nat(I − J )

We give a sketch of the proof. For the sake of simplicity, we always work in the case ϕ;Φ = ∅;⊤.

We will use the following notations :

σ = (Nat(I + b − J ) ⊗ Nat(b)) ⊸ Nat(I − J )
Θ = f : {Bool(b) : σ {b − 1/b} | a ≤ 0}

Γ = n : Nat(I + b − J ),m : Nat(b)
∆ = Γ,p : Nat(b − 1),p ′ = Nat(I + b − J − 1)

b; (b = 0); Γ | · ⊢0 n : Nat(I − J )

b; (b ≥ 1, I + b − J ≥ 1) ⊨ Bool(b) ≥ 1

b; (b ≥ 1, I + b − J ≥ 1);∆ | Θ ⊢0 f ⟨p′,p⟩ : Nat(I − J )

b; (b ≥ 1); Γ,p : Nat(b − 1) | Θ ⊢2 match n with · · · : Nat(I − J )

b; (b ≥ 1); Γ | Θ ⊢3 λp.match n with · · · : Nat(a | a + 1 = b) ⊸ Nat(I − J )

b;⊤; Γ | Θ ⊢4 matchm with { z 7→ n | s 7→ λp.match n with { z 7→ z | s 7→ λp′. f ⟨p′,p⟩ } } : Nat(I − J )

b;⊤; · | Θ ⊢6 λ⟨n,m⟩.matchm with { z 7→ n | s 7→ λp.match n with { z 7→ z | s 7→ λp′. f ⟨p′,p⟩ } } : σ

⊢
7·(J+1) sub : σ {J/b}

The final weight 7 · (J +1) comes from the fact that the indexQ = 7 · (b+1) satisfies the inequation
b;⊤ ⊨ Q ≥ 1 + 6 + Bool(b) ·Q{b − 1/b}.

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :25

Length of a List. The term length defined in 8 returns the length of a list. And we have :

ϕ;Φ; · ⊢6·(J+1) length : List(l | len(l) = J ) ⊸ Nat(J )

We use the following notations in the proof :

σ = List(l | len(l) = b) ⊸ Nat(b)
Θ = f : {Bool(b) : σ {b − 1/b} | a′ ≤ 0}

Γ = (hd : Nat(a | ⊤), tl : List(l | len(l) = b − 1))

∆ = (n : Nat(b − 1))

b; (b = 0) ⊨ b = 0

b; (b = 0); · ⊢0 z : Nat(b)

b; (b ≥ 1) ⊨ Bool(b) ≥ 1

b; (b ≥ 1); Γ | Θ ⊢0 f tl : Nat(b − 1) b; (b ≥ 1);∆ | · ⊢0 s(n) : Nat(b)

b; (b ≥ 1); Γ | Θ ⊢1 let n = (f tl) in s(n) : Nat(b)

b; (b ≥ 1); · | Θ ⊢3 λ · · · : (Nat(a | ⊤) ⊗ List(l | len(l) = b − 1)) ⊸ Nat(b)

(b,a, l); (b = len(cons(a, l))) ⊨ len(l) = b − 1,b ≥ 1

b;⊤;x : List(l | len(l) = b) | Θ ⊢4 match x with { nil 7→ z | cons 7→ . . . } : Nat(b)
b;⊤; · | f : {Bool(b) : σ {b − 1/b} | 1 ≤ a′ ≤ 1} ⊢5 λx .match x with { nil 7→ z | cons 7→ . . . } : σ

⊢
6·(J+1) length : σ {J/b}

Concatenation of Lists. The term @ denotes concatenation of two lists. We have:

ϕ;Φ ⊢ @ : (List(l | len(l) = J ) ⊗ List(l | len(l) = I )) ⊸ List(l | len(l) = I + J ).
Let us note L(I ) the type List(l | len(l) = I ). We also pose:

σ = (L(b) ⊗ L(I )) ⊸ L(I + b)
Θ = {Bool(b) : σ {b − 1/b} | a ≤ 0}

τ = (Nat(a | ⊤) ⊗ L(b − 1)) ⊸ L(I + b)
Γ = x : L(b),x ′

: L(I ))
Γ = x ′

: L(I ),hd : Nat(a | ⊤), tl : L(b − 1)

b; (b = 0);y : L(I ) | · ⊢0 y : L(I + b)

b; (b ≥ 1);∆,y : L(I + b − 1) | · ⊢0 cons(hd,y) : L(I + b)

b; (b ≥ 1);∆ | Θ ⊢1 let y = f ⟨tl ,x ′⟩ in cons(hd,y) : L(I + b)

b; (b ≥ 1);x ′ : L(I ) | Θ ⊢3 λ⟨hd, tl⟩.let y = f ⟨tl ,x ′⟩ in cons(hd,y) : τ

b;⊤; Γ | Θ ⊢4 match x with { nil 7→ x ′ | cons 7→ λ⟨hd, tl⟩.let y = f ⟨tl ,x ′⟩ in cons(hd,y)} : L(I + b)

b;⊤; · | Θ ⊢6 λ⟨x ,x
′⟩.match x with { nil 7→ x ′ | cons 7→ λ⟨hd, tl⟩. . . . } : (L(b) ⊗ L(I )) ⊸ L(I + b)

⊢
7(J+1) fix f .λ⟨x ,x ′⟩.match x with { nil 7→ x ′ | cons 7→ λ⟨hd, tl⟩.let y = f ⟨tl ,x ′⟩ in cons(hd,y)} : σ {J/b}

Element of a List. We also have a term nth such that for a list l and an integer n, nth ⟨n, l⟩
returns the nth elements of l (starting from 0) if it exists, and 0 otherwise. The following type can

be derived:

ϕ;Φ; · ⊢8(J+1) nth : ∀a : a ≤ J .∀l : (ranдe(l) ≤ K , len(l) = J + 1).(Nat(a) ⊗ Nat(l)) ⊸ Nat(l .(a))

We use the following notations :

Φa = (a ≤ b)
Φl = (ranдe(l) ≤ K , len(l) = b + 1)
τ = (Nat(a) ⊗ List(l)) ⊸ Nat(l .(a))
σ = ∀a : Φa , l : Φl .τ
Θ = f : {Bool(b) : σ {b − 1/b} | a′ ≤ 0}

ϕ;Φ = (b,a, l); (Φa ,Φl )

Γ = (n : Nat(a),x : List(l))

, Vol. 1, No. 1, Article . Publication date: January 2019.



