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e Abstract: The present study deals with the numerical solution of the G-heat equation. Since the G-heat equation is
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1 Introduction

Many modelled phenomena by the Hamilton-Jacobi-
Bellman equation are the results of the method of dynamic
programming initiated by Richard Bellman to solve
optimisation problems, i.e., problems where the best
possible decision for each given date performance criterion
is made.

The equation of dynamic programming generalises
previous work in classical mechanics. Historically
applied in engineering and other areas of applied
mathematics, the Hamilton-Jacobi-Bellman equation has
become an important tool in decision making problems
involving economics and financial markets (see Dong et al.,
2015; Wan et al., 2000).

Motivated by uncertainty problems about the stochastic
volatility, risk measures in finance, Peng (2005, 2010) has
introduced a new notion of nonlinear expectation space; the
so-called G-expectation which it can take the uncertainty
into consideration. The G-expectation has been developed
very recently and opened the way to the introduction of
G-normal random variables under the framework of
G-expectation space (Peng, 2010). The main difficulty lies
in the fact that the G-expectation is intrinsic in the sense that
it is not based on a given linear probability space. The
G-heat equation defined by Peng (2009) is a nonlinear
equation related to the G-normal distribution and
generalises the classical normal distribution. This equation,
which is a special kind of Hamilton-Jacobi-Bellman
equation (Crandall et al., 1992) has a unique viscosity
solution (Peng, 2005). The existence and the uniqueness of
the solution of the G-heat equation in the sense of viscosity
solution can be found for example in Peng (1992) and Yong
and Zhou (1999)

Mingshang (2009) obtained the explicit viscosity
solution of the G-heat equation [see equation (1) below]
with the initial condition ¢(x) = x* for each integer & > 1.

1.1 Background

The theory of G-normal distribution, G-expectation (a kind
of nonlinear expectation), the one-dimensional G-Brownian
motion and the associated stochastic calculus is introduced
in Peng (2010). Unlike the classical normal distribution
MO, &), characterised by the linear heat equation:

ou o?*od%u

- 2 6—2, (t, x) e (0,T)xR, T >0,
X

the G-heat equation satisfied by the G-normal distribution
N(0, [¢%,5°]) with G(a)=1[a'5>-a ], is associated

to the nonlinear heat equation:

Ou 0%u
E:G(ax_Qj’ (l, X)E(O,T)XR.

In the sequel, we will extend this kind of boundary value
problem to the d-dimensional space.

1.2 Preliminaries definitions

The aim of this section is to recall some basic definitions
and properties of G-expectations, G-heat equation and
G-Brownian motions, that will be needed subsequently. For
a more detailed description of these notions, the reader is
referred to Peng (2005). Adapting the approach in Peng
(2005, 2010), let Q be a given non-empty fundamental
space and H be a linear space of real functions defined on Q
such that:

e leH

e M is stable with respect to local Lipschitz functions,
ie, foralld>1, and for all X, ..., X; € H,
¢ e Cy1,,(RY, it holds also ¢ (X, ..., X;) € H.



Recall that CLL,-I,(Rd) denotes the space of all local Lipschitz
functions ¢ R? — R satisfying

lp(x) =g < C(L+[x " + ") [ x=p], x yeR’,

for some C > 0, m € N depending on ¢. The set H is
interpreted as the space of random variables defined on Q.

Definition 1: A sublinear expectation & on H is a functional
E: H — R with the following properties: for all X, Y € H,
we have

e monotonicity: if X> Y, then E[X] > E[Y]

o preservation of constants: E[c] =c, forallc e R

o sub-additivity: E[X] — E[Y] < E[X - Y]

e positive homogeneity: E[AX] = AE[X], for all 1> 0.
The triple (Q, H, ) is called a sublinear expectation space.

Definition 2: A random variable Y e H% is said to be

independent of X € H* under B if for each test function
¢ € Crup (R4 ) we have E[HX, V)] = E[E[¢(x, V)] x].

Definition 3: Given two sublinear expectation spaces
(Q, H, E) and (2, H;, E;), two d-dimensional random
vectors X € H? and X, € H{ are said to be identically
distributed (X ~ X)) if for each test function ¢ € C;,L,-p(]Rd)
we have E[AX)] = E([4(X))].

This theory related to the G-heat equation has been
motivated by the earlier studies of G-expectation and
conditional G-expectation defined with the help of a
backward stochastic differential equation and by describing
coherent and dynamic risk measures. The G-expectation can
be regarded as a coherent risk measure and the conditional
G-expectation can be regarded as a dynamic risk measure.
Peng (2008) extended his former studies to the
multidimensional ~G-Brownian motion; after having
introduced a multidimensional G-normal distributions via
the nonlinear heat equation, called the G-heat equation:

u_ G(D), (1, x)e(0,T)xR,
ot
where D’u is the Hessian matrix of u, i.e., D*u = (%)
0X;0X

and G(D)=gsuptr(DB), D=(Dy)!,,, €Sy, where S,

Bel’

denotes the space of d x d symmetric matrices; note that S,

. d(d+1 . . . .
is a %—dlmensmnal Euclidean space of the inner

product (D, B): = tr[DB]. I is a given non-empty convex,
bounded and closed subset of the space of non-negative
d x d matrices. Peng defines the nonlinear G-expectation

B on Co([0, T7; RY) under which the coordinate process B

is a process which future increments are independent of the
past ones and G-normally distributed. Such a process is
called G-Brownian motion. Peng (2008) developed then the
related stochastic calculus. In particular, he has introduced
the stochastic integral with respect to a G-Brownian motion,
establishes an It6 formula and study stochastic differential
equations driven by a G-Brownian motion. The function

G: S;— R defined by:

G(D) = %sup tr(DB)

Bel’
is a monotonic and sublinear mapping, that is:
a D>B= G(D)>G(B)
b  G(AD)=A1"G(D)+ A G(-D)
¢ G+ B)<GD)+ G(B).

Now we start introducing the definition of G-Brownian
motion by considering the following parabolic partial
differential equation, called the G-heat equation:

Ou

— =G(Du), (t, x)e(0,T)xR?

o~ (). 9 e@IR (1)
Ul—o=¢

Definition 4: Let (B, be a d-dimensional process. (B,)0 is

called G-Brownian motion under a sublinear expectation

(©Q, H, E) if By= 0 and

1 foreacht>s,t>0and ¢ € Cyp(RY), B,~ (Biey— By)

and u(¢, x) defined by E(/(x + B,)) is the unique
viscosity solution of (1)

2 foreachm=1,2,...,0=1t<t<...<t, <o the
increment B,, — B, , is independent to (B,,":*,B,, ).

