Parallel solution of the discretized and linearized G-heat equation - Archive ouverte HAL
Article Dans Une Revue International Journal of High Performance Computing and Networking Année : 2018

Parallel solution of the discretized and linearized G-heat equation

Résumé

The present study deals with the numerical solution of the G-heat equation. Since the G-heat equation is defined in an unbounded domain, we firstly state that the solution of the G-heat equation defined in a bounded domain converges to the solution of the G-heat equation when the measure of the domain tends to infinity. Moreover, after time discretisation by an implicit time marching scheme, we define a method of linearisation of each stationary problem, which leads to the solution of a large scale algebraic system. A unified approach analysis of the convergence of the sequential and parallel relaxation methods is given. Finally, we present the results of numerical experiments.
Fichier principal
Vignette du fichier
spiteri_22704.pdf (1017.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02089321 , version 1 (03-04-2019)

Identifiants

Citer

Pierre Spitéri, Amar Ouaoua, Ming Chau, Hacène Boutabia. Parallel solution of the discretized and linearized G-heat equation. International Journal of High Performance Computing and Networking, 2018, 11 (1), pp.66-82. ⟨10.1504/IJHPCN.2018.088880⟩. ⟨hal-02089321⟩
61 Consultations
99 Téléchargements

Altmetric

Partager

More