:26 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

Φ′ = (Φ, l , nil)
∆ = Γ,hd : Nat(l .(0)), tl : List(tl(l))

ϕ; (Φ′,a = 0);∆ | · ⊢0 hd : Nat(l .(a))

ϕ, (Φ′,a ≥ 1) ⊨ Bool(b) ≥ 1

ϕ, (Φ′,a ≥ 1); · | Θ ⊢0 f : (∀a : Φa , l : Φl .τ ){b − 1/b}

ϕ; (Φ′,a ≥ 1) ⊨ (a − 1 ≤ b − 1), (ranдe(tl(l)) ≤ K , len(tl(l)) = b)

ϕ, (Φ′,a ≥ 1); · | Θ ⊢0 f : (Nat(a − 1) ⊗ List(tl(l))) ⊸ Nat(tl(l).(a − 1))

ϕ; (Φ′,a ≥ 1);∆ | Θ ⊢1 λp. f (p ⊗ tl) : Nat(a′ | a′ + 1 = a) ⊸ Nat(l .(a))

ϕ;Φ′
;∆ | Θ ⊢2 match n with { z 7→ hd | s 7→ λp. f ⟨p, tl⟩ } : Nat(l .(a))

ϕ; (Φ, l , nil); Γ | Θ ⊢4 λ⟨hd, tl⟩.match n with { z 7→ hd | s 7→ λp. f ⟨p, tl⟩ } : (Nat(l .(0)) ⊗ List(tl(l)) ⊸ Nat(l .(a))

(ϕ,a′, l ′); (Φ, l = cons(a′, l ′)) ⊨ a′ = l .(0), l ′ = tl(l), l , nil

ϕ;Φ; Γ | Θ ⊢5 match x with { nil 7→ z | cons 7→ λ⟨hd, tl⟩.match n with { z 7→ hd | s 7→ λp. f ⟨p, tl⟩ }} : Nat(l .(a))

ϕ;Φ; · | Θ ⊢7 λ⟨n,x⟩.match x with { nil 7→ z | cons 7→ λ⟨hd, tl⟩.match n with { z 7→ hd | s 7→ λp. f ⟨p, tl⟩ }} : τ

b;⊤; · | f : {Bool(b) : σ {b − 1/b} | 1 ≤ a′ ≤ 1} ⊢7 λ⟨n,x⟩. . . . : ∀a : Φa , l : Φl .τ

⊢
8·(J+1) nth : σ {J/b}

4.3 Partitions andQuick Sort
We can now work on terms specific to quicksort.

Deterministic Partition. The term partition is defined such that given an integer n and a list

l , partition ⟨n, l⟩ returns a tensor ⟨⟨ll , lr ⟩,p⟩ such that p = l .(n) and ll is the list of all elements

in l strictly smaller than p, and lr is the list of all elements in l strictly greater than p. The term is

described in Figure 8. In order to give the type of partition, we introduce two notations.

Definition 4.3 (Constraints and Indexes for Lists). For a list index L, we add the new constraint

alldi f (L), such that ϕ;Φ ⊨ alldi f (L) if for all valuation ρ ⊨ Φ, all elements of the list JLKρ are

different. We also define (L ⊂ L′) such that (L ⊂ L′) is verified when the elements of L are a

subset of the elements of L′ (taking in account multiplicity). Remark that for any L,L′, (L ⊂ L′) and
alldi f (L′) implies alldi f (L).

For a list index L and a natural index I , we define the index # < (L, I ) as the number of elements

in L strictly smaller than I . In the same way, we also define this index for other relation >,=, ≥, . . . .
From now on, we will note L ∈ L(I )[≤ K] to express the set of constraints

alldi f (L), ranдe(L) ≤ K , len(L) = I , that is to say lists of length I , with different elements bounded

by K .

Now, for ϕ;Φ and J ,K valid natural indexes under ϕ;Φ, we have the typing:

ϕ;Φ; · ⊢ partition : ∀l : (l ∈ L(J + 1)[≤ K]).∀a : (a ≤ J ).(Nat(a) ⊗ List(l)) ⊸

(List(l ′ | l ′ ∈ L(# < (l , l .(a)))[≤ K]) ⊗ (List(l ′ | l ′ ∈ L(# > (l , l .(a))))[≤ K])) ⊗ Nat(a′ | a′ ≤ K)

Intuitively, this type describe that from a list l of length J + 1, with different elements bounded by

K , and an integer a smaller than J , partition returns two lists of different elements bounded by

K with a length corresponding to the number of elements strictly smaller (or greater) than l .(a).
And the last output of partition is an element of the list, ie an integer smaller than K.

We remark that the fact that all elements are different is not primordial for this typing. However,

it will be useful later for complexity analysis.