Following Peng (2009), the property “u(f, x) defined by
E(#x + B;) is the unique viscosity solution of (1)”
means that B, is a d-dimensional G-normal distribution

N(0, D).

Remark 1: The 1-dimensional case which corresponds to
d=1and I'=[c? 6%]c R, the nonlinear heat equation (1)

becomes:
Ou 0%u
5: G[ax—zj, (t, X) € (O,T)XR,

Ul-o=¢e CiLip (R)

with G(a):=1 [@*0° —a~¢’]. In the multidimensional

cases we also have the following typical nonlinear heat
equation:



d

e

=1

[8 2} (t, x)e(0,T)xR?

u \z:0= ¢ € Cl,Lip (Rd)

, 2

where Gj(a):=1

given constants. This corresponds to:

FC{diag[}/l,)/z,...,}/d]: ¥ e[ﬁz,gf} i:l,Z,...,d}.

[atoi"—a 0;"] and 0<o0; <0, are

Note that x + B, is Mx, T')-distributed. In the sequel we will
consider the general case of equation (2).

1.3 The unbounded case

For the numerical solution of the typical nonlinear heat
equation, the following original result is necessary. Note
that this result generalises the result of Jaillet et al. (1990)
concerning the Black-Scholes equation.

Let 7, = inf {s e [0, T]: |BJ>k} and

u (t,x) =E(Hx+B7.)), where ¢ € C;, L,«p(R‘l) satisfying

() =g < C(L+]xI" + ]y 1" )| x=y|, x,yeR,

m e N depending on ¢ Let Bz = {x € R% |x| < R}. The
following lemma holds

Lemma 1: u; converges to u (uniformly on compact sets) as
k tends to infinity; more precisely, for all R > 0

lim  sup  |u(t,x)—u;(t,x)|=0.

k=% (1,x)e[0,T 1< By

Proof: We have
| u(t,x) — Uk (tax) |S E(|¢(x+ Bt ) —¢(X + BtATk )|1{H<T} )s

where a A b = min(a, b). By using the property of ¢, we
obtain that

|¢(x+B,ATk )—¢(x+Bt )|
<C|B, = Bing, |(1+|x+B,|m +]x+ Bg, |m)

<C(|B/|+|Bon |)(1+|x+3,

|Wl

+|x+ Biar |” ),

and so (with C' =
E and the fact that (a + b)’ <27 (¢” + b’) and (a + b + ¢)’ <
3 (@ + b+ ) fora, b,c>0and p>1 we have

| u(trx) — U (tsx) |

6C), by using the Holder inequality under

1
<CE: ((|B, [ +|Boan |2)(1+(| x| +|B)" +(1 %1+ B

")

1
x B2 (I{TMT}).

The same arguments implies that:

(18 418 )1+ (1 4B + (1 x 418 )
smz( (181 +I8.n["))

B2 (9(1+(\ x|+ B + (1 x| +[Borr ) ))

<o[2 2 2()

1
X ]EE (1+ 24m (| X |4m +|Bt|4m )+ 24m (l ¥ ‘4m +|Bt/\Tk |4m ))
<6| 2 sup E(BS4)
s€[0,T]
i
4m 2
x| 1421 R+ sup B(|B,[")
s€[0,7]

Let
CR, T, m,d)

1

4 4m+1 4m 4m :

=6[2 sup E( 3 )j (14-2 (R + sup E( s )Jj
5€[0,T] s€[0,7]

Note that C (R, T, m, d) is a constant depending only on 7,
R, m, d. We have then

N | —

N | —

=

| u(t,x) - uk(tx)|<CC2(R T, md)]E Liry)-

Now observe that since for all i = 1, 2, ..., d, Bl is
N(0,[o; 25,07 °s]) -distributed, then

Peng (2010)

following
E(| B! |4)——0',4 2<ﬁET and

2(4m D! am om o 2(4m-1)!
=5 oS 5 O
easily see that C (R, T, m, d) < +o0. In order to complete the
proof, we need to prove that:

Bl ) = 0. 3)

E(| Bi |*™) = o, *"T?" . We can

lim  sup
k= (4 x)e[0,T xBg

Recall that there exists a family of probability measures P
on (€, H) such that for each random variable X
E(X) = sup B (X),

PeP

where Ep is the linear expectation under P (for more details,
see Peng, 2008, 2009). Since

d
T, <T} =
{ f } {se[o,r] } < U{se[o T]

i=1

3}

then



d
E(I{Tk<T})SZE 1{
i=1

0k °
sup |Bi|>—=
5€[0.7] ' «/E}

By using Markov inequality under each probability measure
P € P we obtain

. E;{ sup Bé'}
. s€[0,77]
P| sup |Bi]> = |1 J
[SE[O,T]| \/Ej L
Jd
x/ZE( sup |B§ j
< s€[0,7]

- >

k

and so

\/EE( sup |B§ j
s€[0,7T]
—k .

sup ‘B(

k
N
se[0.T] «/3}

El{

Let ¢ > 0, then there exists s, € [0, 7] such that

sup |B! S|Bf, |+5,
$€[0,7] -
and
E( sup |B: jSE(|B£E|)+€$5ﬁ/5: +8§5‘1~\/T+8,
s€[0,T]

which implies that

)sa«/f,

o

5€[0,T]

and

then (3) is true and the proof is complete. O

1.4 Objectives of the present study

The goal of the present study is to solve by various
numerical methods equation (1). Nevertheless, the
numerical solution of the previous problem brings up many
questions. The first question is related to the fact that the
previous boundary value problem is not defined in a
bounded domain, but is defined in the unbounded domain
R?, d > 1. This difficulty is solved by considering the
problem defined on a bounded domain Q < R?, and, thanks
to the result stated in Lemma 1, we know that the solution
of the time dependent problem defined on the bounded
domain Q converges to the solution of the problem (1) when
the measure of Q tends to infinity. The second question
concerns the effective solution of the algebraic systems
derived from the discretisation process of the continuous

