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We give a new proof of the Caffarelli contraction theorem, which states that the Brenier optimal transport map sending the standard Gaussian measure onto a uniformly log-concave probability measure is Lipschitz. The proof combines a recent variational characterization of Lipschitz transport map by the second author and Juillet with a convexity property of optimizers in the dual formulation of the entropy-regularized optimal transport (or Schrödinger) problem.

Introduction

The aim of the paper is to give a new proof of the celebrated Caffarelli contraction theorem [START_REF] Caffarelli | Monotonicity properties of optimal transportation and the FKG and related inequalities[END_REF][START_REF] Erratum | Monotonicity of optimal transportation and the FKG and related inequalities[END_REF], which states that the Brenier optimal transport map sending the standard Gaussian measure on R d , denoted by γ d in all the paper, onto a probability measure ν having a log-concave density with respect to γ d is a contraction. More precisely, let us recall the generalized version of Caffarelli's theorem: Theorem 1 (Caffarelli [START_REF] Caffarelli | Monotonicity properties of optimal transportation and the FKG and related inequalities[END_REF][START_REF] Erratum | Monotonicity of optimal transportation and the FKG and related inequalities[END_REF]). For any probability measures µ and ν respectively of the form µpdxq " e V pxq γ d pdxq and νpdxq " e ´W pxq γ d pdxq with V and W convex functions, and further assuming µ has a finite second moment and ν is compactly supported, there exists a continuously differentiable and convex function φ : R d Ñ R such that ∇φ is 1-Lipschitz and ν " ∇φ # µ.

Caffarelli's original result was only stated for the important particular case where µ is the Gaussian measure γ d (i.e. V " 0), but his proof readily extends to this more general setting [START_REF]On Sobolev regularity of mass transport and transportation inequalities[END_REF]. Note that the assumption that ν is compactly supported can be removed via approximation. See [START_REF] Villani | Optimal transport, Grundlehren der Mathematischen Wissenschaften[END_REF]Corollary 5.21] for details. Note that in all the paper we allow convex function to take the value `8.

This result plays an important role in the Functional Inequality literature, as it enables to transfer geometric inequalities such as Log-Sobolev or Gaussian Isoperimetric inequalities from the Gaussian measure to probability measures with a uniformly log-concave density. See [START_REF] Cordero-Erausquin | Some applications of mass transport to Gaussian-type inequalities[END_REF][START_REF] Hargé | A particular case of correlation inequality for the Gaussian measure[END_REF][START_REF]Inequalities for the Gaussian measure and an application to Wiener space[END_REF][START_REF]Spectral estimates, contractions and hypercontractivity[END_REF] for some applications of Theorem 1 to functional inequalities. It has also been used to derive deficit estimates in functional inequalities [START_REF] De | Rigidity and stability of Caffarelli's log-concave perturbation theorem[END_REF][START_REF] Courtade | Quantitative stability of the entropy power inequality[END_REF]. Crucial for such applications is the dimension-free nature of the bound, to preserve the dimension-independent estimates that arise from these functional inequalities, and which are at the center of their applications in statistics for example. More recently, there have been some extensions, such as dimension-free Sobolev estimates [START_REF] Kolesnikov | Global Hölder estimates for optimal transportation[END_REF][START_REF]On Sobolev regularity of mass transport and transportation inequalities[END_REF] and variants for compactlysupported perturbations of the Gaussian measure [START_REF] Colombo | Lipschitz changes of variables between perturbations of logconcave measures[END_REF].

Caffarelli's original proof relies on the formulation of Brenier maps as solutions to a Monge-Ampère equation, and uses maximum principle-type estimates. In particular, it does not actually exploit the fact that ∇φ is an optimal transport map. This is also the case for the other proofs [START_REF]On Sobolev regularity of mass transport and transportation inequalities[END_REF][START_REF] Kim | A generalization of Caffarelli's contraction theorem via (reverse) heat flow[END_REF]. Our purpose here is to provide a different proof that does directly exploit ideas from optimal transport theory.

In this paper, we develop an approach based on a variational characterization of Lipschitz regularity of optimal transport maps obtained by the second author and Juillet in [START_REF] Gozlan | On a mixture of Brenier and Strassen theorems[END_REF]. To recall this result, we need to introduce some notations and definitions. We will denote by PpR d q the set of Borel probability measures on R d and by P k pR d q, k ě 1, the subset of PpR d q of probability measures having a finite moment of order k. The quadratic Kantorovich distance W 2 is defined for all µ, ν P P 2 pR d q as follows:

W 2 2 pµ, νq " inf πPCpµ,νq ż |x ´y| 2 πpdxdyq,
where | ¨| denotes in all the paper the standard Euclidean norm and Cpµ, νq is the set of couplings between µ and ν, that is to say the set of probability measures on R d ˆRd such that πpAˆR d q " µpAq and πpR d ˆBq " νpBq, for all Borel sets A, B of R d . Finally, if η 1 , η 2 P P 1 pR d q, one says that η 1 is dominated by η 2 for the convex order if ş f dη 1 ď ş f dη 2 for all convex function f : R d Ñ R. In this case, we write η 1 ď c η 2 . With these notations in hand, the variational characterization of [START_REF] Gozlan | On a mixture of Brenier and Strassen theorems[END_REF] reads as follows:

Theorem 2. Let µ, ν P P 2 pR d q ; the following assertions are equivalent:

(i) There exists a continuously differentiable and convex function φ : R d Ñ R such that ∇φ is 1-Lipschitz and ν " ∇φ # µ, (ii) For all η P P 2 pR d q such that η ď c ν, W 2 pν, µq ď W 2 pη, µq.

In other words the Brenier map between µ and ν is a contraction if and only if ν is the closest point to µ among all probability measures dominated by ν in the convex order. We will give an alternative proof of this Theorem in Section 4 in the particular case where the support of ν is convex (which is enough for our purpose here) using Kantorovich duality and variational arguments.

Our strategy to recover Theorem 1 is thus to show the following monotonicity property of the W 2 distance: if µ and ν satisfy the assumptions of Theorem 1, it holds [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF] W 2 pν, µq ď W 2 pη, µq, @η ď c ν.