We give a sketch of the typing. We decompose the derivation tree for the sake of clarity. We will

use the following notations :

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :27

sub ≡ fix f. λ ⟨n,m⟩.
match m with
| 0 7→ n
| s 7→ λp. match n with

| 0 7→ z
| s 7→ λp'. f ⟨p',p⟩

length ≡ fix f. λx.
match x with
| nil 7→ z
| cons 7→ λ ⟨hd, t l ⟩.

let n = f t l
in s(n)

@ ≡ fix f. λ ⟨x,x'⟩.
match x with
| nil 7→ x'
| cons 7→ λ ⟨hd, t l ⟩.

let y = f ⟨ t l ,x'⟩
in cons(hd,y)

nth ≡ fix f.λ ⟨n,x⟩.
match x with
| nil 7→ z
| cons 7→ λ ⟨hd, t l ⟩.

match n with
| 0 7→ hd
| s 7→ λp. f ⟨p, t l ⟩

partition ≡ λ ⟨n,x⟩. let p = nth ⟨n,x⟩ in ⟨(walk x),p⟩
where
walk ≡ fix f. λy.

match y with
| nil 7→ nil ⊗ nil
| cons 7→ λ ⟨hd, t l ⟩.

let ⟨ l ,r ⟩ = f t l
in let b = sub ⟨p,hd⟩
in match b with

| 0 7→ let b' = sub ⟨hd,p⟩
in match b' with
| 0 7→ ⟨ l ,r ⟩
| s 7→ λ_. ⟨ l ,cons(hd,r)⟩

| s 7→ λ_.⟨cons(hd, l),r ⟩
ppart ≡ λx.

let n = length x
in match n with
| 0 7→ ⟨nil,nil,z⟩
| s 7→ λm. let i = Unif m in partition ⟨ i,x⟩

pquicksort ≡ fix f. λx.
match x with
| nil 7→ nil
| cons 7→ λ_. let ⟨ l ,r,p⟩ = ppart x

in let l ' = f l
in let r' = f r
in l ' @ cons(p,r')

Fig. 8. Quicksort

Φl = l ∈ L(J + 1)[≤ K]
Φa = a ≤ J
τl = List(l ′ | l ′ ∈ L(# < (l , l .(a)))[≤ K])
τr = List(l ′ | l ′ ∈ L(# > (l , l .(a)))[≤ K])

, Vol. 1, No. 1, Article . Publication date: January 2019.



:28 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

τo = (τl ⊗ τr ) ⊗ Nat(a′ | a′ ≤ K)
τ = (Nat(a) ⊗ List(l)) ⊸ τo
ϕ;Φ = (l ,a); (Φl ,Φa)

Γ′ = n : Nat(a),x : List(l)
Γ = Γ′,p : Nat(l .(a))

Previous typing with instantiation

ϕ;Φ; · ⊢
8(J+1) nth : (Nat(a) ⊗ Nat(l)) ⊸ Nat(l .(a))

ϕ;Φ; Γ′ | · ⊢
8(J+1) nth ⟨n,x⟩ : Nat(l .(a))

ϕ;Φ; Γ | · ⊢R walk : List(l) ⊸ (τl ⊗ τr )

ϕ;Φ; Γ′,p : Nat(l .(a)) | · ⊢R ⟨(walk x),p⟩ : τo

ϕ;Φ;n : Nat(a),x : List(l) | · ⊢
1+R+8(J+1) let p = nth ⟨n,x⟩ in ⟨(walk x),p⟩ : τo

(a, l); (Φa ,Φl ); · ⊢3+R+8(J+1) λ⟨n,x⟩.let p = nth ⟨n,x⟩ in ⟨(walk x),p⟩ : (Nat(a) ⊗ List(l)) ⊸ τo

⊢
1+R+8(J+1) partition : ∀l : Φl ,a : Φa .τ

With R the weight of walk, that is to say (14(K + 1) + 10)(J + 2) as shown below. Now we show:

ϕ;Φ; Γ | · ⊢ walk : List(l) ⊸ (τl ⊗ τr ).
For this typing , we introduce other notations:

Φl0 = l0 ⊂ l , ranдe(l0) ≤ K , len(l0) = b
σl = List(l ′ | l ′ ⊂ l0, len(l

′) = # < (l0, l .(a)))
σr = List(l ′ | l ′ ⊂ l0, len(l

′) = # > (l0, l .(a)))
σ = ∀l0 : Φl0 .List(l0) ⊸ σo
Θ = f : {Bool(b) : σ {b − 1/b} | a′ ≤ 0}

(ϕ,b, l0); (Φ;Φl0 ) = ϕ ′
;Φ′

choose := let b = sub ⟨p,hd⟩ in match b with
|0 7→ let b ′ = sub ⟨hd,p⟩ in match b ′ with { z 7→ ⟨l , r ⟩ | s 7→ λ_.⟨l , cons(hd, r )⟩ }
|s 7→ λ_.⟨cons(hd, l), r ⟩
First, remark that ϕ;Φ ⊢ (List(l0) ⊸ (σl ⊗ σr )){l/l0} ⊑ List(l) ⊸ (τl ⊗ τr ), indeed as explained

previously alldi f (l) and (l ′ ⊂ l) implies alldi f (l ′). Moreover, (l ′ ⊂ l) and ranдe(l) ≤ K implies

ranдe(l ′) ≤ K . So it is sufficient to give a proof of ϕ;Φ; Γ | · ⊢ walk : (List(l0) ⊸ (σl ⊗ σr )){l/l0}.
Also, remark that ϕ;Φ ⊨ Φl0 {J + 1/b}{l/l0}.

π (f tl) π (choose)

ϕ ′; (Φ′, l0 , nil); Γ,hd : Nat(l0.(0)), tl : List(tl(l0)) | Θ ⊢
14(K+1)+6 let ⟨l , r ⟩ = f tl in choose : σl ⊗ σr

ϕ ′; (Φ′, l0 , nil); Γ | Θ ⊢
14(K+1)+8 λ⟨hd, tl⟩.let ⟨l , r ⟩ = f tl in choose : (Nat(l0.(0)) ⊗ List(tl(l0))) ⊸ σl ⊗ σr

ϕ ′;Φ′
; Γ,y : List(l0) | Θ ⊢

14(K+1)+9 match y with { nil 7→ ⟨nil, nil⟩ | cons 7→ λ⟨hd, tl⟩. . . . } : σl ⊗ σr

ϕ ′;Φ′
; Γ | Θ ⊢

14(K+1)+10 λy.match y with { nil 7→ ⟨nil, nil⟩ | cons 7→ λ⟨hd, tl⟩. . . . } : List(l0) ⊸ (σl ⊗ σr )