problem to be solved. Indeed, for such discretisation we
consider on one hand the temporal discretisation and on the
other hand the spatial discretisation. Owing to the stability
condition to be satisfied by the classical explicit time
marching scheme, the temporal discretisation is usually
achieved by considering implicit or semi-implicit time
marching schemes; this previous schemes lead to solve at
ecach time step, a stationary nonlinear boundary value
problem. After spatial discretisation we have then to solve
large-scale algebraic systems. The third question is related
to the fact that the problem (1) is a nonlinear problem; so,
by considering an analogous way to the one considered for
the solution of the obstacle problem (Spiteri et al., 2001),
we linearise the G-heat equation by a complementary
formulation of this previous problem and so, at each time
step, we have to solve such linearised algebraic system
obtained by the Howard process. Taking into account on
one hand the size of the algebraic systems of the linearised
and discretised G-heat equation and on the other hand the
sparsity of the discretisation matrices, sequential iterative
methods, like the point Jacobi or the point Gauss-Seidel
method, and more generally the parallel iterative relaxation
algorithms are well adapted to the solution of the considered
problem. Therefore, for the use of the parallel iterative
relaxation methods, we concentrate in this paper to the
subdomain methods defined by gathering several adjacent
blocks of the discretisation matrices; then, in an unified
presentation, we consider in the sequel sequential and more
generally, parallel synchronous or asynchronous iterative
subdomain methods well suited for solving these algebraic
systems. Recall that the asynchronous relaxation method
corresponds to a general scheme of computation where the
computations are performed in parallel without order nor
synchronisation among the processors (Baudet, 1978).
Then, when a large number of processors are used, idle
times due to the synchronisations among the processors are
suppressed; consequently, in this case, since the
synchronisations are time consuming, the elapsed time of
computation decreases when parallel asynchronous
relaxation algorithms are performed. So we consider two
kinds of such parallel algorithms: on one hand, the parallel
synchronous or asynchronous block relaxation algorithm,
corresponding in fact to a subdomain method without
overlapping between the subdomains and on the other hand
the parallel synchronous or asynchronous Schwarz
alternating method in which the subdomains overlap each
other. For both previous mathematical formulations of the
sequential and parallel methods, the convergence of the
algorithms applied to the solution of the discretised and
linearised problem, can be proved by contraction techniques
(Giraud and Spiteri, 1991; Miellou and Spiteri, 1985) for
every splitting of the problem to solve or by partial ordering
techniques (Miellou et al., 1998; Spiteri et al., 2001).
Indeed, a main property, ensuring the convergence of such
sequential or parallel synchronous or asynchronous iterative
method, is related to the fact that after appropriate
discretisation, the spatial part of the operator leads to a
discretisation matrix which is an M-matrix (Ortega and



Rheinboldt, 1970); moreover, note that the use of an
implicit or semi-implicit time marching scheme preserves
this last property. For more details, the reader is referred to
Giraud and Spiteri (1991), Miellou et al. (1998), Miellou
and Spiteri (1985), and Spiteri et al. (2001).

Implementation of the considered algorithms is carried
out on HPC@LR, a supercomputing centre, and on
Grid5000, a grid computing platform. These two
architectures allow us to study the behaviour of parallel
algorithms. The studied algorithms are parallelised with
MPI facilities (see Chau et al., 2007). Asynchronous and
synchronous efficiency of the studied parallel algorithms
can be compared.

The present study is organised as follows. In Section 2
we give the formulations, on one hand of the appropriate
discretisation schemes and on the other hand of the
linearisation process. Then, we recall and present in an
unified way the sequential and parallel synchronous and
asynchronous algorithms for the solution of the G-heat
equation and we show that the appropriate discretisation
schemes considered ensure the convergence of the
sequential and both parallel synchronous or asynchronous
subdomain methods. Section 3 is devoted to the presentation
of the sequential and parallel experiments. Lastly in
Section 4 we give some conclusion and perspectives.

2 Numerical solution of the general G-heat
equation

2.1 Preliminaries

Let d € N and Q — RY, be a bounded domain. Let us also

denote by 0Q the boundary of Q. In a context adapted to a
numerical solution of the G-heat equation, we can consider
this previous problem equipped with boundary conditions

d 2
M _NGIEH) 0 ew. in[0, T] % O,
o = ox? @
u |t:0: ¢7

B.C. on u defined on 0Q.

where ¢ is the initial condition, 7 is the final time, B.C.
describes the boundary conditions on the boundary 0Q
and e.w. means everywhere. Since o' = max(a, 0) and o =
max(—«, 0), in what follows, we consider a more
appropriate writing of the equation (4) specified below

d 2 2
ou_1 G7.max a—u,O —o?.max —a—u,O
o 24 ox? - ox?

=0,ew.in [0, T] x Q, (5)

u |t:0 = ¢7
B.C. on u defined on 0Q.

For example, if the Dirichlet homogeneous boundary
conditions are considered on the boundary 0Q, then (4) is
written as follows

d 2 2
Cu_ 1 7. max a—u,O —o?.max —a—u,O
o 245 ox? - ox?
=0,ew.in [0, T] x Q, (6)

u |t=0: ¢9
u=0 on 0Q,

while if the Neumann homogeneous boundary conditions
are considered on the boundary 0Q), then (4) is written as
follows

d 2 2
ou 1 7. max a—u,O —o?.max —a—u,O
o 24 ox? - ox?
=0,e.w.in [0, T] x Q, %)
u |t:0: ¢7
a_u =0 on 0Q,
on

where classically % denotes the normal derivative. Note

also that other classical boundary conditions such as the
Robin or the mixed boundary conditions can be considered.
In the sequel, we consider the analysis of equation (6)
equipped with Dirichlet boundary conditions; nevertheless
this analysis is still valid for other boundary conditions.

Remark 2: In fact, for all every boundary conditions
considered, the numerical solution can be performed
without difficulty by the same way after appropriate
discretisation of the continuous problem.

Actually, the initial problem (1) is defined in an unbounded
domain; then by applying the result of Lemma 1 we have to
consider an analogous problem defined now on a bounded
domain Q such that the measure of Q tends to infinity; then
we have to consider one of the previous equations (5) to (7)
for the numerical solution of the G-heat equation.
Classically the numerical solution of the G-heat equation
needs on one hand the discretisation of the partial
derivatives arising in the considered problem and on the
other hand the linearisation and also, after linearisation, the
solution of the obtained algebraic linear systems.

