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Decomposing degenerate graphs into locally irregular subgraphs

Julien Bensmail®, Francois Dross®, Nicolas Nisse®

@ Université Céte d’Azur, CNRS, Inria, 13S, France

Abstract

A (undirected) graph is locally irregular if no two of its adjacent vertices have the same degree. A
decomposition of a graph G into k locally irregular subgraphs is a partition E1, ..., Ex of F(G) into
k parts each of which induces a locally irregular subgraph. Not all graphs decompose into locally
irregular subgraphs; however, it was conjectured that, whenever a graph does, it should admit such
a decomposition into at most three locally irregular subgraphs. This conjecture was verified for a
few graph classes in the recent years.

This work is dedicated to the decomposability of degenerate graphs with low degeneracy. Our
main result is that decomposable k-degenerate graphs decompose into at most 3k + 1 locally
irregular subgraphs, which improves on previous results whenever £ < 9. We improve this result
further for some specific classes of degenerate graphs, such as bipartite cacti, k-trees, and planar
graphs.
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1. Introduction

A graph G is locally irregular if no two of its adjacent vertices have the same degree, i.e., for
every edge uv € E(G) we have d(u) # d(v). In general, G might be far from being locally irregular
(e.g. when G is regular), and we might then be interested in decomposing G into locally irregular
subgraphs. The term “decomposition” is, throughout this paper, understood as an edge-partition.
A locally irregular decomposition of G is then a partition of E(G) into parts Fj, ..., Ej, each of which
induces a locally irregular subgraph. The least number k such that G can be decomposed into k
locally irregular subgraphs is called the irreqular chromatic index of G, and is denoted x!,..(G).
There are contexts where G might admit no locally irregular decomposition at all (consider e.g.
any odd-length path), in which case we define x|, (G) = co. We call G decomposable if x..(G) is
finite, while we call G exceptional otherwise.

Locally irregular decompositions were introduced by Baudon, Bensmail, Przybyto and Woz-
niak [2] as a tool to deal with some cases of the well-known 1-2-3 Conjecture posed by Karoniski,
Luczak and Thomason [6]. The main open question on locally irregular decompositions is about
whether every decomposable graph has a decomposition into three locally irregular subgraphs:

Conjecture 1.1 (Baudon, Bensmail, Przybyto, Wozniak [2]). For every decomposable graph G,
we have x}..(G) < 3.

For a better understanding of Conjecture 1.1, it is worth mentioning that exceptional graphs
comprise exactly three families P,C,T of graphs. The family P is the one of all odd-length paths,
while C is the family of all odd-length cycles. The definition of T is recursive:

1. The triangle K3 belongs to T.

2. Every other graph in 7 can be constructed by 1) taking an auxiliary graph H being either
an even-length path or an odd-length path with a triangle glued to one of its ends, then 2)
choosing a graph G € T containing a triangle with at least one vertex, say v, of degree 2 in
G, and finally 3) identifying v with a vertex of degree 1 of H.

In other words, the graphs in 7 consist of disjoint triangles connected in a tree-like fashion, such
that, when contracting the triangles, two triangle vertices are joined by an odd-length path, while
a triangle vertex and an original degree-1 vertex are joined by an even-length path.
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Theorem 1.2 (Baudon, Bensmail, Przybylo, Wozniak [2]). A connected graph is exceptional if
and only if it belongs to PUCUT.

Regarding our investigations in this paper, it is worth emphasizing that all exceptional graphs have
odd size, maximum degree at most 3, low degeneracy (2), and are planar. Recall that a graph G
is said k-degenerate if |V(G)| < k + 1 or there exists v € V(G) with degree at most k such that
G — v is k-degenerate.

Conjecture 1.1 was proved for decomposable trees, complete graphs, complete bipartite graphs,
some Cartesian products of graphs, regular graphs with degree at least 107 [2], graphs with mini-
mum degree at least 1019 [9], and decomposable split graphs [7]. For some classes of graphs, there
is still some gap between the bound in Conjecture 1.1 and the best known one on the irregular
chromatic index. In [4], decomposable bipartite graphs were proved to have irregular chromatic
index at most 10, which was improved down to 7 in [8]. In [1], decomposable graphs with maximum
degree 3 were proved to have irregular chromatic index at most 5, which was improved down to 4
in [8].

A first constant upper bound of 328 on the irregular chromatic index of decomposable graphs
was given in [4] by Bensmail, Merker and Thomassen. The steps of the proof can be roughly
sketched as follows:

e In every decomposable graph GG, one can find a locally irregular subgraph whose removal
leaves a graph whose all connected components are of even size (number of edges), thus
decomposable. Thus, towards Conjecture 1.1, one can actually focus on graphs with even
size, the price for this being one additional graph in a decomposition.

Theorem 1.3 (Bensmail, Merker, Thomassen [4]). Let G be a hereditary family of connected
graphs. Then, max {x},,.(G) : G € G is decomposable} < max {x,,(G): G € G has even size}+1.

e Once G has even size, it can then be decomposed into two graphs D and H, where D is
(210 4 2)-degenerate and has all of its connected components of even size, while H is of
minimum degree at least 10'°. These two graphs can be further decomposed as follows:

— H, because of its large minimum degree, can be decomposed into at most three locally
irregular subgraphs, according to a result of Przybyto [9].

— D can be decomposed into at most [log,(2 - 101° + 3)] + 1 bipartite graphs with even
size, which can each be decomposed into at most nine locally irregular subgraphs.

As Luzar, Przybylo and Sotak proved that bipartite graphs with even size can even be de-
composed into at most six locally irregular subgraphs [8], the exact same proof yields that every
decomposable graph has irregular chromatic index at most 220. More precisely, this improved
bound is a consequence of the following:

Theorem 1.4 ([4, 8]). For every connected k-degenerate graph G with even size, we have
Xirr (G) < 6 ([logy(k +1)] +1).
Consequently, by Theorem 1.3, for every decomposable k-degenerate graph G we have

Xor(G) < 6 ([logy(k +1)] + 1) + 1.

Our results. As a main result in this work, we give, in Section 3, a new upper bound on the
irregular chromatic index of graphs with given degeneracy:

Theorem 1.5. For every connected k-degenerate graph G with even size, we have x}..(G) < 3k.
Consequently, by Theorem 1.3, for every decomposable k-degenerate graph G we have X! .(G) <
3k + 1.