(ϕ,b);Φ; Γ | Θ ⊢
14(K+1)+10 λy.match y with { nil 7→ ⟨nil, nil⟩ | cons 7→ λ⟨hd, tl⟩. . . . } : σ

ϕ;Φ; Γ | · ⊢(14(K+1)+10)(J+2) walk : ∀l0 : Φl0 {J + 1/b}.(List(l0) ⊸ (σl ⊗ σr )) = σ {J + 1/b}

ϕ;Φ; Γ | · ⊢(14(K+1)+10)(J+2) walk : (List(l0) ⊸ (σl ⊗ σr )){l/l0}

with π (f tl) described below :

ϕ ′; (Φ′, l0 , nil) ⊨ Φl0 {b − 1/b}{tl(l0)/l0}

ϕ ′; (Φ′, l0 , nil) ⊨ Bool(b) ≥ 1

ϕ ′; (Φ′, l0 , nil); · | Θ ⊢0 f : σ {b − 1/b}

ϕ ′; (Φ′, l0 , nil); · | Θ ⊢0 f : List(tl(l0)) ⊸ (σl ⊗ σr ){tl(l0)/l0} = (List(l0) ⊸ (σl ⊗ σr )){tl(l0)/l0}

ϕ ′; (Φ′, l0 , nil); tl : List(tl(l0)) | Θ ⊢0 f tl : (σl ⊗ σr ){tl(l0)/l0}

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :29

Let us denote ∆ = Γ,hd : Nat(l0.(0)), tl : List(tl(l0)), l : σl {tl(l0)/l0}, r : σr {tl(l0)/l0}. Then,
π (choose) is a proof of ϕ ′

; (Φ′, l0 , nil);∆ | · ⊢ choose : σl ⊗ σr .

ϕ ′; (Φ′, l0 , nil , l0.(0) ≥ l .(a));∆ | · ⊢
7(K+1)+3 t0 : σl ⊗ σr ϕ ′; (Φ′, l0 , nil , l0.(0) < l .(a));∆ | · ⊢0 t1 : σl ⊗ σr

ϕ ′; (Φ′, l0 , nil);∆,b : Nat(l .(a) − l0.(0)) | · ⊢7(K+1)+4 match b with { z 7→ t0 | s 7→ λ_.t1 } : σl ⊗ σr

ϕ ′; (Φ′, l0 , nil);∆ | · ⊢
7(l0 .(0)+1)+7(K+1)+4 choose : σl ⊗ σr

ϕ ′; (Φ′, l0 , nil);∆ | · ⊢
14(K+1)+4 choose : σl ⊗ σr

with t0 := let b ′ = sub ⟨hd,p⟩ in match b ′ with { z 7→ ⟨l , r ⟩ | s 7→ λ_.⟨l , cons(hd, r )⟩ } and
t1 := ⟨cons(hd, l), r ⟩. We first show the typing for t1, and we will use it for its counterparts

⟨l , cons(hd, r )⟩ and ⟨l , r ⟩. We pose Φ1 = (Φ′, l0 , nil , l0.(0) < l .(a)), and we pose

σ ′
l = List(l ′ | tl(l ′) ⊂ tl(l0), len(tl(l

′)) = # < (tl(l0), l .(a)), l
′.(0) = l0.(0), l

′ , nil). Note that σ ′
l is

the type appearing in the bottom of the cons typing rule when the head has type Nat(l0.(0)) and
the tail has type σl {tl(l0)/l0}. Also, remark that tl(l ′) ⊂ tl(l0) and l

′.(0) = l0.(0) implies l ′ ⊂ l0.

ϕ ′;Φ1 ⊨ 1 + # < (tl(l0), l .(a)) = # < (l0, l .(a))

ϕ ′;Φ1 ⊢ σ
′
l ⊑ σl

ϕ ′;Φ1;∆ | · ⊢0 cons(hd, l) : σl

ϕ ′;Φ1 ⊨ (# > (l0, l .(a))) = (# > (tl(l0), l .(a)))

ϕ ′;Φ1 ⊢ σr {tl(l0)/l0} ⊑ σr

ϕ ′;Φ1;∆ | · ⊢0 r : σr

ϕ ′; (Φ′, l0 , nil , l .(a) > l0.(0));∆ | · ⊢0 t1 : σl ⊗ σr

Now we present the typing for t0, we pose Φ0 = (Φ′, l0 , nil , l0.(0) ≥ l .(a)).

ϕ ′; (Φ0, l0.(0) ≤ l .(a));∆, | · ⊢0 ⟨l , r ⟩ : σl ⊗ σr ϕ ′; (Φ0, l0.(0) > l .(a));∆ | · ⊢0 ⟨l , cons(hd, r )⟩ : σl ⊗ σr

ϕ ′;Φ0;∆,b
′
: Nat(l0.(0) − l .(a)) | · ⊢2 match b

′ with { z 7→ ⟨l , r ⟩ | s 7→ λ_.⟨l , cons(hd, r )⟩ } : σl ⊗ σr

ϕ ′;Φ0;∆ | · ⊢
7(l .(a)+1)+3 let b

′ = sub ⟨hd,p⟩ in match b ′ with { z 7→ ⟨l , r ⟩ | s 7→ λ_.⟨l , cons(hd, r )⟩ } : σl ⊗ σr

ϕ ′;Φ0;∆ | · ⊢
7(K+1)+3 let b

′ = sub ⟨hd,p⟩ in match b ′ with { z 7→ ⟨l , r ⟩ | s 7→ λ_.⟨l , cons(hd, r )⟩ } : σl ⊗ σr

And then those two typing for ⟨l , r ⟩ and ⟨l , cons(hd, r )⟩ are similar to the previous one for t1.
So, finally, putting it all together, we have indeed the typing

⊢ partition : ∀l : (l ∈ L(J + 1)[≤ K]).∀a : (a ≤ J ).(Nat(a) ⊗ List(l)) ⊸
(List(l ′ | l ′ ∈ L(# < (l , l .(a)))[≤ K]) ⊗ (List(l ′ | l ′ ∈ L(# > (l , l .(a))))[≤ K])) ⊗ Nat(a′ | a′ ≤ K).