For that purpose, we will establish a similar inequality at an information theoretic level replacing W 2 by the so called entropic transport cost T ε H (presented in details in the next section) that is defined in terms of the minimization of the relative entropy between π and a reference measure R ε involving some small noise parameter ε ą 0. We will prove the following monotonicity property of the entropic cost:

(2)

T ε H pν, µq ď T ε H pη, µq
for all η ď c ν with a finite Shannon information. As observed by Mikami [START_REF] Mikami | Monge's problem with a quadratic cost by the zero-noise limit of h-path processes[END_REF] and extensively developed by Léonard [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF][START_REF]A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF] the zero noise limit of εT ε H is 1 2 W 2 2 . Thus letting ε Ñ 0 in (2) will give (1). As mentioned above, the Caffarelli contraction theorem has a lot of applications in the field of geometric and functional inequalities. We refer the interested reader to [START_REF] Gentil | About the analogy between optimal transport and minimal entropy[END_REF][START_REF] Gentil | An entropic interpolation proof of the HWI inequality[END_REF][START_REF] Conforti | Around the entropic Talagrand inequality[END_REF][START_REF] Conforti | A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost[END_REF] for some direct applications of entropic costs, Schrödinger bridges and entropic interpolations in this field.

The paper is organized as follows. Section 2 introduces entropic transport costs and the main results of the paper. Section 3 gives proofs of these results. Section 4 presents the alternative proof of Theorem 2.

Entropic transport costs and main results

2.1. Entropic costs and their zero-noise limit. Consider the classical Ornstein-Uhlenbeck process pZ t q tě0 on R d , defined by the following stochastic differential equation:

dZ t " ´1 2 Z t dt `dW t , t ě 0,
where pW t q tě0 is a standard d dimensional Brownian motion and Z 0 " γ d . As it is well known, the process Z admits the following explicit representation

Z t " Z 0 e ´t{2 `e´t{2 ż t 0 e s{2 dW s , t ě 0.
The joint law of pZ 0 , Z ε q will be denoted by R ε . It is therefore given by

R ε " Law ´X, Xe ´ε{2 `?1 ´e´ε Y ¯,
with X, Y two independent standard Gaussian random vectors on R d . In other words,

R ε pdxdyq " γ d pdxqr ε x pdyq, where x Þ Ñ r ε
x is the probability kernel defined by r ε x " N pxe ´ε{2 , p1 ´e´ε qI d q. Recall that the relative entropy of a probability measure α with respect to another probability measure β on some measurable space pX , Aq is defined by

Hpα|βq " ż log ˆdα dβ ˙dα,
if α is absolutely continuous with respect to β. If this is not the case, one sets Hpα|βq " `8. The relative entropy is a non-negative quantity that vanishes only when the two probability measures are equal, this is why it is often called Kullback-Leibler distance (even though it is not a true distance).

Definition 3 (Entropic transport cost). For all probability measures µ, ν on R d , the entropic transport cost associated to R ε is defined by

T ε H pµ, νq " inf πPCpµ,νq
Hpπ|R ε q.

As shown by Mikami, Léonard and others [START_REF] Mikami | Monge's problem with a quadratic cost by the zero-noise limit of h-path processes[END_REF][START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF] the zero noise limit of

εT ε H is 1 2 W 2 2 .
At a heuristic level, this phenomenon can be easily understood from the following identities:

εHpπ|R ε q " ε ż log ˆdπ dx ˙dπ ´ε ż log ˆdR ε dx ˙dπ " ε ż log ˆdπ dx ˙dπ `ε 2p1 ´e´ε q ż |y ´e´ε{2 x| 2 πpdxdyq `ε 2 ż |x| 2 µpdxq `cpεq,
where cpεq Ñ 0 (and is independent of µ, ν, π). So for small ε,

minimizing π Þ Ñ Hpπ|R ε q amounts to minimizing π Þ Ñ 1 2 ş |x ´y| 2 πpdxdyq.
In the sequel we will use the following result, which can be easily deduced from a general convergence theorem due to Carlier, Duval, Peyré and Schmitzer [START_REF] Carlier | Convergence of entropic schemes for optimal transport and gradient flows[END_REF]Theorem 2.7]. We will say that a probability measure η is of finite (Shannon) entropy if it is absolutely continuous with respect to the Lebesgue measure and if ş log ´dη dx ¯dη is finite. Note that, if η P P 2 pR d q, then it is of finite entropy if and only if Hpη|γ d q ă `8.

Theorem 4 (Carlier et al. [START_REF] Carlier | Convergence of entropic schemes for optimal transport and gradient flows[END_REF]). Suppose that µ, ν P P 2 pR d q are of finite entropy. Then, it holds

εT ε H pµ, νq Ñ 1 2 W 2 2 pµ, νq as ε Ñ 0.
We state now a technical lemma that will be needed to apply Theorem 4 in our framework:

Lemma 5. If µ and ν satisfy the assumptions of Theorem 1, then they are of finite entropy.

The proof is postponed to Section 3.

2.2.

Entropic cost in the framework of Caffarelli theorem. As explained above, the key step in our approach consists in showing that on the set of probability measures dominated by ν in the convex order, the closest point to µ for the entropic cost distance is ν itself (when ν satisfies the assumptions of Theorem 1).

Theorem 6. Let µ and ν satisfy the assumptions of Theorem 1. Additionally assume that V is bounded from below. If η is such that η ď c ν, then for all ε ą 0

T ε H pµ, ηq ě T ε H pµ, νq.
Let us admit Theorem 6 for a moment and complete the proof of Theorem 1.

Proof of Theorem 1. Let us temporarily assume that V is bounded from below. According to Lemma 5, µ and ν have finite entropy. So using Theorem 4, one concludes by letting ε Ñ 0 that for all compactly supported probability measures ν of the form νpdxq " e ´W pxq γ d pdxq, with W : R d Ñ R Y t`8u convex, it holds W 2 pµ, νq ď W 2 pµ, ηq for all η of finite entropy and such that η ď c ν. Now, fix some compactly supported ν 0 of the form ν 0 pdxq " e ´W0pxq γ d pdxq, with W 0 : R d Ñ R Y t`8u convex and let us show that the inequality (1) holds for any η ď c ν. Take η ď c ν 0 and define, for all θ P p0, π{2q, ν θ " Lawpcos θX `sin θZq and η θ " Lawpcos θY `sin θZq, where X " ν 0 , Y " η and Z is independent of X and Y and has density 1

C 1 B pxqe ´|x| 2 2
, where B is the Euclidean unit ball. According to Lemma 14, ν θ is compactly supported and of the form e ´Wθ γ d , with W θ convex, η θ is of finite entropy and η θ ď c ν θ . Therefore, it holds W 2 pµ, ν θ q ď W 2 pµ, η θ q. Letting θ Ñ 0 gives W 2 pµ, ν 0 q ď W 2 pµ, ηq for all η ď c ν 0 , which, according to Theorem 2, completes the proof when µ has finite entropy.