Theorem 1.5 improves Theorem 1.4 for graphs with low degeneracy. More precisely, 3k < 6 -
([logy(k +1)] + 1) whenever k < 9. As notable cases, we get that decomposable 2-degenerate
graphs (which include outerplanar graphs, series-parallel graphs, etc.) have irregular chromatic
index at most 7 (versus 19 previously), and decomposable planar graphs, which are 5-degenerate,
have irregular chromatic index at most 16 (versus 25 previously).

In general, the bound in Theorem 1.5 remains distant from the one conjectured in Conjec-
ture 1.1. As a side aspect in this paper, we also focus on improving Theorem 1.5 for particular
classes of degenerate graphs. In Section 2, we prove a key ingredient behind our proof of Theo-
rem 1.5, which is that decomposable bipartite cacti verify Conjecture 1.1. In Section 4, we improve
Theorem 1.5 for various classes of degenerate graphs, namely decomposable k-trees (for which we
prove 2k) and decomposable planar graphs (for which we prove 15). Conclusions and perspectives
for further works are gathered in Section 5.

2. Decomposing good cacti into locally irregular subgraphs

The proof of our main result, Theorem 1.5, relies of the fact that k-degenerate graphs can, in
general, be decomposed into a certain number of particular cacti. Recall that a cactus is a graph
in which no two cycles intersect in more than one vertex. The cacti we are interested in are those
that are bipartite (i.e., which have no odd-length cycle) and have no connected component being
an odd-length path (as graphs having such are not decomposable, recall Theorem 1.2). Such cacti
we call good cacti for convenience.

By Theorem 1.2, note that x!..(G) is defined for every good cactus G. Furthermore, there
exist infinitely many good cacti G verifying x/,,(G) = 3. Any cycle with length congruent to 2
modulo 4 is an example. Actually, it is worth recalling that even infinitely many trees with irregular
chromatic index 3 exist, as reported in [3]. Still, we prove that Conjecture 1.1 holds for good cacti.

Before proving this claim, let us give a few more details on the case of trees, as some of these
will be mentioned in our proofs. In [3], Baudon, Bensmail and Sopena gave a description of trees
with irregular chromatic index exactly 3, through the notion of shrub. A shrub is a tree being
rooted at a root vertex r with degree 1. The authors proved that shrubs all admit “almost” locally
irregular decompositions (being locally irregular decompositions where only the root is allowed
to belong to a connected component that is not locally irregular) into at most two parts. Now,
when considering a general tree 7" with a vertex v of degree d > 2, we can see T as d shrubs
whose roots were identified into v. The authors proved that, except in very particular cases,
almost locally irregular decompositions into at most two parts of these shrubs, when combined,
can yield one locally irregular decomposition into at most two parts of T". More precisely, a tree
with irregular chromatic index 3 must be constructed using bad shrubs, whose all almost locally
irregular decompositions into at most two parts are very particular.

From the investigations in [3], one can in particular deduce the following:

Theorem 2.1 (Baudon, Bensmail, Sopena [3]). Let T be a tree with x}..(T) = 3. Then:
o |E(T)| is necessarily odd;
e T has no degre-3 or degree-4 vertex adjacent to a leaf.
We are now ready for proving our main result in this section.

Theorem 2.2. For every good cactus G, we have x}..(G) < 3.

Proof. Clearly, we may assume that G is connected. The proof is by induction on the number
of edges of G. The base cases are the path of length 2 and, more generally, any tree that is an
even-length path or any bipartite cycle, in which cases the result holds [2, 3]. Hence, we may
assume that G contains at least one cycle and that G is not reduced to this cycle.

Let v € V(@) be a vertex of G that belongs to a single cycle C. Let us consider the (unique)
connected component X containing v after the removal of the two edges of C' that are incident to
v. If X is a tree (not reduced to the single vertex v), then, in what follows, we denote it by T, and
refer to it as the tree pending in v. Similarly, let v € V(G) be a vertex of G that is not contained
in any cycle. If there is an edge incident to v whose removal makes the connected component



containing v to be a tree (with at least one edge), then we denote by T, this connected component
and regard it as the tree pending at v.

First, we prove that G can be assumed to have all its pending trees having a simple form.
Here, a spider with degree d > 1 is any graph obtained from a star whose center has degree d by
subdividing each edge at most once. That is, a spider is obtained by identifying one end of some
paths of length at most 2. Note that every spider is locally irregular unless it is a path P; with
length i € {1, 3,4}.

o Let us first assume that there exists u € V(G) whose pending tree T, is a path (u,v,w,x)
with three edges such that u is one end of this path. Then!, G’ = G[V(G) \ {u,v}] is a
bipartite cactus (and not an odd-length path) and |E(G")| < |E(G)|, and, by the induction
hypothesis, G’ can be decomposed into at most three locally irregular subgraphs G, G5, G%.
W.lo.g., we € E(GY). Then, let G5 be induced by G and the edges uv and vw (i.e., G5 is
the disjoint union of a locally irregular graph G and of a path (u,v,w) of length 2, i.e., G}
is locally irregular). Then, G}, G5, G% are three locally irregular subgraphs decomposing G,
e, X (G) <3.

e Second, let us assume that there exists v € V(G) whose pending tree T, is a path Py =
(u,v,w,x) of length 3 such that v is not an end of this path. Then, G’ = G[V(G) \ {w, z}]
is a bipartite cactus (because G’ still contains a cycle and so cannot be an odd-length path)
and |E(G")| < |E(G)|. Moreover, v has degree at most 3 in G’ (by definition of a pending
tree); let thus a,b denote its at most two neighbours distinct from wu.

By the induction hypothesis, G’ can be decomposed into at most three locally irregular
subgraphs G, G5, G5. W.lo.g., uwv € E(GY). Then, either av or bv (or both) are in E(GY)
(otherwise, uv would be an isolated edge in G, contradicting that it is locally irregular).
W.lo.g., say av € E(GY). Moreover, if bv ¢ E(G}), then say, w.l.o.g., that bv € E(GY).
Then, let G% be induced by G% and the edges wv and zw (i.e., G is the disjoint union of
a locally irregular graph G5 and of a path (v, w,z) of length 2, i.e., G% is locally irregular).
Then, G, G5, G§ are three locally irregular subgraphs decomposing G, i.e., x/,.(G) < 3.

e Third, let us assume that there exists a vertex v € V(G), not in any cycle, with a pending
tree which is a path Py = (a,b,v,c,d) of length 4 where v is the center. Then, G' =
G[E(G) \ E(T,)] is a bipartite cactus (because G’ still contains a cycle and so cannot be an
odd-length path) and |E(G’)| < |E(G)|. Note that v has degree 1 in G’.