The final weight for this proof is 1 + (14(K + 1) + 10)(J + 2) + 8(J + 1), that we note R(K , J + 1).
In this typing, a comparison correspond to the operator sub, that can be given a weight 7(K + 1)
when done between two elements of a list of range smaller than K . So, if we consider the number of

comparison, R(K , J + 1) shows that the number of comparison in partition is linear in the length

of the list.

Partition with Probabilistic Pivot. We can now work on the probabilistic part of our program.

The term ppart defined in figure 8 stands for probabilistic partition. The idea for this probabilistic

partition is to chose the pivot uniformly at random in the list. Once the pivot has been chosen, we

can use the deterministic partition defined above to separate our list. The first direct typing we can

give to this term is:

ϕ;Φ; · ⊢ ppart : ∀l : (l ∈ L(J + 1)[≤ K]).List(l) ⊸

{
1

J + 1
: List(l ′ | l ′ ∈ L(# < (l , l .(a)))[≤ K])⊗List(l ′ | l ′ ∈ L(# > (l , l .(a)))[≤ K])⊗Nat(a′ | a′ ≤ K) | a ≤ J }

, Vol. 1, No. 1, Article . Publication date: January 2019.



:30 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

In this type, the output depends on the choice of the pivot. So we have a distribution over all

possible choice of position for the pivot (this corresponds to 0 ≤ a ≤ J ), and then the output

corresponds to the output of partition on this choice of pivot. We introduce some notations for

the typing derivation :

Φl = l ∈ L(J + 1)[≤ K]
σl = List(l ′ | l ′ ∈ L(# < (l , l .(a)))[≤ K])
σr = List(l ′ | l ′ ∈ L(# > (l , l .(a)))[≤ K])
σ = σl ⊗ σr ⊗ Nat(a′ | a′ ≤ K)
µ = { 1

J+1 : σ | a ≤ J }

(l ,a); (Φl ,a ≤ J );x : List(l), i : Nat(a) | · ⊢R(K, J ) partition ⟨i,x⟩ : σl ⊗ σr ⊗ Nat(a′ | a′ ≤ K)

l ;Φl ;m : Nat(J ) | · ⊢1 Unifm : { 1

J+1 : Nat(a) | a ≤ J }

l ;Φl ;x : List(l),m : Nat(J ) | · ⊢
2+R(K, J ) let i = (Unifm) in partition ⟨i,x⟩ : { 1

J+1 : σ | a ≤ J }

l ;Φl ;x : List(l) | · ⊢
3+R(K, J ) λm.let i = (Unifm) in partition ⟨i,x⟩ : Nat(J ) ⊸ µ

l ;Φl ;x : List(l),n : Nat(J + 1) | · ⊢
4+R(K, J ) match n with { z 7→ ⟨⟨nil, nil⟩, z⟩ | s 7→ λm. . . . } : µ

l ;Φl ;x : List(l) | · ⊢
5+R(K, J )+6(J+2) let n = length x in match n with { z 7→ . . . | s 7→ . . . } : µ

l ;Φl ; · ⊢6+R(K, J )+6(J+2) λx .let n = length x in . . . : List(l) ⊸ µ

⊢
6+R(K, J )+6(J+2) ppart : ∀l : Φl .List(l) ⊸ µ

And those two leaves come from the typing of Unif and the previous typing of partition.
We will note R′(K , J + 1) = 6+R(K , J + 1)+ 6(J + 2). Again, this index has the form n0,0 +n1,0K +

n0,1(J + 1) +n1,1K · (J + 1), and so the number of comparison in ppart is linear in the length of the

list.

However, we want to give a more satisfactory typing to ppart using subtyping. Let us pose:

τl = List(l ′ | l ′ ∈ L(c)[≤ K])
τr = List(l ′ | l ′ ∈ L(J − c)[≤ K])
τ = τl ⊗ τr ⊗ Nat(a′ | a′ ≤ K)
ν = { 1

J+1 : τ | c ≤ J }. Note that in ν , the list index l does not appear.

And we can derive:

List(l | Φl ) ▷ l : Φl .List(l)

l ;Φl ⊨ Φl

l ;Φl ⊢ List(l) ⊑ List(l) l ;Φl ⊢ µ ⊑ ν

l ;Φl ⊢ List(l) ⊸ µ ⊑ List(l) ⊸ ν

l ;Φl ⊢ ∀l : Φl .List(l) ⊸ µ ⊑ List(l) ⊸ ν

⊢ ∀l : Φl .List(l) ⊸ µ ⊑ ∀l : Φl .List(l) ⊸ ν

⊢ ∀l : Φl .List(l) ⊸ µ ⊑ List(l | Φl ) ⊸ ν

We need to prove l ;Φl ⊢ µ ⊑ ν .
We define

S =
i f (# < (l , l .(a)) = c) then 1 else 0

J + 1
We can show that l ;Φl ⊢ S ◁⊑ ⟨µ&ν⟩

• S is indeed valid under (l ,a, c); (l ∈ L(J + 1)[≤ K],a ≤ J , c ≤ J ).
• Let us show that (l , c); (l ∈ L(J + 1)[≤ K], c ≤ J ) ⊨

∑
a≤ J S =

1

J+1 . Let ρ be a valuation such

that ρ(l) ∈ L(JJKρ + 1)[≤ JKKρ ] and ρ(c) ≤ JJKρ . Then,
J
∑

a≤ J SKρ =
∑

n≤JJ Kρ JSKρ[a 7→n], and

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :31

JSKρ[a 7→n] =
i f (#<(ρ(l ),(ρ(l )).(n))=ρ(c)) then 1 else 0

JJ Kρ+1
. In the list ρ(l), as all elements are different

and len(ρ(l)) = JJKρ + 1, there is a unique element in the list such that there is exactly ρ(c)

elements strictly smaller than it. Let us call n0 its position in ρ(l). By definition, n0 ≤ JJKρ
and # < (ρ(l), (ρ(l)).(n0)) = ρ(c), and for all other n , n0, with n ≤ JJKρ , this last equality is

not verified by unicity. This concludes the proof for this point.