Finally, let us remove the assumption that V is bounded from below. Since V is convex, it is bounded from below by some affine function. Thus there exists some a P R d such that x Þ Ñ V pxq`a¨x is bounded from below. Consider the probability measure μ defined as the push forward of µ under the translation x Þ Ñ x `a. An easy calculation shows that the density of μ with respect to γ d is Ce V px´aq`a¨px´aq , with C a normalizing constant, and so μ satisfies our assumptions. Therefore, there exists a continuously differentiable convex function φ : R d Ñ R such that ∇ φ is 1-Lipschitz and ν " ∇ φ# μ. Setting φpxq " φpx `aq, x P R d , one gets ν " ∇φ # µ which completes the proof.

Before proving Theorem 6, let us informally explain why one can guess the statement is easier to prove at the level of entropic cost than directly for the Wasserstein distance. If we consider the plain relative entropy, we have the variational formula

Hpρ|µq " sup ż f dρ ´log ż e f dµ,
where the supremum runs over the set of functions f such that ş e f dµ ă `8. Hence, taking f " ´pV `W q, gives Hpρ|µq ě ż ´pV `W q dρ ě ż ´pV `W q dν " Hpν|µq as soon as ρ ď c ν. So this trivial bound hints at the fact that comparison is easier for entropies when we have a log concavity condition on the relative density.

To prove Theorem 6, we need to know more about the optimal coupling π for T ε H pµ, νq. The following is classical in entropic transport literature and goes back to the study of the so called Schrödinger bridges [START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF].

Proposition 7. Let µ, ν P P 2 pR d q be such that Hpµ|γ d q ă `8 and Hpν|γ d q ă `8

(1) There exists a unique coupling π ε P Cpµ, νq such that

T ε H pµ, νq " Hpπ ε |R ε q ă `8
(2) There exist two measurable functions f ε , g ε : R d Ñ R `such that log f ε P L 1 pµq, log g ε P L 1 pνq and

π ε pdxdyq " f ε pxqg ε pyqR ε pdxdyq.

Sketch of proof. (1)

We equip the set PpR d ˆRd q with the usual topology of narrow convergence. For this topology, the function π Þ Ñ Hpπ|R ε q is lower-semicontinuous and the set Cpµ, νq is compact. Therefore, the function Hp ¨|R ε q attains its minimum at some point π ε of Cpµ, νq. It is easily checked that the coupling π 0 " µ b ν is such that Hpπ 0 |R ε q ă `8, so Hpπ ε |R ε q ă `8. Uniqueness comes from the strict convexity of Hp ¨|R ε q. For the proof of ( 2) we refer to [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF]Corollary 3.2]. In the special case where µ and ν satisfy our log-convexity/concavity assumptions we will give a self-contained proof in Section 3.

In the setting of Theorem 1, it turns out that much more can be said about the functions f and g. This is explained in the following result, which seems of independent interest. Theorem 8. With the same notation as in Proposition 7, let µ be a probability measure of the form µpdxq " e V pxq γ d pdxq with a finite second moment and ν be a compactly supported probability measure on R d of the form νpdxq " e ´W pxq γ d pdxq, with V, W convex and V bounded from below. There exist a log-convex function f ε : R d Ñ r1, `8q and a log-concave function g ε : R d Ñ r0, `8q such that the unique optimal coupling π ε P Πpµ, νq is of the form π ε pdxdyq " f ε pxqg ε pyq R ε pdxdyq. Moreover, the function log f ε is integrable with respect to µ and the function log g ε is integrable with respect to ν and it holds

T ε H pµ, νq " Hpπ ε |R ε q " ż log f ε dµ `ż log g ε dν.
We now give a brief heuristic explanation as to why one can expect this statement to imply the Caffarelli contraction theorem. Informally, from the convergence of the entropic cost to the Wasserstein distance, we expect from the dual formulation that ε log f converges to |x| 2 {2 ´ϕ (up to some additive constant), where ϕ is a potential giving rise to the optimal transport map T " ∇ϕ. However convexity is preserved by pointwise convergence, so we expect |x| 2 {2 ´ϕ to also be convex. But this is equivalent to ∇ϕ being 1-Lipschitz, since the eigenvalues of the Hessian of ϕ must then be bounded by 1. Theorem 2 will allow us to avoid having to prove convergence of ε log f to a Kantorovich potential. Section 3 is essentially devoted to the proof of Theorem 8. With Theorem 8 in hand, the proof of Theorem 6 becomes almost straightforward:

Proof of Theorem 6. Recall the following duality inequality for the relative entropy : if α, β are two probability measures on a measurable space pX , Aq such that Hpα|βq ă `8, then for any measurable function h : X Ñ R such that ş e h dβ ă `8, it holds ş rhs `dα ă `8 and

(3) Hpα|βq ě ż h dα ´log ˆż e h dβ Let π P Cpµ, ηq be a coupling between µ and some probability η ď c ν such that Hpπ|R ε q ă `8 ; applying the inequality above to α " π, β " R ε and hpx, yq " log pf ε pxqg ε pyqq, x, y P R d gives

Hpπ|R ε q ě ż log f ε pxq `log g ε pyq πpdxdyq " ż log f ε pxq µpdxq `ż log g ε pyq ηpdyq ě ż log f ε pxq µpdxq `ż log g ε pyq νpdyq " Hpπ ε |R ε q " T ε H pµ, νq,
where the second inequality comes from the fact that log g ε is a concave function and η ď c ν. Optimizing over π, gives the inequality T ε H pµ, ηq ě T ε H pµ, νq and completes the proof.