By the induction hypothesis, G’ can be partitioned into at most three locally irregular sub-

graphs G, G5, G5. W.lo.g., the edge incident to v in G’ belongs to G}. Then, let G3

(resp., G%) be induced by E(G%) and {ab,bv} (resp., induced by E(G%) and {ve, cd}). Then,
1, G35, G% are three locally irregular subgraphs decomposing G, i.e., x}..(G) < 3.

e Finally, let us assume that there exists some vertex v € V(G) with pending tree T;, that is
a spider distinct from Py, P3, Py. As mentioned above, T, is locally irregular. Then, G’ =
G[E(G) \ E(Ty)] is a bipartite cactus (and not an odd-length path) and |E(G")| < |E(G)].
Moreover, v has degree at most 2 in G’ (by definition of a pending tree) and let a, b be its at
most two neighbours in G’. By the induction hypothesis, G’ can be decomposed into at most
three locally irregular subgraphs G%, G5, G5. W.lo.g., {va,vb} C E(G}) U E(G5). Then,
let G% be induced by G3 and the edges in E(T,) (so Gj is the disjoint union of two locally
irregular graphs). Then, G, G%, G5 are three locally irregular subgraphs decomposing G,
ie., xi.,.(G) <3.

From the previous reduction rules, we may now assume that, for every pending tree T, v
belongs to a cycle and T, is either a single edge or a length-4 path P, with v as central vertex.
Indeed, otherwise, one of the previous four cases would apply: if v is the single vertex with degree
at least 3 in T}, then the result is obvious; while, otherwise, for w being a vertex of T,, with degree

IThroughout this paper, for a given subset F' C E(G) (resp., X C V(G)), we denote by G[F] (resp., G[X]) the
subgraph of G induced by F' (resp., by X).



at least 3 and as far as possible from v, the pending tree T, is a pending tree to which one of the
previous four rules applies.

We are now ready to conclude. If G contains a single cycle, then let C' denote this cycle and let
u* € V(C) be any vertex of C' with degree at least 3 (recall that we have assumed that G is not
only a cycle). Otherwise, let C, C’ be two cycles of G maximizing the distance between them, and
let u* € V(C) be the (unique) vertex of C' that is the closest to C” (hence, all vertices of C' except
possibly u* belong to a single cycle). Note that, because G is a bipartite cactus, C' has even size
at least 4, so some v* € V(C) \ N(u*) exists and let a and b the two neighbours of v* in C. Note
also that a,b and v* belong to a single cycle. There are several cases to be considered.

e Case 1: v* has degree 2 in G (i.e., v* has no pending tree).

If one, say a, of a,b, has a pending tree T,, then let X = {av*} U E(T,) and note that X
induces a locally irregular graph. Then, G’ = G[E(G) \ X] is a bipartite cactus (not an
odd-length path since u* has degree at least 3). By the induction hypothesis, G’ can be
decomposed into at most three locally irregular subgraphs G, G5, G;. Note that a and v*
have degree 1 in G’, so we may assume that they are not incident to any edge in G}. Then, let
G7 be induced by G; and the edges in X (so G7 is the disjoint union of two locally irregular
graphs). Then, G7, G, G5 are three irregular subgraphs decomposing G, i.e., x{..(G) < 3.

So we can assume that both a and b have degree 2, in which case we can define X as the set
of (two) edges incident to v*, and proceed as in the previous case.

e Case 2: v* has degree 3 in G (i.e., v* has Py as pending tree).

Assume not both pending trees T, and T, (if they exist) are Py, say T, is not P, (i.e., T,
is either empty or Py). Let X = {av*} U E(T,) U E(T,) and note that X induces a locally
irregular graph. Then, G’ = G[E(G) \ X] is a bipartite cactus (not an odd-length path since
u* has degree at least 3). By the induction hypothesis, G’ can be decomposed into at most
three locally irregular subgraphs G, G4, G%. Note that a and v* have degree 1 in G’, so we
may assume that they are not incident to any edge in G%. Then, let G} be induced by G; and
the edges in X (so G7 is the disjoint union of two locally irregular graphs). Then, G}, G5, G4
are three irregular subgraphs decomposing G, i.e., x},.(G) < 3.

So we may assume that both T, and T}, are P;, in which case we set X = {av*,bv*} UE(T,-)
which induces a locally irregular graph. Then, G’ = G[E(G) \ X] is a bipartite cactus (not
an odd-length path since u* has degree at least 3). By the induction hypothesis, G’ can
be decomposed into at most three irregular subgraphs G, G5, G5. Note that a and b have
degree 2 in G'. However, both edges incident to a (resp., to b) must belong to the same part
of the decomposition (as otherwise T,, resp., Ty, would induce an isolated edge). Therefore,
we may assume that they are not incident to any edge in G{. Then, let G be induced by
G; and the edges in X (so G7 is the disjoint union of two locally irregular graphs). Then,

*

T, G4, G4 are three locally irregular subgraphs decomposing G, i.e., x|, (G) < 3.

e Case 3: v* has degree 4 in G (i.e., v* is the center of a Py as pending tree).

Assume not both T, and T}, are Py, say T, is not a Py; then let X = {av*} U E(T,) U E(T,)
and note that X induces a locally irregular graph. Then, G’ = G[E(G) \ X] is a bipartite
cactus (not an odd-length path since u* has degree at least 3). By the induction hypothesis,
G’ can be decomposed into at most three irregular subgraphs G, G4, G%. Note that a and
v* have degree 1 in G’, so we may assume that they are not incident to any edge in GY.
Then, let G be induced by G; and the edges in X (so G7 is the disjoint union of two locally
irregular graphs). Then, G7, G5, G4 are three locally irregular subgraphs decomposing G,
ie., X, (G) <3.

The last case is when all of v*, a, b have degree 4, i.e., each of these vertices has two pending
paths of length 2 attached. In that case, let X = {av*,bv*} U E(T,) U E(T}) U E(T,-). Note
that this time the subgraph induced by X is not locally irregular.

Then, G’ = G[E(G) \ X] is a bipartite cactus (not an odd-length path since u* has degree
at least 3). By the induction hypothesis, G’ can be decomposed into at most three irregular
subgraphs G, G5, G%. Note that a and b have degree 1 in G’. Say the edge a’a incident to



a in G’ belongs to G and let d be the degree of o’ in G. Also, w.l.o.g., say that the edge
incident to b in G’ is not in G%. It remains two cases to be considered.