• Let us show that (l ,a); (l ∈ L(J + 1)[≤ K],a ≤ J ) ⊨
∑
c≤ J S =

1

J+1 . This time it is straightfor-

ward, the unique c smaller than J verifying (# < (l , l .(a))) = c) is (# < (l , l .(a)))
• Let us show that (l ,a, c); (l ∈ L(J + 1)[≤ K],a ≤ J , c ≤ J , S , 0) ⊢ σ ⊑ τ . By definition, S , 0

is equivalent to (# < (l , l .(a)) = c). Moreover, as l ∈ L(J + 1)[≤ K], this equality implies

(# > (l , l .(a)) = J − c). Thus under those conditions, we have σ = τ , and this concludes the

proof.

So finally, by subtyping, we obtain

ϕ;Φ; · ⊢R′(K, J+1) ppart : List(l | Φl ) ⊸ ν

That is to say

ϕ;Φ; · ⊢R′(K, J+1) ppart : List(l | l ∈ L(J + 1)[≤ K]) ⊸

{
1

J + 1
: List(l ′ | l ′ ∈ L(c)[≤ K]) ⊗ List(l ′ | l ′ ∈ L(J − c)[≤ K]) ⊗ Nat(a′ | a′ ≤ K) | c ≤ J }

And this shows the main goal of probabilistic quick sort : this random choice of pivot guarantees

that you obtain uniformly all the different length of partitions.

Probabilistic Quicksort. We can now give the final typing for probabilistic quicksort. The term is

described in Figure 8. And we have the typing:

ϕ;Φ; · ⊢ pquicksort : List(l | l ∈ L(J )[≤ K]) ⊸ List(l | len(l) = J , ranдe(l) ≤ K)

We give with some informality a sketch of this proof when ϕ;Φ = ∅;⊤. We pose

σ0 = List(l | l ∈ L(b)[≤ K])
σ1 = List(l | len(l) = b, ranдe(l) ≤ K)
σ = σ0 ⊸ σ1
Θ = f : {(i f (b = 0) then 0 else 2

b ) : σ {a/b} | a ≤ b − 1}

Γ = l : List(l ′ | l ′ ∈ L(c)[≤ K]), r : List(l ′ | l ′ ∈ L(b − 1 − c)[≤ K]),p : Nat(a′ | a′ ≤ K)
ϕ;Φ = (b, c); (b ≥ 1, c ≤ b − 1)

Ψ = f : {1 : σ {c/b}} + {1 : σ {b − 1 − c/b}}
Ψ1 = f : {1 : σ {c/b}}
Ψ2 = f : {1 : σ {c/b − 1 − c}}
∆ = Γ, l ′ : σ1{c/b}, r

′
: σ1{b − 1 − c/b}

We will prove informally later that b; (b ≥ 1) ⊢ Θ ⊑ { 1

b : Ψ | c ≤ b − 1}.

, Vol. 1, No. 1, Article . Publication date: January 2019.



:32 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

ϕ;Φ ⊨ ¬(0) ≥ 1

ϕ;Φ; Γ | Ψ1 ⊢0 f l : σ1{c/b}

ϕ;Φ ⊨ c + 1 + b − 1 − c = b

ϕ;Φ;∆ | · ⊢7c l
′
@cons(p, r ′) : σ0

ϕ;Φ; Γ, l ′ : σ1{c/b} | Ψ2 ⊢7b+1 let r
′ = · · · : σ1

(b, c); (b ≥ 1, c ≤ b − 1); Γ | Ψ ⊢
7b+2 let l

′ = f l in let r ′ = f r in l ′@cons(p, r ′) : σ1

b; (b ≥ 1);x : σ0 | f : { 1b : µ | c ≤ b − 1} ⊢
7b+6+R′(K,b) let ⟨l , r ,p⟩ = ppart x in let l ′ = f l in . . . : σ1

b; (b ≥ 1);x : σ0 | Θ ⊢
7b+6+R′(K,b) let ⟨l , r ,p⟩ = ppart x in let l ′ = f l in let r ′ = f r in l ′@cons(p, r ′) : σ1

b;⊤;x : σ0 | Θ ⊢
7b+8+R′(K,b) match x with { nil 7→ nil | cons 7→ λ_.let ⟨l , r ,p⟩ = ppart x in . . . } : σ1

b;⊤; · | Θ ⊢
7b+9+R′(K,b) λx .match x with { nil 7→ nil | cons 7→ . . . } : σ0 ⊸ σ1

⊢Q {J /b } pquicksort : σ {J/b}

The inequations that Q must verify are :

⊨ Q{0/b} ≥ 10 + R′(K , 0)

b; (b ≥ 1) ⊨ Q ≥ 7b + 10 + R′(K ,b) +
∑

a≤b−1

2 ·Q{a/b}

b

So, intuitively

∀n ∈ N,Q(n + 1) ≥ 7n + 17 + R′(K ,n + 1) +
∑
m≤n

2 ·Q(m)

n + 1

As R′(K ,n + 1) is linear in n in the number of comparison, we obtain an equation very similar to

the usual one for randomized quicksort, thus we can give Q a value with a form (C · b · loд(b)) · K ,
expressing the usual complexity of quicksort in the number of comparison.

We show informally that b; (b ≥ 1) ⊢ Θ ∼ { 1

b : Ψ | c ≤ b − 1}.