To conclude this section, we mention some perspectives. The most natural question is whether this scheme of proof can be adapted to establish a version of Caffarelli's theorem in other settings than R d , such as on manifolds or in free probability [START_REF] Guionnet | Free monotone transport[END_REF]. See [START_REF]Spectral estimates, contractions and hypercontractivity[END_REF] for some motivations in analysis and geometry. See [START_REF] Gigli | Benamou-Brenier and duality formulas for the entropic cost on RCD ˚pk, nq spaces[END_REF] for a study of Schrödinger's problem in a wider geometric setting. Another question is about integrated or non-local quantitative regularity estimates, such as those in [START_REF] Kolesnikov | Global Hölder estimates for optimal transportation[END_REF][START_REF]On Sobolev regularity of mass transport and transportation inequalities[END_REF]. The role of 1-Lipschitz bounds in Theorem 2 is very specific, we do not know if there is an analogue of that equivalence adapted to other types of regularity bounds. However, it could be possible to prove stable a priori bounds on ε log f ε and pass to the limit. Of particular interest is whether we can establish integrated gradient bounds for non-uniformly convex potentials, since such estimates can still be used to establish Poincaré inequalities [START_REF] Milman | On the role of convexity in isoperimetry, spectral gap and concentration[END_REF][START_REF] Klartag | Poincaré inequalities and moment maps[END_REF]. Finally, [START_REF] De | Rigidity and stability of Caffarelli's log-concave perturbation theorem[END_REF] proves a rigidity/stability result for the Caffarelli contraction theorem, and it would be interesting to find a way to improve the quantitative bounds.

Proofs

This section contains the material needed to prove Theorem 6. The ideas developed here are adapted from a paper by Fortet [START_REF] Fortet | Résolution d'un système d'équations de M. Schrödinger[END_REF]. We warmly thank Christian Léonard for mentioning us this paper and explaining to us the ingredients of Fortet's proof. Fortet's work was recently revisited in [START_REF] Essid | Traversing the Schrödinger Bridge Strait: Robert Fortet's Marvelous Proof Redux[END_REF][START_REF]Revisiting Fortet's proof of existence of a solution to the Schrödinger system[END_REF].

We will denote by P ε the Ornstein-Uhlenbeck semi-group at time ε defined for all non-negative measurable function ψ by

P ε ψpxq " ErψpZ ε q|Z 0 " xs " 1 p2πq d{2 1 p1 ´e´ε q d{2 ż R d ψpy `e´ε{2 xqe ´|y| 2 2p1´e ´ε q dy, x P R d .
Suppose that f ε , g ε are measurable non-negative functions such that π ε pdxdyq " f ε pxqg ε pyqR ε pdxdyq belongs to Cpµ, νq. Then, writing the marginals condition, one sees that f ε and g ε are related to each other by the identities: for all x, y P R d (4) f ε pxqP ε g ε pxq " e V pxq and g ε pyqP ε f ε pyq " e ´W pyq .

These relations suggest to introduce the functional Φ ε defined as follows: for all measurable function h : R d Ñ R Y t`8u,

Φ ε phq " V ´log ˆP ε ˆe´W 1 P ε pe h q ˙˙.
With this notation, a couple pf ε , g ε q satisfies (4) if and only if g ε " e ´W 1 P ε pf ε q and f ε " e h ε with h ε such that h ε " Φ ε ph ε q. This fixed point equation suggests that the unknown function h ε could be obtained as the limit when n Ñ `8 of a sequence ph n q ně0 satisfying the recursive scheme [START_REF] Chen | Entropic and displacement interpolation: a computational approach using the Hilbert metric[END_REF] h n`1 " Φ ε ph n q, n ě 0 and initialized with some function h 0 . This fixed point scheme is actually at the core of the use of Sinkhorn's algorithm to numerically approximate optimal transport via entropic regularization [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF][START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF].

The convexity of h ε can then be established if we can initiate this fixed point scheme ( 5) with some convex initial data h 0 , thanks to the following key result:

Lemma 9. If h : R d Ñ R Y t`8u is convex, then Φ ε phq is also convex.
Proof. This property is inherited from the following classical properties of P ε : ' If f is log-convex, then P ε pf q is log-convex. This simply follows from Hölder inequality. ' If g is log-concave, then P ε pgq is log-concave. This follows from the fact that the set of logconcave functions is stable under convolution which is a well known consequence of Prekopa Theorem [START_REF] Prékopa | On logarithmic concave measures and functions[END_REF].

The line of reasoning sketched above is essentially the one adopted in the proof of Theorem 8, except that the recurrence scheme (5) needs to be properly modified in order to force its convergence (this modification is the same as the one proposed by Fortet in [START_REF] Fortet | Résolution d'un système d'équations de M. Schrödinger[END_REF]).

Remark 10. In the compact setting, the map Φ ε is actually a contraction with respect to a wellchosen metric, see for example [17, Lemma 1] or [START_REF] Chen | Entropic and displacement interpolation: a computational approach using the Hilbert metric[END_REF] (following the earlier ideas of [START_REF] Franklin | On the scaling of multidimensional matrices[END_REF] in the discrete setting). This would ensure that the fixed point must belong to any stable subspace. Here, we work in a noncompact setting (µ has non-compact support) and it seems the map is globally only 1-Lipschitz at that level of generality. One could however expect that it remains a contraction on a suitable stable subspace of convex functions.

Remark 11. A natural question is whether our scheme of proof can be used directly at the level of the Kantorovich dual formulation of optimal transport, rather than on the regularized version. The answer seems to be no, as in the limit while the minimizers in the dual formulation of entropic transport, suitably rescaled, converge to the Kantorovich potentials, the fixed point problem becomes degenerate in the limit, and only selects so-called c-convex functions (with the cost here being the quadratic distance), so we lose uniqueness. Indeed, there is no known fixed point scheme similar to (5) for Kantorovich potentials, which is why Sinkhorn's algorithm is only used to numerically approximate the regularized problem [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF].

Before moving on to the proof, let us present two other essential properties of Φ ε .

Lemma 12.

(1) The map Φ ε is monotone: h ď k ñ Φ ε phq ď Φ ε pkq.

(2) For any measurable h : R d Ñ R, it holds ż exp phpxq ´Φε phqpxqq dµ ď 1, with equality if h is bounded from above.