— If d # 4, then let G} be the subgraph induced by the edges of G| plus {av*} U E(T,) U
E(T,~) (it is a locally irregular graph) and let G be induced by G4 and E(T}) U {bv*}
(also locally irregular). Then G7, G5, G% is the desired solution.

— If d = 4, then let G be the subgraph induced by the edges of G plus E(T,) (it is a
locally irregular graph) and let G5 be induced by G4 and E(T,+) U E(T}) U {bv*, av*}
(also locally irregular). Then G7, G5, G% is the desired solution. O

3. Decomposing degenerate graphs into good cacti

In this section, we prove the first part of Theorem 1.5, hence the whole statement. Our proof
relies on the following key lemma.

Lemma 3.1. Let G be a graph, and let (T1,T%) be a partial decomposition of G into two good cacti.
Consider a vertex v of G belonging to none of T1,To. Then, for every two edges vu, vw incident to
v, there exists a partial decomposition (17, Ty ) of G into two good cacti, where E(T}) U E(Ty) =
E(Ty) U E(Tz) U {vu, vw}.

Proof. Roughly, T and T35 will be obtained starting from 77 and T5, possibly switching edges
from one of the subgraph to the second graph, and adding vu and vw to some of the subgraphs.
We need to consider a few cases. First let us assume that there exists some of 77 and T, say 17,
such that v and w do not belong to the same connected component of the subgraph induced by
E(Ty) (possibly, u or w or both are not adjacent to any edge of E(7})). In that case, let Ty = T,
and let 75 be induced by E(T7) U {vu,vw}. Clearly, adding these two edges to T; cannot create
an odd-length cycle (since u and w are not in a same connected component of 77) and it cannot
create an odd-length path (since T3 is a good cactus). Hence, T7 is a good cactus and we are done.

Second, let us assume that v and w belong to a same connected component, say Cy (resp., C2),
of T} (resp., of Tb).

e Let us first assume that, for v/, w’ € {u, w}, v’ # w', and for 4, j € {1,2}, i # j, we have:

— o has degree 2 in C,, or ¢’ has degree 1 in C,, and C,, has at least one vertex of degree
3, and

— w’ has degree 2 in C} or w’ has degree 1 in Cy;, and C,, has at least one vertex of degree
3.

In this case, let T} (vesp. T,) be obtained by adding u'v to T (resp., by adding w'v to T}).
It is easy to see that T} and T35 are good cacti since no odd-length cycles are created and C;
(for both ¢ € {1,2}) cannot become an odd-length path.

e Second, let us assume that, for some of C or Cs, w.l.o.g., say C1, the subpath of C; from u
to w has even length. In that case, let T3 = T and let T} be induced by E(T3) U {vu, vw}.
Clearly, adding these two edges to T cannot create an odd-length cycle and it cannot create
an odd-length path (actually, C; becomes an even-length cycle plus, possibly, a pending
path). Hence, T} is a good cactus and we are done.

e If none of the previous cases holds, it must be that C; and Cy are even-length paths with
a common end in {u,w}, w.lo.g., say w, and such that u has degree 2 in both C; and Cs.
Again, several cases must be considered. For i € {1,2}, let ; € V be the end (distinct from
w) of C; and let C? (resp., C%) be the subpath of C; between x; and u (resp., between u and
w). Moreover, C# and C? (i € {1,2}) have odd length (since C; has even length and the case
when some of C{ or C§ has even length has been considered in the previous item).

— If Cf is just the edge uw and C§ has odd length (the case when E(C$) = uw and C§ has
odd length is symmetric), then let C; be induced by the edges in (E(C1) \ {uw}) U {uv}
(hence Cf is an even-length path) and let C3 be induced by the edges in E(Cs)U{wv, uw}



(hence, C5 induces an even-length cycle, since C§ is an odd-length path, plus one
pending path, C%, and one pending edge wv). Then Ty = (T3 \ C1) U C; and Ty =
(T \ C2) U C5 are good cacti.

— Now, let us assume that C§ and C§ have odd length and are not single edges. Since
C; and Cy have even length, this implies that C? and C} have odd length too. For
i € {1,2}, let g; be the neighbour of w on C.

x If ¢; has degree 0 in Cy (the case where g2 has degree 0 in C; is symmetric), then let
C5 be induced by the edges in (E(C2)\ {gzw}) U{qrw} (hence C5 is an even-length
path) and let C} be induced by the edges in (E(Cy) \ {¢1w}) U{vu,vw} (hence C;
is acyclic with one vertex, namely u, of degree 3). Then T} = (T} \ C1) U C} and
Ty = (To \ C2) U C5 are good cacti.

x If ¢; has degree 2 in Cs (the case where g2 has degree 2 in C is symmetric), then let
C3 be induced by the edges in (E(C3) \ {g2w}) U {qrw, wv} and let C} be induced
by the edges in (E(C1) \ {g1w}) U{wga,vu} (hence C} and Cj are acyclic with one
vertex, resp. u and ¢, of degree 3). Then T} = (T3 \C1)UCT and T = (T5\C2)UC;
are good cacti.

* Finally, let us assume that ¢; has degree 1 in C5 and that g has degree 1 in C}.
This implies that ¢ = x2 and ¢ = 1. Then, let C5 be induced by the edges in
(E(C2) \ {g2w}) U{qrw,vw, vu} (since C§ has odd length, this results in C3 being
an even-length cycle with a pending path) and let C; be induced by the edges in
(E(C)\{qw})U{gw} (hence, C§ is an even-length path (w, g2 = 21, ..., u, ..., q1)).
Finally, T7 = (T \ C1) UCY and Ty = (Tz \ C2) U C§ are good cacti. O

We are now ready to prove our main result, the first part of Theorem 1.5.

Proof of Theorem 1.5. We prove the first part in the statement of Theorem 1.5 by proving that
every connected k-degenerate graph GG with even size decomposes into at most k good cacti, as
they can each be further decomposed into at most three locally irregular subgraphs (Theorem 2.2).
We prove this by induction on |E(G)|. The base case is when G is a path of length 2, in which
case the claim obviously holds. Let us now focus on the general case.

