Decomposing degenerate graphs into locally irregular subgraphs
Résumé
A (undirected) graph is locally irregular if no two of its adjacent vertices have the same degree. A decomposition of a graph G into k locally irregular subgraphs is a partition E1,...,Ek of E(G) into k parts each of which induces a locally irregular subgraph. Not all graphs decompose into locally irregular subgraphs; however, it was conjectured that, whenever a graph does, it should admit such a decomposition into at most three locally irregular subgraphs. This conjecture was verified for a few graph classes in the recent years.
This work is dedicated to the decomposability of degenerate graphs with low degeneracy. Our main result is that decomposable k-degenerate graphs decompose into at most 3k+1 locally irregular subgraphs, which improves on previous results whenever k≤9. We improve this result further for some specific classes of degenerate graphs, such as bipartite cacti, k-trees, and planar graphs.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...