Proof. The first point is straightforward. Let us prove the second point. Since the operator P ε is symmetric in L 2 pγ d q, for any function h : R d Ñ R it holds ż e h^a´Φ ε phq dµ " ż e h^a P ε ˆe´W 1

P ε pe h q ˙dγ d " ż P ε `eh^a ˘e´W 1 P ε pe h q dγ d .
Letting a Ñ `8, one gets by monotone convergence ş e h´Φ ε phq dµ " ş tP ε pe h qă`8u e ´W dγ d which gives the claim.

The existence of a coupling of the desired form can be established under more general conditions on µ and ν: Theorem 13. Let µ be a probability measure of the form µpdxq " e V pxq γ d pdxq with V : R d Ñ R convex and bounded from below, and let ν be a probability measure on R d of the form νpdxq " e ´W pxq γ d pdxq, with W : R d Ñ R Y t`8u a convex function such that tW ă ´mu is bounded for m " inf R d V ď 0. There exist a log-convex function f ε : R d Ñ r1, `8q and a log-concave function g ε : R d Ñ r0, `8q such that the measure π ε defined by π ε pdxdyq " f ε pxqg ε pyq R ε pdxdyq belongs to Cpµ, νq.

Proof of Theorem 13. Let us show that there exists a convex function h : R d Ñ R `such that Φ ε p hq " h. Then, defining f ε " e h and g ε " e ´V {P ε pf ε q, we see that f ε is log-convex, g ε is log-concave (we use again the fact that P ε preserves log-convexity) and satisfy (4).

Let us define by induction the sequence ph n q ně0 as follows: h 0 " 0 and for all n ě 0 [START_REF] Colombo | Lipschitz changes of variables between perturbations of logconcave measures[END_REF] h n`1 " rΦ ε ph n qs `^n.

By construction, note that h n takes values in r0, n ´1s. Let us show by induction that the sequence ph n q ně0 is non-decreasing. First observe that h 1 " 0 " h 0 and so in particular h 0 ď h 1 . According to Item (1) of Lemma 12, the operator Φ ε is non-decreasing. Therefore, if h n`1 ě h n for some n ě 0, then h n`2 " rΦ ε ph n`1 qs `^pn `1q ě rΦ ε ph n qs `^pn `1q ě rΦ ε ph n qs `^n " h n`1 . Let us denote by h 8 the pointwise limit of h n as n Ñ 8. The function h 8 takes values in R `Y t`8u. Let us show that h 8 solves the following fixed point equation [START_REF] Conforti | A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost[END_REF] h 8 " rΦ ε ph 8 qs `.

Indeed, by monotone convergence, P ε pe hn q Ñ P ε pe h8 q. Then, by dominated convergence, P ε ˆe´W 1 P ε pe hn q ˙Ñ P ε ˆe´W 1 P ε pe h8 q ẇhich implies that h n Ñ rΦ ε ph 8 qs `and gives [START_REF] Conforti | A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost[END_REF]. Now let us show that h 8 is in fact a fixed point of Φ ε . Let us admit for now that Φ ε ph 8 qpxq ă `8 for all x P R d . Then, thanks to [START_REF] Conforti | A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost[END_REF], h 8 pxq ă `8 for all x P R d . According to Item (3) of Lemma 12, it holds ş e h8´Φ ε ph8q dµ ď 1. Since h 8 ě Φ ε ph 8 q, the function e h8´Φ ε ph8q is bounded from below by 1. Therefore, h 8 " Φ ε ph 8 q almost everywhere. The function Φ ε ph 8 q is easily seen to be continuous and since h 8 satisfies [START_REF] Conforti | A second order equation for Schrödinger bridges with applications to the hot gas experiment and entropic transportation cost[END_REF] it is also continuous. The functions h 8 and Φ ε ph 8 q being continuous, the equality h 8 " Φ ε ph 8 q holds in fact everywhere. To complete the proof that h 8 is a fixed point of Φ ε , it remains to prove that Φ ε ph 8 qpxq ă `8 for all x P R d . Let us assume, by contradiction, that there exists some x o P R d such that Φ ε ph 8 qpx o q " `8. This easily implies that P ε pe h8 q " `8 almost everywhere, which in turn implies that Φ ε ph 8 q " 8. Since h 8 ě Φ ε ph 8 q, one concludes also that h 8 " `8. Now let us show that there exists n 0 such that for all n ě n 0 [START_REF] Conforti | Around the entropic Talagrand inequality[END_REF] inf

xPR d Φ ε ph n qpxq ě 0.
For any x P R d , it holds (denoting by C " p2πq d{2 p1 ´e´ε q d{2 and by m " inf R d V ) dy, where we used the fact that P ε pe hn q ě 1, since h n ě 0. The sequence of functions 1 P ε pe hn q is a non-increasing sequence of continuous functions converging to 0. Therefore, according to Dini's Theorem, the convergence is uniform on the compact set K " tW ă 0u. Since W is convex, it is bounded from below on K. Therefore, there exists n 0 such that max zPK e ´W pzq 1 P ε pe hn q pzq ď e m for all n ě n 0 . Plugging this inequality into the inequality above, one easily gets [START_REF] Conforti | Around the entropic Talagrand inequality[END_REF]. Now, according to [START_REF] Conforti | Around the entropic Talagrand inequality[END_REF], there exists some n o such that Φ ε ph n0 q ě 0. Therefore h no`1 " Φ ε ph no q ď Φ ε ph no`1 q. Since h n0`1 is bounded, Item (2) of Lemma 12 yields ş e hn o`1 ´Φε phn o`1 q dµ " 1, which implies that h no`1 " Φ ε ph no`1 q. Therefore, h 8 " h no`1 , which contradicts the fact that h 8 " `8.

P ε ˆe´W 1 P ε pe hn q ˙pxq " 1 C ż R d e ´W
Finally, let k 0 " h ˚8 be the convex regularization of h 8 (which is well defined since h 8 is bounded from below). By definition k 0 ď h 8 and since h 8 ě 0, it holds k 0 ě 0. Define by induction pk n q ně1 by k n`1 " maxpΦ ε pk n q; k 0 q. Since according to Lemma 9 Φ ε preserves convexity and k 0 is convex, k n is convex for all n. The sequence k n is non-decreasing and satisfies k n ď h 8 for all n. Therefore, k n converges pointwise to some k 8 , which is also convex and finite valued. Reasoning as above one sees that k 8 " maxpΦ ε pk 8 q; k 0 q and so in particular k 8 ě Φ ε pk 8 q. Using again the fact that ş e k8´Φ ε pk8q dµ ď 1, one concludes that k 8 is a fixed point of Φ ε . Setting h " k 8 completes the proof.