Assume first that there exists v € V(G) such that F(G) can be partitioned into two parts A
and B of size at least 2 each, such that, for every e € A, f € B, ifenf # 0 thenen f = {v}. In
other words, v is a cut-vertex of G whose removal results in at least two connected components.

e If A (and so B) has even size, then, by induction on G[A] and G[B], let A = |J;;, TjA and
B =< TP where each T;* (resp., T;7) induces a (possibly empty) good cactus. Clearly,
for every 1 <i <k, T, = T/ UTP induces a good cactus, and E(G) = |J, T.

e Otherwise, |A| and |B| are odd. Let G4 (resp., Gg) be the graph induced by A (resp., by
B) with, in addition, a new pending edge p incident to v. Since |A|,|B| > 2, G4 and Gpg
have strictly less edges than G and we can proceed by induction. Let AU {p} = U i<k TjA
and BU{p} = U, TJB where each T/ (resp., TP) induces a (possibly empty) good cactus.
W.lo.g.,peTANTE. Forevery 1 <i<k,let T, =TAUTE and let T}y = (T UTE) \ {p}.
For every 1 < i < k, T; induces a good cactus, and F = Ui T;.

Second, let us assume that there exists v € V(G) with degree 2 < d(v) < k + 1, incident to a
vertex u € V(G) with degree 1 and such that G[V(G)\ {u, v}] is connected. Let w € N(v)\{u} and
let E' = E(G)\ {uv,vw}. Let G' = (V', E’) where V! =V \{u} if d(v) > 2 and V' = V(G) \ {uv}
otherwise. By the induction hypothesis on G, let E” = J, ., Tj where each T} induces a (possibly
empty) good cactus and, w.l.o.g., no edge of T} is incident to v in G’ (possible since v has degree
at most k—11in G'). Let Tj = T} if j > 1 and let Ty = T7 U {uv,vw}. Then, (Tj)1<;<k is a desired
solution.

Now, if none of the previous two cases occurs, then, because G is k-degenerate, we may assume
that there is a vertex v € V(G) with 2 < d(v) < k and G — v is connected. Let u,w € N(v) and
let G’ be the subgraph induced by E(G) \ {vu,vw}. Since G’ is k-degenerate, connected and of
even size |E(G)| — 2, the induction hypothesis holds and there exists a family (77, ..., Tx) of good



cacti decomposing G’. Since v has degree at most k — 2 in G’, there are two good cacti, say T and
T5, such that v is not incident to any edge of E(T1) U E(T»). All conditions are now met to apply
Lemma 3.1, which ensures that the graph induced by the edges E(T1) U E(T2) U {uv,uw} can be
decomposed into two good cacti T}, Ty, hence yielding a desired decomposition (17, Ty, T3, ..., Tk)
of G into k good cacti. O

4. Improved bounds for particular classes of degenerate graphs

Throughout this section, we improve the bound in Theorem 1.5 for two classes of degenerate
graphs, namely k-trees and planar graphs.

4.1. k-trees

Let k > 2 be an integer. A k-tree is any graph built recursively as follows. A complete graph
with k + 1 vertices is a k-tree. Given a k-tree and a complete subgraph C' of order k in it, a new
k-tree is obtained by adding a new vertex adjacent to every vertex of C. Note that k-trees are
k-degenerate. Graphs of treewidth at most k are precisely the subgraphs of k-trees.

To any k-tree G may be associated an ordering of its vertices, called building order, correspond-
ing to the order in which they have been added to create G (with the initial clique as prefix).

Claim 4.1. Let G be any k-tree and H be any subgraph of G that is a k-tree. Then there exists a
building order of G with the vertices of H as prefix.

Proof. The proof is by induction on the number n of vertices of G. The result is obvious if n = k+1.
Let H be a subgraph of G that is a k-tree. If H # G (otherwise the result is obvious), then there is
a vertex v of degree k in V(G)\V (H). Then, the induction hypothesis can be applied to G’ = G—v
(which is a k-tree) to obtain a building order O of G’ with V(H) as prefix. The desired building
order of G is obtained by adding v at the end of O. o

We are now ready to improve Theorem 1.5 for k-trees, which states that their irregular chromatic
index is at most 3k + 1. We treat the cases k = 2 and k > 3 separately.

Theorem 4.2. For every decomposable 2-tree G, we have xi,,(G) < 4.

Proof. The fact that G is decomposable implies that G has at least 4 vertices. It is easy to see that
the result holds if G has 4 or 5 vertices (there are only three graphs as G in this case, as shown in
the left part of Figure 1). Hence, let us assume that G has at least 6 vertices.

First, let us point out two pathological cases where a decomposition of GG in at most two locally
irregular subgraphs can easily be constructed. On the one hand, if G is a fan, i.e., a path (called
external path) plus a universal vertex, then consider the decomposition, depicted in Figure 2 (D),
into two spiders where the center has degree at least 3. If G is a book, i.e., a 2-tree with order n
and n — 2 vertices with degree 2, then consider the decomposition, given in Figure 2 (E), into two
stars where the center has degree at least 3. From now on, we can thus assume that G is not a fan
nor a book.

As shown in Figure 1, there are exactly five non-isomorphic 2-trees with 6 vertices, including
one fan and one book. Since G is not a fan nor a book, it must contain some of the three graphs
(A), (B), (C) (on Figure 1) as a subgraph. Indeed, let us consider a building order of G. If its
prefix (of length 6) induces one of the graphs (A), (B), (C), then we are done. Otherwise, there
are two cases to be considered.

e If its prefix (of length 6) induces a fan, then let us consider the largest prefix of it that induces
a fan and let v be the next vertex in the order (that vertex must exist since G is not a fan). If
v is made adjacent to both ends of an edge of the external path, then this creates a subgraph
(A), while it creates a subgraph (C) otherwise.

e If its prefix (of length 6) induces a book, then let us consider the largest prefix of it that
induces a book and let v be the next vertex in the order (that vertex must exist since G is
not a book). Adding v then creates a subgraph (C).
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Figure 1: Generation of all non-isomorphic 2-trees on 6 vertices, starting from the single 2-tree on 4 vertices. An
arrow coloured with colour x indicates that the new vertex has been made adjacent to the edge colored with colour
z.

Figure 2: Initial decompositions of the 2-trees (A), (B), (C), and schematic representations of the decompositions
of (D) and (E). In all cases, one part is depicted in dotted edges and the second part is in solid line. In both cases
(D) (fan) and (E) (book), the two parts induce locally irregular graphs.

From the previous paragraph and Claim 4.1, we may assume that G has a building order whose
prefix of size 6 induces either of (A), (B), (C). We consider the three cases simultaneously in what
follows. In each of the three cases, let us define the vertices r, b, h as depicted in Figure 2.