2.2 Discretisation.
In order to discretise the G-heat equation we consider:

1 for the temporal part of the evolution equation, an
implicit or a semi-implicit time marching scheme such
as, for example, the classical implicit time marching
scheme or the Crank-Nicholson semi-implicit scheme;
thus, at each time step, after appropriate spatial
discretisation, we have to solve an algebraic large scale
system. In the sequel we will denote by ¢, the
discretisation time step,

2 for the spatial part of the equation, since we have to
discretise the second derivative with respect to the
spatial variable, we consider the following classical
approximation for all / € {1, ..., N;}



0%u (.../, X, N M1—2ﬁ1+l/_l]

~ = O(h?
Ox? h? i ( ' )
0
where
u; zu( C XX =l X, ,t)
i zu( C X )

=l
2

u( Ca XX R X ,t)

where N; is the number of mesh points along the i™-axis, /;
is the spatial discretisation step of the i" coordinate.
Let us denote now by u” ;,,  the approximation by finite
difference method of u(..., x;, x;, Xt ..., ty; so, the total

discretisation of the G-heat equation leads to solve the
following nonlinear algebraic system

n+l _n
U jlk,.. "W jlk.

o,
d n+l _ n+l n+l
) u g, T 20 U 0
— o7 .max B s
i=l1 hl
u 1 -2 un+1 + un+1
) il T Gk TY Gk
—o7.max| — ,0
1 h2
1
= 0’
let
n+l n+l n+l
U k. T 2" AU g
Ajrk = )

h?

1

then, using this previous notation, any component of the
previous algebraic system can be written as follows

) S~
uer.,_/'l,l,k,... _El;(aiz'max(aj,l,kao) _Q-I'Z'max(_aj,l,kyo)) (8)

= s Vn eN.

2.3 Linearisation by the Howard process

Gong and Yang (2013) have solved the G-heat equation by
considering the linearisation of the problem by using the
Newton method. Nevertheless, it seems that, due to the
formulation of the problem to solve, the discrete operator
associated to the G-heat equation can not be always derived,
particularly at the origin; consequently, the Newton method
seems difficult to apply rigorously. In the present section,
we propose a linearisation process using the complementary
formulation of the problem to solve (see Spiteri et al.,
2001). So, we can use a linearisation process similar to the
one used when we have to solve the obstacle problem
arising in finance or in mechanics or more generally when
we consider the solution of the Hamilton-Jacobi-Bellman
equation arising for example in image processing (Giraud
and Spiteri, 1991). This linearisation constitutes an
extension of the Howard process usually used for the
linearisation of complementary problems. In fact, this
method of linearisation is a Newton-like method for the

solution of the stationary problem associated with the
G-heat equation. Owing to the properties of the problem to
solve, the previous discretisation scheme leads at each time
step to the solution of a large algebraic system.
Preliminarily, we can state the following simple results:

Lemma 2: Consider the mathematical
p=—max(—¢, 0). Then f=min(e, 0).

Proof: Indeed, if —a < 0, then, max(—¢, 0) = 0 and
—max(—a, 0) = 0; but & > 0 involves that min(e, 0) = 0
= —max(—¢, 0). On the contrary, if —a > 0, then max(—¢, 0)
= —q and —max(—¢, 0) = a; but < 0 involves that min(e,
0) = = —max(—a, 0), and the proof'is achieved. O

expression

Lemma 3: Consider the mathematical expression
6 = max(a, 0) — max(—e, 0). Then € = max(e, 0)
+ min(¢, 0).

Proof: Indeed, if o« > 0, then max(e, 0) = «a and
—max(—a, 0) = min(e, 0) = 0. On the contrary, if o < 0,
then max(e, 0) = 0 and —max(—¢, 0) = min(e, 0) =, which
achieves the proof. N

Remark 3: In the previous valuation of & note that if
max(ea, 0) = « then min(e, 0) = 0 and conservely if
max(¢e, 0) = 0 then min(e, 0) = ¢; so, according to the sign
of ¢, the real number @is given by

B max(a,0)=a, if a >0,
- min(e,0) =, if a <0.

Based on Lemmas 2 and 3 results and Remark 3, we can
now define a linearisation process, analogous to the Howard
process (Spiteri et al., 2001), allowing to solve numerically
the G-heat equation. Indeed, any component of the system
(8) can be written as follows

S NA .
”"+jllk _?tZ(O-iZ -max (aj,l,k > 0) +o7. mln(aj,l,k ) 0)) ©)
i=1
=u" ks Vn eN.
Then, we associate to this previous system the linearised
system (see Giraud and Spiteri, 1991)

(1+%.A(U"+l)ju"+l =Un, (10)
where U denotes the current value of the Howard iterate
and each line of the matrix A(U"*!) is constructed block by
block by the following way: for all line of the system a part
of the line is constructed as follows:

1 ifthe real number ¢; is positive then the off-diagonal

entries of the corresponding line of the matrix A(U"*)

52
is constituted with —:—’2

i

2 else, if the real number ¢, is negative then the
oft-diagonal entries of the corresponding line of the

matrix A(U") is constituted with —

o

2
2
i



=2 2
3 and all the numbers 2:—; or 2% are added in order to
compute the corresponding diagonal entry.

Remark 4: Obviously, for d > 1, the matrix AU"') is a

block matrix; for example if d = 2, then the matrix A(U) is a
tridiagonal block matrix. Moreover, if for all i € {1, ..., d},
o;=0; =1, then the matrix A(U) is similar to the

discretisation matrix of the Laplacian operator. In the
previous linearisation process, note that each line is built
line by line and block by block.

Lemma 4. The matrix (I+%.A(U )) is an M-matrix.

Proof: Indeed, since the linearisation process and the spatial
discretisation process lead to construct a matrix 4
irreducibly ~ diagonally dominant, then, the matrix

5[ . . . . . .
(I+5.4(U)) is strictly (irreducibly) diagonally dominant

(Ortega and Rheinboldt, 1970); moreover, at each time step,
the global matrix 4(U) has strictly positive diagonal entries
and non-positive off-diagonal entries. Consequently,

(I+%3.A(U )) is an M-matrix and the proof'is achieved. [

Remark 5: Then, at each time step we have to solve a large
linear algebraic system where the matrix to invert is an
M-matrix. So, for solving such linear system, we can use the
sequential or the parallel synchronous or asynchronous
subdomain methods with or without overlapping between
the subdomains. In the next sub-section we will recall the
general formulation of such sequential and parallel methods,
and, for each time step, due to the property of the matrix

5 .
(I+5.4(U)), these algorithms converge.

2.4 Sequential and parallel relaxation algorithms

In this subsection, we recall the formulation of the parallel
synchronous or more generally asynchronous subdomain
methods, and we will use these algorithms for the sequential
and parallel solutions of the global model problem (10).