Proof of Theorem 8. First, let us note that Hpµ b ν|R ε q ă `8. Since µ and ν have finite second moment, this is easily seen to be equivalent to Hpµ|γ d q ă `8 and Hpν|γ d q ă `8, which is true according to Lemma 5. According to Theorem 13, there exists a coupling π ε pdxdyq " f ε pxqg ε pyq R ε pdxdyq P Cpµ, νq such that f ε is log-convex and g ε is log-concave. It remains to show that this coupling is optimal for T ε H pµ, νq. Since P ε f ε pyqg ε pyq " e ´W pyq , y P R d , one sees that log g ε pyq " ´W pyq ´log P ε f ε pyq. The function log P ε f ε is bounded continuous on the support of ν and W is integrable with respect to ν. Therefore, log g ε is integrable with respect to ν. On the other hand, since log f ε ě 0, the integral ş log f ε dµ makes sense in r0, `8s. Let π P Cpµ, νq be a coupling such that Hpπ|R ε q ă `8 (this set is non empty, since it contains µ b ν). Applying Inequality (3) with α " π, β " R ε and hpx, yq " log f ε pxq `log g ε pyq, x, y P R d , gives Hpπ|R ε q ě ż log f ε pxq `log g ε pyq πpdxdyq " ż log f ε pxq µpdxq `ż log g ε pyq νpdyq, which shows that log f ε is integrable with respect to µ. A simple calculation shows that

Hpπ ε |R ε q " ż log f ε pxq µpdxq `ż log g ε pyq νpdyq,
which shows its optimality.

Finally let us prove the technical lemmas used in the proof of Theorem 1.

Proof of Lemma 5. Let us first show that the probability measure µ has finite entropy. Since µ has a finite second moment, it is enough to show that Hpν|γ d q ă `8, which amounts to show that V is µ integrable. Since V is bounded from below by some affine function, it is clear that rV s ´is µ integrable. Moreover, since the convex function V is such that ş e V pxq γ d pdxq " 1, this implies according to [21, Lemma 2.1] that rV s `pxq ď |x| 2 2 , for all x P R d , and so rV s `is also µ integrable. Similarly, to see that Hpν|γ d q ă `8, it is enough to show that W is ν integrable. On the one hand, ş rW s `dν " ş " logpe ´W qe ´W ‰ ´dγ d ď 1 e . On the other hand, rW s ´is ν integrable since W is bounded from below by some affine function.

The following Lemma was used in the proof of Theorem 1: Lemma 14. Let νpdxq " e ´W pxq γ d pdxq with W : R d Ñ R Y t`8u convex and η ď c ν. Assume furthermore that ν has compact support. Define, for all θ P p0, π{2q, ν θ " Lawpcos θX `sin θZq and η θ " Lawpcos θY `sin θZq, where X " ν, Y " η and Z independent of X, Y and such that the law α of Z is given by αpdzq "

1 C 1 B γ d pdzq where B is the Euclidean unit ball and C a normalizing constant. Then, for all θ P p0, π{2q,

(1) the probability ν θ has a density of the form e ´Wθ with respect to γ d , with W θ : R d Ñ RY t`8u convex, (2) the probability measures ν θ and η θ are compactly supported, (3) it holds η θ ď ν θ , (4) the probability η θ has finite entropy.

Proof. The density f θ of ν θ is given by dy and, according to Prekopa Theorem [START_REF] Prékopa | On logarithmic concave measures and functions[END_REF], the right hand side is log-concave, which completes the proof of Item [START_REF] Benamou | Iterative Bregman projections for regularized transportation problems[END_REF]. The proofs of Items ( 2) and ( 3) are straightforward and left to the reader. The density of

f θ pxq " 1 C 1 ż B e ´W p
η θ is g θ pxq " 1 C ş e ´| cos θy´x| 2 2 sin 2 θ
1 B ´cos θy´x sin θ ¯ηpdyq and so g θ ď 1 C . On the other hand, g θ log g θ ě ´1{e. Since the support of η θ is compact, one sees that g θ log g θ is integrable and so η θ has finite entropy.

Variational proof of Theorem 2

The goal of this section is to give an alternative proof of Theorem 2. The original proof in [START_REF] Gozlan | On a mixture of Brenier and Strassen theorems[END_REF] uses a weak version of optimal transport as an intermediary, but we give here a new proof relying only on the variational problem solved by the Brenier map. However, we need to restrict the proof to the case where ν is absolutely continuous with respect to Lebesgue (and µ too but this is hardly a restriction when we assume that a Brenier map exists), with its support being convex. Note that for the purpose of proving the Caffarelli contraction theorem, these assumptions are not a restriction.

Let us recall some classical facts about quadratic transport that will be used in the proof (see [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport, Grundlehren der Mathematischen Wissenschaften[END_REF] for proofs and more general statements). If µ, ν P 2 pR d q, the quadratic transport cost A classical result in optimal transport tells moreover that the supremum in ( 9) is always attained. If pϕ, ψq is such a dual optimizer, we will say that ϕ (resp. ψ) is a transport potential from µ to ν (resp. ν to µ). This terminology is justified by the fact that if µ is absolutely continuous with respect to Lebesgue measure, then according to Brenier theorem, if ϕ is a transport potential from µ to ν, the map ∇ϕ (which is well defined µ almost surely) is (the µ almost surely unique) optimal transport map between µ and ν, i.e ν " ∇ϕ # µ and W 2 2 pµ, νq " ş |x ´∇ϕpxq| 2 µpdxq. Finally, if ν is also absolutely continuous with respect to Lebesgue measure, then ∇ψ is the optimal transport map between ν and µ and it holds ∇ψ ˝∇ϕpxq " x and ∇ψ ˝∇ϕpyq " y for µ almost every x and ν almost every y.