By induction on |V(G)| (following the building order), we prove that the edge set of G can
be partitioned into two sets X (depicted with solid red edges in Figure 2) and Y (depicted with
dotted blue edges in Figure 2) both inducing a tree and such that:



1. vertex r has degree at least 4 in G[X];
2. vertex b has degree 1 in G[X] and degree at least 3 in G[Y7];
3. vertex h has degree 1 in G[Y]; and

4. every vertex but r has degree at least 1 in both G[X] and G[Y].

The result holds for |[V(G)| = 6 by defining X and Y as in Figure 2. Now, let us assume that
a new vertex v is added as neighbour of u,w € V(G), where uw € E(G). If b € {u,w}, then
set b = w. If r, resp., h, belongs to {u,w} (note that they cannot both belong to {u,w} since
uw € E(G) and rh ¢ E(QG)), then set u = r (resp., u = h). Then, add vu to X and vw to Y. Tt
is easy to see that all four properties still hold. Moreover, X and Y induce trees, by the fourth
property.

Hence, E(G) can be partitioned into two sets X and Y such that each of G[X] and G[Y] induces
a tree containing a vertex with degree at least 3 that is adjacent to some leaf. Any tree T with
this property has x/{..(T') = 2, recall Theorem 2.1. The result then follows. O

Theorem 4.3. For every k-tree G with k > 3, we have x},.(G) < 2k.

Proof. Tf G is reduced to a clique, then the result follows from [2]. Hence, let us assume that G has
n > k + 1 vertices. We prove that F(G) can be partitioned into k parts Xy, ..., X; such that, for
every 1 < < k, set X; induces a tree with a vertex with degree at least 3 that is adjacent to some
leaf. Any tree T with this property has x{,,(T) = 2 (Theorem 2.1), and so the theorem follows.

The proof is by induction on |V(G)| > k + 1. Let us consider a building order of G. Let K
be the complete graph induced by the k 4 1 first vertices, and let us denote by vy, ..., vg, a, b the
k + 2 first vertices of the order. If |[V(G)| = k + 2, then let X1 = {via,v1b} U U, ;- {v1v5},
X; = {via,v;b} U UKjSk{ij} for i < k and Xy = {v;a,v;b,vpv1}. Clearly, E(G) = Uigk X,
each X; induces a tree, and for every 1 < i < k, vertex v; has degree at least 3 in X; and vertex
v;i4+1 (resp., v for ¢ = k) is a neighbour of degree 1 of v; in X;. Finally, every vertex but those in
{v1,...,vux } is adjacent to some edge in X; for every 1 <i < k.

Then, each time a new vertex v is added, exactly one of its k incident edges is added to X; for
every 1 < ¢ < k with the only constraint that, for every 1 < i <k, if vv; € E(G), then vv; is added
to X;. It is easy to check that all desired properties are preserved. O

4.2. Planar graphs

Before proceeding with the proof of the main result in this section, let us introduce a few new
and existing tools. We first need the notion of light edges in planar graphs. An z-vertex refers to
a vertex with degree precisely . By an (z,y)-edge, we mean an edge whose one end is an z-vertex
and other end is a y-vertex.

Recall that a planar graph is a graph embedded in the plane in such a way that no two edges
cross. It is a well-known fact (from Euler’s formula), that planar graphs are 5-degenerate. In planar
graphs with minimum degree 5, even lighter structural properties can actually be established.

Theorem 4.4 (see e.g. [5], Theorem 3.1). Every planar graph with minimum degree 5 has a (5,5)-
edge or (5, 6)-edge.

In what follows, whenever referring to a light edge we will thus mean a (5,5)-edge or a (5, 6)-edge.

We will also be needing the following counterpart of Lemma 3.1 when three edges incident to
a same vertex remain to be added to good cacti.

Lemma 4.5. Let G be a graph, and let T be a subgraph of G that is a good cactus not containing
a verter v € V(G). Then, for every three edges vu,vw, vz incident to v, there exists a subgraph
T* of G that is a good cactus with E(T*) = E(T) U {vu,vw,vz} or E(T*) = E(T) U {e} for some
e € {vu, vw,vx}.
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Proof. If adding all three of vu,vw, vz to T leads to a good cactus, then we are done. Otherwise,
this means that at least two of u, w, x, say u,w w.l.o.g., belong to the same connected component
of T. If adding vu to T is not correct, then this means that this creates an odd-length path in T,
which is possible only when u is an end of an even-length path P of T. By the same argument,
w is the second end of P. Now, if P goes through = (meaning z is an internal vertex of P), then
adding vx to T yields the correct conclusion, as P would become a tree with a 3-vertex. Thus, we
may lastly assume that = does not belong to P, in which case adding all three of vu,vw, vz to T is
actually correct: as a result, P becomes an even-length cycle with the edge ux attached, possibly
joining the cycle to another connected component of T O

We are now ready to prove the main result in this section. Since every planar graph is 5-
degenerate, from Theorem 1.5 we get that every decomposable planar graph G verifies x/,,(G) < 16.
We slightly improve this bound down to 15.

Theorem 4.6. For every connected planar graph G with even size, we have x!..(G) < 14.
Consequently, by Theorem 1.3, for every decomposable planar graph G we have xi..(G) < 15.

Proof. We prove the claim by proving that every connected planar graph G with even size decom-
poses into four good cacti 71, ..., T, and one even forest Ty, i.e., a forest whose all trees have even
size. This implies the result, as good cacti have irregular chromatic index at most 3 (Theorem 2.2)
and even forests have irregular chromatic index at most 2 (Theorem 2.1). This is proved by induc-
tion on |E(G)|. Since this is trivially true when |E(G)| = 2, we focus on the general case. This is
done by proving gradually that the claim holds under certain circumstances, until we get to the
point where the claim is ultimately proved to hold in general.

We start off by considering bridges. Assume that G has a bridge uv, and let G,, (resp. G,)
denote the connected component of G —uwv that contains u (resp. v). Since G has even size, w.l.o.g.
G, has even size while G, has odd size. Assume |E(G,)| > 2. Then both G,, and G, +uv are planar
graphs with even size smaller than that of G, so they admit desired decompositions (71, ..., 75) and
(17, ..., TY), respectively. Since G,, and G, 4 uv intersect only in u, we get that (T3 UTY, ..., T5 UTE)
is a desired decomposition of G, since identifying two vertices from two disjoint good cacti clearly
results in a good cactus, and similarly for two even forests. So we may now assume that G contains
no such bridge, which we call good bridges below. Note that a bridge is not good if and only if one
of its end is a 1-vertex.

Claim 4.7. We may assume that G has no good bridge.