2.4.1 Parallel subdomain iterative methods without
overlapping

Consider the following algebraic system of equations

AV =B, (1D

where A € L(RY), V e RY, B € R and N denotes the size

of the linear algebraic system (11), i.e., the number of points
of discretisation in each direction. Furthermore, assume that

A is an M-matrix. (12)

We consider the numerical solution of (11) by a parallel
subdomain iterative method without overlapping, which in
fact corresponds to a parallel block relaxation method, in
which, a subdomain is constituted by gathering several
adjacent blocks. Let f € N, be a positive integer and

consider now the following block decomposition of the
problem (11) into S subproblems

B
YAV =B, Vie LB, (13)
Jj=1

B
where V), B e R%, with Zni =N, and A = (A,
i=1
according to the associated block decomposition. Consider
now the solution of the subproblems (13) by an
asynchronous parallel iteration (see Baudet, 1978; Miellou,
1975) which can be written as follows

ANV =B =Y AW L if i es(r),
ji (14)

Y=V g s,

where {W\, .., W1, =, Wi, .., Wy} are the available values
of the components V), for j # i, defined by W =V*/),
where § = {s(r)},cy is a sequence of non-empty subsets of
{1, ..., B} denoting the subsets of indices of the components
updated at the (» + 1)" iteration and R = {p|(r), ...,
PAT)} rens 18 a sequence of element of N, furthermore S, R
verify the following assumptions

Viel{l,2,...[}, s(r)=0 VreN,
the set {r e N|i € s(r)} is infinite,
Viel{l,2,...[}, VreN, p(r)<r,
Viell,2, .., [}, rlgr(}o i (r) =+w.

The previous asynchronous iterative scheme models
computations are carried out in parallel without order or
synchronisation and describe in fact a subdomain method
without overlapping. In particular, it permits one to consider
distributed computations whereby processors go at their
own pace according to their intrinsic characteristics and
computational load. The parallelism between the processors
is well described by S since s(r) contains the number of
components relaxed by each processor on a parallel way
while the use of delayed components in (14) permits one to
model non-deterministic behaviour and does not imply
inefficiency of the considered distributed scheme of
computation. Note that, theoretically, each component of
the vector must be relaxed an infinite number of times. The
choice of the relaxed components may be guided by any
criterion, and, in particular, a natural criterion is to pick-up
the most recently available values of the components
computed by the other processors.

Remark 6: The algorithm (14) describes a computational
method where the communications between the processors
can be asynchronous. Among them parallel synchronous
methods are modelled, when p(r) = r, Vr € N; moreover if
s(ry=A{1, .., p} and p(r) =r, Vr € N, i.e., S= {{1, ..., 5},
AL, .., B}, ...}, then (14) describes the sequential block
Jacobi method while if s(r) = r.mod(f) + 1 and p(r) = r, Vr
e N,ie, S= {{1}, {2}, ..., {f}, {1}, ..., {f}, ...} then (14)

models the sequential block Gauss-Seidel method (see



Mittal, 2014); in addition, if S= {{1}, ..., {3}, (B}, {B— 1},

e AL 0 L ABL A, L {1, L and p(r) =, Ve N,
then (14) models the alternating direction method (ADI, see

Ge, 2006; Tang and Christov, 2007). So, the previous model
of parallel asynchronous relaxation algorithm appears like a
general model.

Subtracting (13) to (14), we obtain

Ai(WOD =)= A (W =Y ifies(r). (19
J#i
Let g, €G; (W(’”) —YV;) be an element of the duality map,
where Vi € {1, ..., B}, Vp € [1, =], g; satisfy

Gi0) =g eR" [<Vigi >=|M], and g} =1};

where ||.||, is the classical /,-norm defined in R"; then by
multiplying (15) by g;, we obtain for i € s(r)
<A; (Vf(rﬂ) —Vi), 8 >i= —Z< Ay (VV/ —Vj), g >i . (16)
J#i
A being an M-matrix, it follows that the diagonal

submatrices Ay, Vi € {1, ..., f}, are also M-matrices; so

applying a characterisation of M-matrices from Spiteri
(2003), these submatrices are strongly accretive matrices
and consequently Vi € {1, ..., £} the following inequality
holds

<A (V[(Hl) _Vi)sgi >i2 i “W(Hl) —Vi”p ) (/Uii > 0); (17)

concerning the right hand side of the relation (16), the
mapping < ., . >; being a bilinear form, Vj € {1, ..., S},
j# 1, forall p € [1, wo], we obtain the following upperbound

Z< A (W =V)), g >i< Zﬂij ||W _Vj"p’ (45 >0), (18)

J#i J#i

where u; denotes the subordinate matricial norm associated
with the scalar norm ||.||,. Now taking into account relations
(17) and (18) we obtain finally the following inequality

"Vi(m) -y

< S E W -y Yiellp (19)
i Mii

Let us now denote by 7 the (x /) matrix, with entries

0 if i=;
Ti=Vt ey
Hii

then, clearly 7 is the Jacobi matrix associated to the matrix
M, with diagonal entries z; and off-diagonal entries —L
and obviously Jisa non-negative matrix. Moreover, let us

define the vectorial norm of a vector ), by the positive

vector of RP, the components of which are given by

Yo>gO)={all K llpseents

thus, the inequalities (19) correspond to a vectorial
Lipschitz condition and can be written as follows

gV -v)< T gV -V), YW.

If furthermore the spectral radius of the matrix 7 is less

than one, then the parallel asynchronous iterative
subdomain method without overlapping defined by (14)
converges (see Baudet, 1978; Miellou, 1975). Such situation

occurs when M is an M-matrix.