For reader's convenience, let us reformulate Theorem 2 in a slightly different form and with the extra assumptions mentioned above : Theorem 15. Let µ, ν P P 2 pR d q be absolutely continuous with respect to Lebesgue measure and suppose that ν has a convex support. The following are equivalent:

piq There exists a transport potential ϕ : R d Ñ R from µ to ν which is continuously differentiable on R d and such that ∇φ is 1-Lipschitz on R d , piiq There exists a transport potential ψ : R d Ñ R Y t`8u from ν to µ such that the function

R d Ñ R Y t`8u : x Þ Ñ ψpxq ´|x| 2
2 is convex. piiiq For all η P P 2 pR d q such that η ď c ν, W 2 pν, µq ď W 2 pη, µq.

The equivalence between piq and piiq uses the following classical fact of convex analysis: where the first equality comes from the optimality of pϕ, ψq, the second inequality from the fact that η ď c ν and the concavity of | ¨|2 2 ´ψ and the third inequality from Kantorovich duality.

ϕ C 1 and
For any probability measure ρ P P 2 pR d q, we will denote from now on as C ρ :" tη P P 2 pR d q : η ď c ρu the set of all probability measures which are dominated by ρ in the convex order. Note that this set is geodesically convex in pP 2 pR d q, W 2 q.

In order to prove the converse implication piiiq ñ piiq, we will proceed by contradiction and show that if piiq is not true then one can construct a competitor η P C ν with a smaller Wasserstein distance to µ. For that purpose, we will use the following simple localization lemma.

Lemma 16. Let µ, ν P P 2 pR d q and suppose that T : R d Ñ R d is an optimal transport map from µ to ν. Let A Ă R d be a Borel set such that νpAq ą 0, define ν A as the renormalized restriction of ν to A: ν A :" ν A νpAq and µ A as the renormalized restriction of µ to T ´1pAq: µ A :" µ T ´1pAq νpAq . Suppose that there exists η A P C νA such that W 2 pµ A , η A q ă W 2 pµ A , ν A q. Then the probability measure η defined by η " ν A c `νpAqη A is such that η P C ν and W 2 pµ, ηq ă W 2 pµ, νq.

Proof. It is clear that η ď c ν. Let us show that η is closer to µ than ν. For the sake of simplicity, we will assume that there exists an optimal transport map S between µ A and η A . According to [START_REF] Villani | Optimal transport, Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 4.6], the map T is still the optimal transport map from µ A to ν A . The map R defined by Rpxq " Spxq if x P T ´1pAq and Rpxq " T pxq if x P T ´1pAq c is a transport map between µ and η (not necessarily optimal) and it holds:

W 2 2 pµ, ηq ď ż |x ´Rpxq| 2 µpdxq " µpT ´1pAqq ż |x ´Spxq| 2 µ A pdxq `żT ´1pAq c |x ´T pxq| 2 µpdxq ă µpT ´1pAqqW 2 2 pµ A , ν A q `żT ´1pAq c |x ´T pxq| 2 µpdxq " µpT ´1pAqq ż |x ´T pxq| 2 µ A pdxq `żT ´1pAq c |x ´T pxq| 2 µpdxq " W 2 2 pµ, νq.
Before completing the proof of Theorem 15, let us state a lemma about strongly convex functions. Given a convex function f , we will denote dompf q " tx P R d : f pxq ă `8u the domain of f . Lemma 17. Let f : R d Ñ R Y t`8u be a lower semi-continuous convex function such that dompf q has a non-empty interior. The function f is such that f ´| ¨|2 2 is convex if and only if for all x, y P int dompf q where f is differentiable it holds [START_REF] Courtade | Quantitative stability of the entropy power inequality[END_REF] p∇f pxq ´∇f pyqq ¨px ´yq ě |x ´y| 2 .

Note that if f is continuously differentiable, the conclusion of the lemma is straightforward. The proof of Lemma 17 is postponed at the end of the section.

Proof of Theorem 15, piiiq ñ piiq. Assume that piiq does not hold, that is to say that whenever ψ is a transport potential from ν to µ then the function ψ ´| ¨|2 2 is not convex. First we want to make sure that the convexity problem occurs on the support of ν, denoted by Sptpνq in what follows. Take ψ an arbitrary transport potential from ν to µ. Then, since Sptpνq is closed and convex, the function ψ defined by ψpyq " ψpyq if y P Sptpνq and ψpyq " `8 otherwise is still convex and lower semicontinuous. Defining ϕ :" ψ ˚, one easily sees that ϕ ď ψ˚a nd so pϕ, ψq is a dual optimizer. In all what follows we will deal with this special potential ψ.

Since piiq does not hold, Lemma 17 applied with f " ψ shows that there exist two points x 0 , y 0 in the interior of Sptpνq where f is differentiable and such that px 0 ´y0 q ¨p∇f px 0 q ´∇f py 0 qq ă |x 0 ´y0 | 2 .

By continuity of r Þ Ñ νpB r pzqq, for z P Sptpνq, we can find two functions r ε Ñ 0 and s ε Ñ 0 as ε Ñ 0 such that for all ε ą 0, νpB rε px 0 qq " νpB sε py 0 qq. We then define A ε to be the union of these two (disjoint) balls:

A ε :" B rε px 0 q Y B sε py 0 q. Then ν Aε converges weakly to 1 2 δ x0 `1 2 δ y0 , as ε Ñ 0. Let b ε " ş y ν Aε pdyq be the barycenter of A ε with respect to ν Aε . Then we have that lim εÑ0 b ε " b :"

x 0 `y0 2 .

In order to construct a competitor, let us collapse the mass of ν Aε towards b ε using the displacement interpolant between ν Aε and δ bε ρ ε t :" rp1 ´tqId `tb ε s # ν Aε . Then it is easily seen that for all t P r0, 1s, ρ ε t ď c ν Aε . Note that we must go towards b ε , instead of b directly, in order to stay in C νA ε . As ε Ñ 0, this will not make a difference.

Let us now compute W 2 pµ Aε , ρ ε t q, where µ Aε is defined as in Lemma 16, and show that for t and ε small enough it is strictly less than W 2 pµ Aε , ν Aε q. Note that ρ ε t is the image of µ Aε under the map p1 ´tq∇ϕ `tb ε which is clearly the gradient of the convex function x Þ Ñ p1 ´tqϕpxq `tb ε ¨x and is thus optimal. Therefore, W 2 2 pµ Aε , ρ ε t q " ż |x ´p1 ´tq∇ϕpxq ´tb ε | 2 µ Aε pdxq " W 2 2 pµ Aε , ν Aε q `2t ż px ´∇ϕpxqq ¨p∇ϕpxq ´bε q µ Aε pdxq `t2 ż |∇ϕpxq ´bε | 2 µ Aε pdxq.