Since G is planar, it has minimum degree at most 5. In some cases, assuming the existence in
G of vertices with small degree, the induction hypothesis can be invoked on a subgraph G’ of G to
deduce a decomposition that can be extended to G. More precisely:

Claim 4.8. We may assume that G has not 1-vertex adjacent to a vertex of degree at most 6.

Proof. Let us assume G has a l-vertex u that is adjacent to a vertex v of degree at most 6.
Let us denote by wq, ..., wq the d < 5 neighbours of v different from u. If one edge vw; is such
that G’ = G — {uv,vw;} is connected, then we can deduce a decomposition (77, ...,T5) of G’ by
induction, and extend it to G by adding wv,vw; to one of T1,...,T5 that does not contain v (one
such exists since v has degree at most 4 in G’). This results in a correct decomposition of G, as
attaching a pendant path of length 2 to a good cactus or an even forest, respectively, results in a
good cactus or an even forest, respectively.

So assume that G — {uv, vw; } is disconnected for every i, i.e., vw; is a bridge for every i. Since
G has even size, note that it cannot be that the connected component that contains w; in G — vw;
has odd size for every i. Let us thus assume that the connected component that contains w; in
G — vw has even size. Recall that that connected component cannot have size at least 2, as
otherwise G would have a good bridge. Thus, by Claim 4.7, w; is a 1-vertex. In that case, we
consider G’ = G —u — w1, which is planar of even size smaller than that of G, and a decomposition
(T1,...,T5) of G'. Clearly, adding uv, vw; to any of T, ..., T5 yields a desired decomposition of G.
o

Claim 4.9. We may assume that, for every x € {2,3,4}, G has no z-vertex.
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Proof. Let us consider the three cases depending on x € {2,3,4}.
e Assume G has a 2-vertex v with neighbours uy, us.

— If G = G — v is connected, then, because it has even size, G’ admits a decomposition
(T4, ...,T5) by induction. Now, since none of the good cacti 71,75 contains v, using
Lemma 3.1 we can deduce a desired decomposition (T}, Ty, T3, ..., T5) of G.

— Otherwise, if G — v is not connected, then both edges adjacent to v are bridges in G.
Since v cannot be adjacent to a 1-vertex and none of vu;,vus is a good bridge, we
deduce that both G,,, the connected component of G — v that contains u;, and G,,,
the connected component of G — v that contains ug, have even size. Now both G, and
G, + {ugv,vuy } have even size smaller than that of G, so, by the induction hypothesis,
they admit good decompositions (71, ...,T5) and (77, ..., Tf), respectively. Again, since
Gy, and G, + {ugv,vu;} intersect at uy only, we get that (T4 UTy,...,Ts UTY) is a
desired decomposition of G.

From now on, we can thus assume that G has no 2-vertex.
e Assume G has a 3-vertex v with neighbours wuy, us, us.

- If @ = G — {vu;,vu;} is connected for any two edges vu;,vu;, then, because it has
even size, G’ admits a decomposition (T4, ...,T5) by induction. At least two the four
good cacti 11, ..., Ty, say 11, T> without loss of generality, do not contain v. Thus, using
Lemma 3.1 we can deduce a desired decomposition (77, Ty, T3, ..., T5) of G.

— Thus, we may suppose that G — {vuy,vus} is disconnected, which means that G — vug
is disconnected as well. In other words, vus is a bridge of G. Since uz cannot be a
1-vertex (because v has degree 3 and by Claim 4.8), we get that vug is actually a good
bridge, which is impossible.

Thus, we may now suppose that G has no 3-vertex.
e Assume G has a 4-vertex v with neighbours uy, us, us, uy.

— If G — {vu;,vu;} is connected for any two edges vu;, vu;, then Lemma 3.1 can again be
employed to deduce a desired decomposition of GG similarly as in the previous case.

— Thus, we may suppose that G — {vuy, vus} is disconnected. Since v cannot be adjacent
to a 1-vertex (by Claim 4.8), none of vus, vus can be a bridge, as otherwise it would be
a good bridge, a contradiction. However, G — {vus, vus} is disconnected as well. Thus,
G — v has two connected components, one of which contains w1, us while the second one
contains us, us. Then it can be noticed that G — {vuy, vus} is connected, a case we have
already treated.

This concludes the proof of the claim. o

Thus, we may now suppose that G has no x-vertex for x = 2,3,4. Furthermore, all 1-vertices
of G are adjacent to vertices with degree at least 7, and, by arguments used to deal with 1-vertices
above (Claim 4.8), we can also assume that G has no two 1-vertices adjacent to a same vertex.
These arguments imply that G~, the graph obtained from G by removing all 1-vertices, is a planar
graph of minimum degree exactly 5. By Theorem 4.4, it has a light edge wv, which is either a
(5,5)-edge or a (5,6)-edge. Back in G, by all the previous properties, we deduce that uv is either
a (5,5)-edge (type A) or a (5,6)-edge where none of u, v is adjacent to a 1-vertex (type B), or a
(5, 7)-edge where the one of u,v with degree 7 is adjacent to a 1-vertex (type C). In what follows,
we always implicitly assume that d(u) < d(v).

Assume first that G has a type-C edge uv. Let us denote by w the 1-vertex adjacent to wv.
Since G has no good bridge (Claim 4.7), note that G’ = G — {uwv, vw} is connected. Since G’ is a
planar graph with even size smaller than that of G, it admits a decomposition (71, ...,T5). By that
decomposition, there is a T; of T, ..., T that does not contain u, since this vertex has degree 4 in
G’. Then adding uv, vw to T; (which either adds a connected component being a path of length 2,
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or two pendant vertices attached to a same vertex) results in a good cactus if T; was one, or in an
even forest if T; was one. We thus get a desired decomposition of G.

To deal with wv being type A, let us focus on 5-vertices that are cut-vertices in G.
Claim 4.10. We may assume that G has no 5-vertex being a cut-vertez.

