A PROOF OF THE CAFFARELLI CONTRACTION THEOREM VIA ENTROPIC REGULARIZATION - Archive ouverte HAL
Article Dans Une Revue Calculus of Variations and Partial Differential Equations Année : 2020

A PROOF OF THE CAFFARELLI CONTRACTION THEOREM VIA ENTROPIC REGULARIZATION

Résumé

We give a new proof of the Caffarelli contraction theorem, which states that the Brenier optimal transport map sending the standard Gaussian measure onto a uniformly log-concave probability measure is Lipschitz. The proof combines a recent variational characterization of Lipschitz transport map by the second author and Juillet with a convexity property of optimizers in the dual formulation of the entropy-regularized optimal transport (or Schrödinger) problem.
Fichier principal
Vignette du fichier
Caffarelli 6.pdf (240.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02096009 , version 1 (11-04-2019)
hal-02096009 , version 2 (29-06-2019)

Identifiants

Citer

Max Fathi, Nathael Gozlan, Maxime Prod’homme. A PROOF OF THE CAFFARELLI CONTRACTION THEOREM VIA ENTROPIC REGULARIZATION. Calculus of Variations and Partial Differential Equations, 2020, 59 (3), pp.96. ⟨10.1007/s00526-020-01754-0⟩. ⟨hal-02096009v2⟩
440 Consultations
978 Téléchargements

Altmetric

Partager

More