So, for any fixed ε ą 0, the derivative at t " 0 is thus given by d dt |t"0 W 2 2 pµ Aε , ρ ε t q " 2 ż px ´∇ϕpxqq ¨p∇ϕpxq ´bε q µ Aε pdxq Note that this formula is a particular case of [START_REF] Villani | Optimal transport, Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 23.9] which gives the time derivative of the Wasserstein distance along general curves of probability measures. Now, our goal is to show that the quantity calculated above is negative for all ε small enough. Since µ Aε " ∇ψ # ν Aε and ∇ϕ˝∇ψpyq " y for ν Aε almost every y, one gets d dt |t"0 W 2 2 pµ Aε , ρ ε t q " 2 ż p∇ψpyq ´yq ¨py ´bε q ν Aε pdyq.

To conclude, we use the following continuity property of the subgradient : if ψpxq ă `8, then for any δ ą 0, there exists r ą 0 such that if z P B r pxq then Bψpzq Ă Bψpxq `Bδ p0q (see [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms. I[END_REF]Theorem 6.2.4]). Since Bψpx 0 q " t∇ψpx 0 qu and Bψpy 0 q " t∇ψpy 0 qu, it follows easily that lim εÑ0 d dt |t"0 W 2 2 pµ Aε , ρ ε t q " p∇ψpx 0 q ´x0 q ¨px 0 ´bq `p∇ψpy 0 q ´y0 q ¨py 0 ´bq " p∇ψpx 0 q ´∇ψpy 0 qq ¨px 0 ´y0 q ´|x 0 ´y0 | 2 ă 0.

Therefore, for ε and t small enough W 2 pµ Aε , ρ ε t q ă W 2 pµ Aε , ν Aε q, which according to Lemma 16 shows that there exists η P C ν such that W 2 pµ, ηq ă W 2 pµ, νq and completes the proof.

Proof of Lemma 17. Let us denote by D " dompf q. According to [27, Theorem 6.1.2], f ´| ¨|2 2 is convex if and only if for all x, y P D, it holds [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF] px ´yq ¨pu ´vq ě |x ´y| 2 , @u P Bf pxq, @v P Bf pyq, where, we recall that for any x P D, we denote by Bf pxq the sub-gradient of the convex function f at point x which is defined as the set of all vectors u P R d such that f pzq ě f pxq `u ¨pz ´xq, for all z P R d . We recall also that when f is differentiable at x (which is true for Lebesgue almost every x in the interior of D) then Bf pxq " t∇f pxqu. Therefore, if f satisfies [START_REF] Csiszár | I-divergence geometry of probability distributions and minimization problems[END_REF] it satisfies [START_REF] Courtade | Quantitative stability of the entropy power inequality[END_REF].

Let us show the converse. According to [START_REF] Rockafellar | Convex analysis[END_REF]Theorem 25.6 ], for any a P D, it holds Bf paq " ConvpSpaqq `Rpaq,

where Rpaq is the normal cone to D at a, i.e

Rpaq " th P R d : h ¨pz ´aq ď 0, @z P Du and Spaq is the set of vectors u such that there exists a sequence of points a k P int D where f is differentiable such that a k Ñ a and ∇f pa k q Ñ u as k Ñ 8. Let x, y P D and u P Bf pxq and v P Bf pyq, with decomposition u " u 1 `h, v " v 1 `k with u 1 P ConvpSpxqq, v 1 P ConvpSpyqq, h P Rpxq and k P Rpyq. Since px ´yq ¨ph ´kq ě 0, it is enough to show that px ´yq ¨pu 1 ´v1 q ě |x ´y| 2 . By convexity, it is enough to prove that px ´yq ¨pu 1 ´v1 q ě |x ´y| 2 for all u 1 P Spxq and v 1 P Spyq. If a k and b k are sequences converging to x and y respectively in such a way ∇f pa k q Ñ u 1 and ∇f pb k q Ñ v 1 , then according to [START_REF] Courtade | Quantitative stability of the entropy power inequality[END_REF], it holds p∇f pa k q ´∇f pb k qq ¨pa k ´bk q ě |a k ´bk | 2 and letting k Ñ 8 gives the desired inequality.

  x´sin θy cos θ q e

						´|x´sin θy| 2 2 cos 2 θ	e	´|y| 2 2	dy,
	where C 1 is a normalizing constant. A simple calculation shows that
	e	|x| 2 2 f θ pxq "	1 C 1	ż	B	e ´W p x´sin θy cos θ q e	´| sin θx´y| 2 2 cos 2 θ

  where the supremum runs over couples of convex conjugate functions pϕ, ψq, that is to say that ϕ, ψ : R d Ñ R Y t`8u are convex, lower semi-continuous and such that ψ " ϕ ˚and ϕ " ψ ˚, where we recall that the Legendre transform h ˚of a function h : R d Ñ R Y t`8u is defined byh ˚pyq " sup

	admits the following dual formulation due to Kantorovich:		1 2 W 2 2
	(9)	1 2	W 2 2 pµ, νq " sup ϕ,ψ	"ż |x| 2 2	´ϕpxq µpdxq	`ż |y| 2 2	* ´ψpyq νpdyq	,
				xPR d	tx ¨y ´hpxqu,	@y P R d .

  ∇ϕ 1-Lipschitz ðñ ϕ Proof of Theorem 15, piiq ñ piiiq. Assume ψ is a transport potential from ν to µ such that ψ ´| ¨|2 2 is convex and let ϕ " ψ ˚. For any η ď c ν, it holds

	1 2	W 2 2 pµ, νq "	ż |x| 2 2	´ϕpxq µpdxq	`ż |y| 2 2	´ψpyq νpdyq
		ď	ż |x| 2 2	´ϕpxq µpdxq	`ż |y| 2 2	´ψpyq ηpdyq
		ď	1 2	W 2 2 pµ, ηq,	
						˚´| ¨|2 2	is convex,
	see [26, Theorem E 4.2.1] or [22, Lemma 2.1]. It turns out that condition piiq will be easier to handle than condition piq.
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