Proof. Assume that G has a 5-vertex x that is a cut-vertex. Since x cannot be adjacent to a
1-vertex, and we have assumed that G has no good bridge (Claim 4.7), we may assume that x is
incident to no bridge at all. From this, we deduce that G — = has only two connected components
C1,C5. Let zy; and xys be edges incident to x where y; is in C7 while yo is in C5. Then
G' = G — {xy1,zy2} is a connected planar graph with even size smaller than that of G, which
admits a good decomposition (71, ..., T5) by the induction hypothesis. We can now consider one T;
not containing x (which exists since x has degre 3 in G’), and add zy;, xy2 to T}, yielding either a
good cactus (if T; was one), or an even forest (otherwise). This is because joining two good cacti
by a path of length 2 yields a good cactus, and similarly for even forests. o

Thus we may now assume that G has no 5-vertex being a cut-vertex. Assume now that, in G,
uv is a light edge of type A. Let us denote by wy, ..., w4 the neighbours of u different from v. By
the above, we may assume that G’ = G — {uv, uwy, uws, vws} is a connected planar graph with
even size smaller than that of G. There thus exists a good decomposition (77, ...,T5) of G'. Since
v has degree 4 in G’, there is one T; of T1, ..., T that does not contain v. We consider two cases.

e i # 5. That is, T; is a good cactus. If uwy does not belong to T;, then adding wiu, uv to T;
results in a good cactus. We are then left with treating the two edges wou, wsu, which can
be added, via Lemma 3.1 to two of 11, ..., Ty that are not 7; and do not contain wsu.

So now assume that uw, belongs to T;. If adding uv to T; does not result in T; becoming an
odd-length path, then 7T; remains a good cactus. Then wiu,wou, wsu remain to be treated,
and there is so far only one, T;, of T}, T5, T3, T, containing v. Assume T; = T, without loss of
generality. Now, using Lemma 4.5 either three (in which case we are done) of wyu, wou, wsu
can be added to 17,715, T3 correctly, or only one of them, say wyu to T3. Lemma 3.1 can now
be used to add wou, wsu to T1,Ts, resulting in a desired decomposition of G.

So lastly assume that adding uv does result in T; becoming an odd-length path. Then T; has
a connected component being an even-length path P whose one end is u (and P reaches u via
wy). If, say, wy, does not belong to P, then, by adding both w;u,uv to T}, part T; remains a
good cactus (in particular because the P gets included to a subgraph with maximum degree
at least 3). Then wou, wsu can again be treated using Lemma 3.1. So we may assume that
all of w1, wo, w3 belong to P, which means that at least two of wq, wo, w3 are internal vertices
of P, one of which is not adjacent to w,. Assume w; is an internal vertex of P not adjacent
to wy. We here remove wyu from T;, and add wyu, uv to T;. This way, in T;, the component
P becomes a tree in which w; has degree 3. It now remains to deal with wou, wsu, wyu, while
u so far belongs to only one good cactus, T;. Using Lemmas 3.1 and 4.5, we can eventually
do so, and thus construct a desired decomposition of G.

e i = 5. That is, T; is the even forest. Again, if wyu does not belong to T;, then we are done
as earlier. So we may assume that wyu belongs to T;. Then there are only four remaining
edges to be treated (wju,wsu, wsu,wv), all incident to u, while u, this far, does not belong
to any of Ty, ...,T4. We can here complete the decomposition by applying Lemma 3.1 twice.

We are now left with the case where uv is a type-B edge. First of all, similarly as for 5-vertices
that are cut-vertices (see proof of Claim 4.10), using the same arguments as earlier we can assume
that the 6-vertices of G (in particular v) are not cut-vertices. Thus, we can assume that G — v is
connected. Since u has degree 4 in G — v, the graph G’ = G — u — v has at most four connected
components C1, ..., Cy. Furthermore, in G, for each C;, each of u,v has at least one neighbour in
C; (since v is not a cut-vertex). To finish off the proof, we deal with the number d of C;’s, and the
connection between these components and u,v in G. We denote by z1, ..., z4 the four neighbours
of u different from v, and by ¥, ..., y5 the five neighbours of v different from u.
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If d =1, i.e., G’ is connected, then note that G’ is a planar graph with even size |[E(G)| —10. Tt
thus admits a decomposition (77, ..., T5) be the induction hypothesis. We extend it to G as follows.
First, we add uwv, vys to Ts, which adds a path of length 2 which is either pendant or isolated in the
even forest. To eventually add the eight remaining edges ziu, xou, r3u, x4u and y1v, Y20, ysv, Ya, v
to the decomposition, we just apply Lemma 3.1 four times: twice on u, and twice on v.

Thus, we may now suppose that G’ is not connected, i.e., d # 1. Note that G = G — v is
connected and has even size. Thus, by the induction hypothesis, G has a good decomposition
(T, ..., Ts). Since u has degree 4 in G”, one of T, ..., T5 does not contain wu.

e If 75 does not contain u, then we add wv and vy; to T5. Note that this adds a path of
length 2 that is pendant or isolated in Ty, so it remains an even forest. It remains to add
the edges vy, vys, vys, vys to the decomposition, which can be added to some of T, ..., Ty by
employing Lemma 3.1 twice on v.

e Now assume T contains u. Then, one of Ti,...,Ty, say T1 w.l.o.g., does not contain u.
Since d > 2, there are y;,y; that belong to different connected components of G’. Then we
add uv,vy;,vy; to T1. Note that T} remains a good cactus, since the three edges we have
added are not involved in any cycle of T;. Furthermore, these edges belong to a connected
component with maximum degree at least 3, which is thus not an odd-length path. It remains
three edges incident to v to be added to the decomposition, while only 73 contains v this far.
The three edges can then be added to T5,73,7T, using Lemma 4.5, and then Lemma 3.1 if
needed. O

5. Conclusion

In this work, we have improved known upper bounds on the irregular chromatic index of
some families of degenerate graphs. Similarly as for other existing proofs, our proofs involve
decompositions into auxiliary structures that are to be further decomposed. As a consequence,
most known bounds, including ours, are still far from the conjectured one in Conjecture 1.1, even
for very particular classes of graphs.

A prime line of research for future work would thus be to aim at lowering those bounds further.
As a first appealing case, we believe the case of 2-degenerate graphs is of interest, as many colouring
problems tend to become easy for those graphs. Also, it is worth recalling that there is an intricate
connection between 2-degenerate graphs and exceptional graphs, as all exceptional graphs are 2-
degenerate. Planar graphs also sound interesting to investigate further for the same reasons, and
because our bound in Theorem 4.6 leaves more space for improvement. A good compromise could
be to consider outerplanar graphs, which are both 2-degenerate and planar. Improving our bound
of 7 for these graphs would be an interesting first step.

Our result on 2-trees (Theorem 4.2) is also interesting in that regard, as 2-tree are 2-degenerate.
We did not manage to come up with a proof of Conjecture 1.1 for these graphs, which might look
surprising due to their very specific structure. Perhaps a way to progress towards all these concerns
could be to consider the class of mazimal outerplanar graphs, which form a subclass of 2-trees.
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