The matrix J being a non-negative matrix, then
according to a result of Kaszkurewicz and Bhaya (1999),
there exists a strictly positive vector I' of R” and a positive

real number v satisfying 0 < v < 1, such that 7. T < vT.
Consider now the weighted maximum norm defined by

IR
V|r.o= max| —— |.
VI, ﬁ( -

Then, according to a result of Miellou (1975), the fixed
point mapping associated with the parallel asynchronous
method (14) is contracting with respect to the above
weighted uniform norm; so, according to a result of El
Tarazi (1982), the asynchronous method converges to the
solution of the problem (11). From a practical point of view,
we can consider now some particular cases. Indeed, note
that the previous mathematical analysis is particularly easy
(see Giraud and Spiteri, 1991; Miellou and Spiteri, 1985)
when p = 1 or p = o due to the properties of diagonal

dominance of the block diagonal matrices A;, Vi € {1, ...,
S} Indeed in these cases, if, for example, a natural ordering
of the grid points is chosen, then for the natural block
decomposition of the matrix A, the entries u; of the matrix

M correspond to the entries of the discretisation matrix
obtained, for example in the two dimensional case when

d =3 and as previously said J is the Jacobi matrix of the

matrix M; note that the matrix M is an M-matrix. When
p = 2, in order to obtain the value of u;, the smallest
eigenvalue of the " diagonal block of A” has to be

computed; the values of y;, i # j correspond then to the
values of the norms of the off-diagonal blocks A, j # i
compared to the case where p = 1 or p = oo, the case where
p = 2, needs the necessary computation of the eigenvalues
of the i diagonal block of A’ and consequently, due to the
amount of computation, makes this last criterion less
convenient since the diagonal blocks of the matrix change
during the computation. Since obviously M is an
M-matrix, then the parallel synchronous and asynchronous
subdomain methods without overlapping converge. The
reader is referred to Giraud and Spiteri (1991) and Miellou
and Spiteri (1985) for more details.



So we can summarise the previous study as follows:

Proposition 1: Consider the solution of the algebraic system
(11) by the parallel asynchronous relaxation methods (14);
assume that assumption (12) holds. Furthermore, assume
also that the matrix M with diagonal entries equal to u;
and off-diagonal entries equal to —u;, j # i, is an M-matrix.
Then the parallel synchronous and asynchronous subdomain

methods without overlapping (14) converges to the solution
of the problem (11).

Remark 7: The assumptions of Proposition 1 correspond to
the context developed in Giraud and Spiteri (1991) and
Miellou and Spiteri (1985) where the convergence of the
iterative algorithm is analysed by contraction techniques;
nevertheless we can also analyse the convergence of the
considered iterative method by partial ordering techniques,
by applying the results of Miellou et al. (1998) and Spiteri
et al. (2003)

Remark 8: Moreover assume that the algebraic system is
split into S blocks, S< S, corresponding to a coarser

subdomain decomposition without overlapping; then using a
result in Miellou and Spiteri (1985), it can be
shown by using the same arguments, that the parallel
asynchronous block relaxation methods converge for this
coarser decomposition. Furthermore, if the subdomain
decomposition associated with [ blocks is a point
decomposition, then the classical parallel asynchronous
block relaxation methods converge for every subdomain
coarser decomposition and for every numbering
(lexicographical or red-black) of the blocks.

2.4.2 Parallel subdomain iterative methods with
overlapping

If we consider now, the numerical solution of (11) by the
Schwarz alternating method corresponding to the fact that
the subdomains overlap each other, then we have to solve
the following system

AV=8 (20)
instead of (11), where A, ¥V and B are derived from the
augmentation process of the Schwarz alternating method.

Let f € N be a positive integer and consider now the

following block decomposition of problem (20) into S
subproblems

Vi
ZA—,V_,:B;,-, Vie{l,..p}, (21)
=1

B

where V., B e R, with Zﬁ, >N, and Vzlz(.;lyy), according
i=1

to the associated block decomposition.

Consider now the solution of the subproblems with
overlapping (21) by an asynchronous parallel iteration
(see Baudet, 1978; Miellou, 1975) which can be written as
follows

AV =B =Y AW if i es(r),
i (22)
ﬁi(wl) — ]}l_(r)’ if i¢s(r),

where {W, N = W, ..,Wﬁ} are the available values

of the components ]51 for j # i, and defined by

ij = 1};’0 1 where S = {s(r)},en is a sequence of non-

empty subsets of {1, 2, .., £}, denoting the subsets of indices
of the components updated at the (» + 1)™ iteration, R and S

are defined by an analogous way than the one considered in
Subsection 2.4.1.
According to a result of Evans and Deren (1991), the

matrix A is also an M-matrix. So, the system (20) resulting
from the augmentation process has the same properties as
the initial algebraic system (11). In this context, we can
apply a result of Miellou et al. (1998) and conclude to the
convergence of the parallel asynchronous Schwarz
alternating method (22) applied to the numerical solution of
the problem (11). So we can summarise the previous study
as follows.

Proposition 2: Consider the solution of the algebraic system
(11) by the parallel asynchronous Schwarz alternating
method (22); assume that assumption (12) holds. Then the
parallel asynchronous Schwarz alternating method (22)
converges to the solution of the problem (11), for every
initial guess.

Remark 9: Note that, instead of the Schwarz method, we
can also solve the large algebraic system (11) by an
asynchronous multisplitting method (see Spiteri et al.,
2003).

2.4.3 Application to the solution of the G-heat
equation.

Now, thanks to the result of the Lemma 4, since at each
time step of the time marching scheme the matrix

A= +"—;.A(U)) is an M-matrix, we can conclude

immediately that the parallel synchronous or more generally
asynchronous subdomain method with or without
overlapping converge for every decomposition of the
domain Q. Moreover, according to the Remark 6 the
classical sequential relaxation algorithms converge too.

3 Numerical experiments

For the numerical experiments we have implemented both
sequential Howard-relaxation algorithms corresponding to a
coupling of the Howard method with a relaxation method,
like the Jacobi method or the Gauss-Seidel method,
and also the comparison of the parallel synchronous and
asynchronous subdomain methods without overlapping.



Table 1 Number of time steps and of discretisation points on each axis ford =1, 2, 3
d=1 d=2 d=3
Time step Discretisation points Time step Discretisation points Time step Discretisation points
20 1,000 20 50 * 50 =2,500 20 50 * 50 * 50 = 125,000

In such experiments the finite difference discretisation is
performed on a classical Cartesian grid defined in a square
or cubic domain ([0, 1]%, d > 2). Note that we can choose the
spatial discretisation step 7 :h:ﬁ, geN, Viedl, ..., d}.
Then the time marching algorithm for the solution of the
G-heat equation can be written as follows:

Ul 4 &A(U!lJrl).UnJrl =yn. (23)
For sake of simplification, we have considered that &; =&

and also that g; = g, for all i. The iterative scheme that
computes U""! can be written as follows:

Un+1,0 — Un
(24)
Un+1,r+1 + é‘tA(Un+1,r).Un+1,r+1 — U”.
In the 3D case, the matrix A(U) is computed as follows:
(Au); =0= 4; ; =0 for each j
52
(Au); >0= 4, ; =——— for j=itl, itq, itq’
2h?
3.6
Ai,i = h2 (25)
62
(Au); <0= 4;; =—2—7 for j=i*l, i+q, i+q?
Aii = 39-2 .
, 2

The results of such numerical experiments are summurised
below.