Ψ = f : {1 : σ {c/b}} + {1 : σ {b − 1 − c/b}}

{
1

b
: Ψ | c ≤ b − 1} ∼ f : {

1

b
: σ {c/b} | c ≤ b − 1} + {

1

b
: σ {b − 1 − c/b} | c ≤ b − 1}

{
1

b
: Ψ | c ≤ b − 1} ∼ f : {

1

b
: σ {c/b} | c ≤ b − 1} + {

1

b
: σ {c/b} | c ≤ b − 1}

{
1

b
: Ψ | c ≤ b − 1} ∼ f : {

2

b
: σ {a/b} | a ≤ b − 1} = Θ

Thus, our type system can effectively show that the average number of comparison in probabilistic

quicksort is in O(n log(n).

5 EXTENSIONAL COMPLETENESS
5.1 Probabilistic Turing Machines and Their Enconding
Let us express a kinf of completeness for this calculus. In this section, we prove that we can simulate

any PAST probabilistic Turing machine. First, let us define what are the kind of Turing machine we

will encode.

Definition 5.1 (Probabilistic TuringMachine). A probabilistic Turingmachine is a tuple (Q,qi ,δ0,δ1, F )
where Q is a set of states, qi is the initial state, δ0 and δ1 are transition functions with type

Q × {0, 1} → Q × {0, 1} × {le f t , riдht , stay} and F ⊆ Q is the set of terminating states. With this

definition, we consider that at each step, the Turing machine does a probabilistic choice: with prob-

ability
1

2
, it does the δ0 transition, and with probability

1

2
it does the δ1 transition. A configuration

of such a Turing machine is a tuple (w,b,w ′,q) where b ∈ {0, 1} is the value of the tape at the
current position of the head, andw (resp.w ′

) is the tape before (resp. after) the head. And finally, q

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :33

init ≡ λw. ⟨ϵ,w,qi ⟩

PTM ≡ λwi.
(fix f. λc. let ⟨w,v,q⟩ = c in

let r = Unif 1 in
match r with

|0 7→ case(w,v,q,0)
|s 7→ λ_. case(w,v,q,1)

) (init wi)

Fig. 9. Terms for Turing Machines

represent the current state of the machine. In order for this machine to compute a word, we ask

that when the machine reaches a terminating state, then the configuration has the form (ϵ,b,w,qF )
with qF ∈ F , and the output word is bw . Note that a probabilistic Turing machine computes a

distribution of words, since each step is a probabilistic choice. In order to talk about the notion

of termination, let us introduce some notations: given a configuration c = (w,b,w ′,q), we note
next0(c) and next1(c) the two configurations obtained after a δ0 or δ1 transition from c .

We can now define what is a PAST Turing machine. In order to do that, we use lyapunov ranking

function.

Definition 5.2 (PAST Turing machine). A probabilistic Turing machine (Q,q0,δ0,δ1, F ) is PAST
when there exists a function f from configurations to rationals such that for any non-final con-

figuration c = (w,b,w ′,q), we have f (c) ≥ 1 +
f (next0(c))

2
+

f (next1(c))
2

, and for all terminating

configuration, f (c) = 0. Intuitively, this means that f (c) is an upper bound of the expected number

of steps from the configuration c . And so, for any initial configuration ci = (ϵ,b,w,qi ), we know
that in average, the probabilistic Turing machine will stop after f (ci ) steps.

Now we will encode those kind of Turing machine in our calculus. In order to do that, we will

represent a configuration (w,b,w ′,q) by three binary wordswl ,wr ,wq such thatwl is the mirror

ofw ,wr = bw
′
andwq is a word representing the state q, of fixed size SQ depending of the size of

Q . In the same way, we can encode a configuration in an integer, by using for example integers in

base 3 and using the digit 2 to separate binary words. Let us introduce some notation for those

encoding.

Definition 5.3 (Notations). From now on, configurations will always be represented by the triple

(wl ,wr ,wq). From such a configuration c , we note Intconf (c) the integer representing this con-

figuration. When n is an integer representing a configuration, we denote πr (n),πl (n) and πq(n)
the three projections of n into the wordswl ,wr andwq . Otherwise, when n does not represent a

configuration, we send it to a fixed chosen configuration.

So, in our calculus, a configuration (wl ,wr ,wq) has the type Word(wl ) ⊗ Word(wr ) ⊗ Word(w |

w = wq ∧ |w | = SQ ). Thus, for an natural index I , we denote by Conf(I ) the type Word(πl (I )) ⊗
Word(πr (I )) ⊗ Word(w | w = πq(I ) ∧ |w | = SQ ).

5.2 Terms to Simulate Turing Machines
We now describe how to simulate a probabilistic Turing machine (Q,qi ,δ0,δ1, F ) in our calculus. We

add a base type to our calculus : binary words with type Word(ω | Φ). Thus, we have constructors
for successors s0 and s1, the empty word ϵ and a match on words. Formally, we should give the

typing rule for words, however they can easily be deduced from the one for integers and lists.

, Vol. 1, No. 1, Article . Publication date: January 2019.



:34 Martin Avanzini, Ugo Dal Lago, and Alexis Ghyselen

To simulate Turing machine, first, in figure 9, we give the term init. Note that in this term, qi
denote the word of fixed size corresponding to the initial state qi of the Turing machine. We can

easily show that init has type Word(w) ⊸ Word(ϵ) ⊗ Word(w) ⊗ Word(w | w = qi ∧ |w | = SQ ).
Then, to encode the Turing machine, we use the term PTM. Let us describe informally what is

the term case(w,v,q, 0). This term will simulate a δ0 transition and then apply f to this new

configuration. For that, we first recover the first letter of v with a match, and then we decompose

entirely q using SQ match. Then, on a specific conditional branch where we know the first letter b
of v (and so v = sb (v

′)) and the actual state q < F , we write a term corresponding to the transition

δ0. For example, if δ (q,b) = (q′,b ′, riдht), the term in the conditional branch corresponding to b,q
will be f ⟨sb′(w),v ′,q′⟩. Note that we do a recursive call to f in this case in order to continue the

computation. However, in the case of a terminating state q ∈ F , we just output the word without

calling f , thus the term in a branch for a terminating state is just v since when a Turing machine

terminates, the output of this machine is just the current word after the head. This correspond to

the base case of our fixpoint. In the same way, the second case simulates δ1 transitions.
With this definition, from a wordw , PTM w behaves like the associated Turing machine. Let us

show that we can indeed type this term.