3.1 Sequential experiments.

Sequential experiments have been conducted on a personal
computer. For the sake of simplicity, the implementation is
carried out by using MATLAB facilities. In these
experiments we have considered the cases where Q = [0, 1]

is successively included in R?ford =1, 2, 3. Table 1 shows

the maximal number of time steps and the number of
discretisation points on each axis for each value of d. In the
sequential experiments, note that the threshold of the
stopping criteria for the Howard method and for the
relaxation method is fixed to 1.0e — 06.

In the case where d = 1 we have compared the solution
given by our method to the one obtained by Gong and Yang
(2013) by using the Newton method for the solution of the
following example arising from financial markets:

2
ou(t,x) _l. 52 - max 0 u(t,x)’0
ot 2 0ox?

g m(mon 0
- ox?
-9.99 < x <10,
u(0, x) =Z,<p, —9.99 <x <10,
u(t,—9.99)=1, u(z, 10)=0, 0<¢<1,

where 6 =1,0=0.5, T =1, and we can conclude that the
two solutions are the same (see Figure 1).

Figure 1 Numerical solution of the evolution G-heat equation
(see online version for colours)
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For the model problem, we have to solve very large
algebraic systems; so, since the matrices are very sparse,
iterative methods, like relaxation methods are generally well
adapted, except when d = 1, where we can also consider the
solution of each algebraic system by the TDMA method',
corresponding to the classical Gauss method adapted to the
case where the matrix 4 is a tridiagonal matrix. Note also
that, for large values of d, the point-relaxation methods are
well adapted to the solution of our model problem; indeed
the block-relaxation methods need the Gaussian elimination
of each tridiagonal block at each step of the Howard
method, and this is very time consuming.

Finally, other iterative methods, like the conjugate
gradient method or the preconditioned conjugate gradient
method are not relevant, since in fact, we have to solve a
kind of complementary problem related to applications
where the solution is submitted to some constraints
(see Spiteri et al., 2001); then when the constraints on the
solution are saturated, it is difficult to find a conjugate
direction.



Table 2
ford=2,3

Elapsed time (sec.), number of linearisation and average number of Gauss-Seidel iteration for each linearisation phase,

Howard-relaxation 3D

Howard-relaxation 2D

Howard-Gauss 1D

Time Linear. G.S. iterat. Time Linear. G.S. iterat. Time Linear.
3,567.7 2 116 (1) 50.08 2 131 (1) 2.13 2
: - 1) : : 1) : -
Owing to the faster rate of convergence both for the
g g o 5=002

linearisation process and also for the relaxation method for
the solution of the linear systems, we consider for the
sequential experiments, the use of the Gauss-Seidel method;
indeed, on one hand the Gauss-Seidel method is twice faster
than the Jacobi method and on the other hand, we cannot
consider the use of a relaxation parameter due to the fact
that at each step of the Howard method, the matrix to invert
is not the same. Note also that the matrix A is not
symmetric and then the conjugate gradient method can not
be used, except the generalised minimum residual method
(GMRES).

For 20 time steps, Table 2 shows for d = 1, 2, 3 the
elapsed time of computation in seconds, the number of
linearisation at each time step and when d = 2, 3 the average
number of iterations for the Gauss-Seidel method for each
linearisation step. We note that the convergence is fast and
that the elapsed time of computation is short. Then the
Howard-relaxation method is well adapted to the solution of
the nonlinear model problem.

3.2 Parallel experiments

In the 3D numerical experiments, the domain Q is a cube
([0, 17%). In the linearisation process at each time step, the
linear equations are solved by a point Gauss-Seidel
relaxation method, which is easy to implement. The
associated stopping criterion is the uniform norm of the
difference between two successive iteration vectors.

The parallelisation is performed with MPI facilities.
The reader is referred to Petcu (2005) for a study of
the speedup when implementation of p.d.e. is performed
on workstations. The domain decomposition consists in
splitting the cube Q into parallelepipeds (only the y and z
axis are cut). The whole computation (23), (24), (25) is
parallelised and implemented with MPI. The parallel
numerical experiments have been carried out on the
HPC@LR supercomputing centre located in Montpellier
(France) and on Grid5000.

3.2.1 Parameters

The parameters that have been set up for the numerical
experiments are:

e number of discretisation points for the axis x, y, and
z: 300, and so N = 300" = 27,000,000

e 5=0353

e 0=0.707

e number of time steps: 5
e stopping threshold for linearisation iterations: 10~
e stopping threshold for Gauss-Seidel relaxations: 107",
Furthermore, the initial condition is:
u(t=0)=10" x P(x)x P(y)x P(z)

where

P(Z)=z(1—x)[%—x)[é—zj@—lj~

This initial condition is suitable for the Dirichlet boundary
conditions and moreover, the curvature of u(f = 0) is such
that the sign of Au is not constant across the domain 2. As a
consequence, both & and o are considered in the

computation of the linearisation matrix of the G-heat
operator.

3.2.2 Results on HPC@LR

The parallel numerical experiments have been carried out
on the HPC@LR® supercomputing centre located in
Montpellier (France). The HPC@LR cluster is composed of
bi-processor SMP nodes on 40 GB/s Infiniband network.
Each node has two Intel Xeon Westmere 6 core processors
sharing 24 Gbytes of memory.

The parallel efficiencies reported in Table 3 are poor
owing to the domain splitting that does not cut the x axis,
which is not optimal from the message passing standpoint.
Since CPU technology tends to improve faster than
interconnection bandwidth, the impact of communication
overhead will be increasing. This situation is very
interesting for the study of the asynchronous iterative
algorithms.

Table 3 shows that the asynchronous relaxations are
interesting above eight nodes. Below eight nodes, the
synchronous relaxations have a tendency to perform better.
Table 4 may suggest that the drop of efficiency observed in
the synchronous algorithm is due to the increase of the total
number of relaxation. Indeed, this well known behaviour is
related to the parallelisation of the Gauss-Seidel relaxation
scheme. However, Table 5 shows that the drop of efficiency
is mainly due to message passing issues. Indeed, in the
synchronous case, the mean efficiencies of one relaxation
are close to the global efficiencies.