5.3 Typing and Complexity Bound
As expressed before, init has typeWord(w) ⊸ Word(ϵ) ⊗Word(w) ⊗Word(w | w = qi ∧ |w | = SQ ).
The index variable b in the fixpoint here represents the current configuration, and we obtain :

b; ·; · | f : {
active(b)

2
: Conf(nexta(b)) ⊸ Word(w | ⊤) | a ≤ 1} ⊢kstep λc . · · · : Conf(b) ⊸ Word(w | ⊤)

· ⊢R {Intconf (ϵ,w,qi )/b } fix f .λc . . . . : Conf(Intconf (ϵ,w,qi )) ⊸ Word(w | ⊤)

The index active(I ) is a function equals to O if the configuration encoded by I is final and it is

equal to 1 otherwise. Intuitively, this types means that for final configurations, we do not call f ,
and for active configurations, with probability

1

2
, f is called on the configuration obtained with a

δ0 transition and with probability
1

2
, f is called on the configuration obtained with a δ1 transition.

Let us sketch how this typing works in the derivation. In the subterm let r = Unif1 in . . . ,
we can decompose our distribution for f in two. Indeed, r has type Nat(c) (with probability

1

2
) for

some c ≤ 1 and for this c , we take the typing hypothesis ν = f : {active(b) : Conf(nextc (b)) ⊸
Word(w | ⊤) | a ≤ 0}, and it’s direct that the convolution { 1

2
: ν | c ≤ 1} is equal to the

original distribution for f . Now, let us take a particular branch of the case term corresponding

to the transition δ (q, i) = (q′, i ′, riдht). We have to derive the following judgment: ϕ;Φ; Γ | Θ ⊢

f ⟨si′(w),v ′,q′⟩ : Word(w | ⊤) with

• ϕ = (b, c), where b encode the current configuration and c represents the integer r
• Φ = (c = 0,πq(b) = q, (πr (b))0 = i), indeed, with the match on r , on v and on q, we can
derive those hypothesis

• Γ = w : Word(πl (b)),v ′
: Word(w | si (w) = πr (b))

• Θ = f : {active(b) : Conf(nextc (b)) ⊸ Word(w | ⊤)}

As we supposed that q is not a final state, we know that active(b) = 1. Also, knowing that

πq(b) = q and (πr (b))0 = i we can compute next0(b) and verify that Conf(next0(b)) is indeed the

type of ⟨si′(w),v ′,q′⟩. In the same way, we can show that the term that simulates the Turing

machine is well typed for all other cases.

Now, let us talk about the complexity bound of this term. Let us call fT the lyapunov ranking

function associated to the PAST probabilistic Turing machine. This function fT is given as a function

index FT from integer to rational numbers such that FT (Intconf (wl ,wr ,wq) = fT (wl ,wr ,wq). Let

, Vol. 1, No. 1, Article . Publication date: January 2019.



Type-Based Complexity Analysis of Probabilistic Functional Programs :35

us call kstep and kinit the constant bounds derived from the typing of (λc . . . . ) and (init wi ). We

show that the index R = (1 + kstep )(FT (b) + 1) satisfies the inequation for the fixpoint. Indeed, R
must satisfy

b; · ⊨ R ≥ 1 + kstep +
active(b)

2

R{next0(b)/b} +
active(b)

2

R{next1(b)/b}

When b is a final state, this is direct as R = 1 + kstep ≥ 1 + kstep . Otherwise, we obtain:

b; · ⊨ R ≥ 1 + kstep +
1

2

R{next0(b)/b} +
1

2

R{next1(b)/b}

b; · ⊨ FT (b) + 1 ≥ 1 +
1

2

(FT (next0(b)) + 1) +
1

2

(FT (next1(b)) + 1)

b; · ⊨ FT (b) ≥ 1 +
1

2

FT (next0(b)) +
1

2

FT (next1(b))

which is true by definition of the lyapunov ranking function FT . Thus, to conclude, for the term

PTM we obtain the bound (1 + kstep )(FT (Intconf (ϵ,w,qi )) + 1) + 1 + kinit . Note that if fT (ϵ,w,qi )
is aO(E(w)), where E(w) is the expected complexity of the run of the PTM onw , then our bound is

also a O(E(w))

6 CONCLUSIONS
REFERENCES
Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. 2018. On Probabilistic Term Rewriting. In Proc. of 14th FLOPS (LNCS),

Vol. 10818. Springer, 132–148.

Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2017. Coupling proofs are probabilistic product

programs. In ACM SIGPLAN Notices, Vol. 52. ACM, 161–174.

Ugo Dal Lago and Charles Grellois. 2017. Probabilistic Termination by Monadic Affine Sized Typing. In Proc. of 26th ESOP.
393–419.

U. Dal Lago and B. Petit. 2012. Linear Dependent Types in a Call-by-value Scenario. In Proc. of 12th PPDP. ACM, 115–126.

, Vol. 1, No. 1, Article . Publication date: January 2019.


	Abstract
	1 A Probabilistic Functional Language Extending Affine PCF
	2 The Type System
	2.1 Indexes, Types and Subtyping
	2.2 Subtyping
	2.3 Typing Rules
	2.4 Example

	3 Type Soundness
	3.1 Weakening, Contraction and Index Substitution
	3.2 Proprieties of Values and Substitution Lemmas
	3.3 Generation Lemma and Subject Reduction
	3.4 Multi-Distributions, Reduction Rules and Subject Reduction

	4 Back to Our Example
	4.1 Extension of the Type System for Lists
	4.2 Intermediate Terms
	4.3 Partitions and Quick Sort

	5 Extensional Completeness
	5.1 Probabilistic Turing Machines and Their Enconding
	5.2 Terms to Simulate Turing Machines
	5.3 Typing and Complexity Bound

	6 Conclusions
	References