Table 3

Elapsed time (sec.), speed-up and efficiency for the solution of 3D G-heat equation (300 x 300 x 300) on five time steps,

with HPC@LR
nb. nb. Synchronous Asynchronous
node core Time Speed-up Efficiency Time Speed-up Efficiency
1 1 50,413 - - - - -
1 6 14,549 3.46 0.57 15,695 3.21 0.53
1 12 7,433 6.78 0.56 8,564 5.88 0.49
2 24 4,778 10.55 0.43 4,153 12.13 0.50
4 48 1,911 26.38 0.54 2,073 2431 0.50
6 72 1,291 39.04 0.54 1,421 35.47 0.49
8 96 1,321 38.16 0.39 1,053 47.87 0.49
10 120 1,130 44.61 0.37 840 60.01 0.50
Table 4 Total number of Gauss-Seidel relaxations and total Note that Table 4 also shows the total number of
number of linearisation iterations for the solution of linearisation iterations. By using asynchronous relaxations
3D G-heat equation (300 x 300 x 300) on five time s . S . .
. inside the linearisation process, the number of iterations
steps, with HPC@LR .
may be higher.
nb. nb. Synchronous Asynchronous
node  core  Relaxations Iter. lin. Relaxations Iter. lin. 3.2.3 Grid5000 results
1 68,972 25 - - The parallel numerical experiments have been carried out
1 6 69,253 25 71,859 25 on the Grid5000° national grid computing platform
1 12 69,491 25 76,225 2 (France). The cluster that has been used for the numerical
) 24 69,701 25 78,343 27 experiments is .located at Sophla—Antlpohs. The nodes are
composed of bi-processor SMP Gigabit Ethernet network.
4 48 69,941 2 77,033 28 Each node has two Intel Xeon Nehalem 4 core processors
6 72 70,104 25 78,940 28 sharing 32 Gbytes of memory. Note that only two cores per
8 96 70,321 25 79,416 29 node were used during the experiments.
10 120 70,466 25 80,171 28 Table 6 shows that the asynchronous relaxations are
interesting above six nodes. Below six nodes, the
Table 5 Mean efficiency per relaxation for the solution of 3D synchronous relaxations have a tendency t.O perform bette.r.
G-heat equation (300 x 300 x 300) on five time steps, Table 7 may suggest that the drop of efficiency observed in
with HPC@LR the synchronous algorithm is due to the increase of the total
. - number of relaxation. Indeed, this well known behaviour is
nb. nb. Mean efficiency per relaxation related to the parallelisation of the Gauss-Seidel relaxation
node core Synchronous Asynchronous scheme. However, Table 8 shows that the drop of efficiency
1 6 0.57 0.55 is mainly due to message passing issues. Indeed, in the
synchronous case, the mean efficiencies of one relaxation
1 12 0.56 0.54 L.
are close to the global efficiencies.
2 24 0.4 0.57 Compared to Table 3, Table 6 shows that using different
4 48 0.55 0.56 CPUs allow both algorithms to perform better. Note that
6 72 0.55 0.56 above six nodes in the Grid5000 cluster, the asynchronous
] 92 0.40 0.57 algorithm becomes more efficient than the synchronous one,
10 120 037 0.58 whereas in the supercomputing cluster with larger nodes

Moreover, Tables 4 and 5 show that using the asynchronous
method leads to a slower convergence (higher number of
relaxations), but this drop of convergence speed is
compensated by more efficient parallel relaxations. The
mean efficiency of a parallel relaxation is higher in the
asynchronous case above two nodes. Furthermore, the
parallel asynchronous relaxations do not suffer from
message passing issues above eight nodes. The overall
performance of the parallel computation has less variation
in the asynchronous case.

and faster network, the asynchronous algorithms performs
better from eight to ten nodes. This comparison allows us to
state that asynchronous algorithms perform well with
distributed nodes with few cores per node.

This corresponds in other words, to the context of high
communication overhead, with respect to CPU speed. Note
also that with fewer cores, each subdomain has more grid
points. Thus, in Grid 5000 experiments, the workload per
core is higher than in HPC@LR experiments. This also
explains why parallel algorithms perform more efficiently
here.



Table 6 Elapsed time (sec.), speed-up and efficiency for the solution of 3D G-heat equation (300 x 300 x 300) on five time steps,

with Grid5000
nb. nb. Synchronous Asynchronous
node core Time Speed-up Efficiency Time Speed-up Efficiency
1 1 63,780 - - - - -
1 2 31,004 2.05 1.02 32,608 1.95 0.97
2 4 16,744 3.80 0.95 17,001 3.75 0.93
4 8 8,885 7.17 0.89 8,953 7.12 0.89
6 12 6,980 9.13 0.76 5,745 11.10 0.92
8 16 5,680 11.22 0.70 4,433 14.38 0.89
10 20 5,560 11.47 0.57 3,472 18.36 0.91
12 24 3,502 18.20 0.75 2,988 21.34 0.88
14 28 3,087 20.65 0.73 2,593 24.59 0.87
16 32 2,744 23.24 0.72 2,257 28.25 0.88
18 36 2,952 21.60 0.60 2,042 31.23 0.86

Table 7 Total numb§r of Gat}ss-Seide} relaxations and.total The drop of efficiency of the synchronous algorithm,
number of linearisation iterations for the S‘f’}““"? of observed in Table 3, is also present in Table 6. In the same
3D G'h?at equation (300300 > 300) on five time way, Table 8 shows that this drop of efficiency is also due
steps, with Grid5000 . . L

to message passing issues, since the mean efficiencies per
b, b, Synchronous Asynchronous relaxation are close to the global efficiencies, in the
node  core Relaxations lrer. lin Relaxations Tier lin. synchronous case. In Table 7, we can observe the same

increase of the number of relaxations as in Table 4. For 1,
I I 68,972 25 . ) 12 and 24 cores, the number of synchronous relaxations are
1 2 69,039 25 73,294 25 identical in both tables. Thus, both results are numerically
2 4 69,107 25 74,232 25 comparable.
4 3 69,326 25 76,795 25 The results with Grid5000 confirm that asynchronous
6 12 69.491 25 77.029 )5 algorlthms have slower convergence 'rate, bpt sho'rter

elapsed time, when the number of nodes is sufficiently high.
8 16 69,551 » 77,468 26 We can state that the extra computation times due to the
10 20 69,588 25 71,316 26 extra relaxations are compensated by the lower
12 24 69,701 25 78,508 26 communication overhead obtained by using the
14 28 69,739 25 79,829 27 asynchronism. Furthermore, such compensation works only
16 o 69,789 25 79,070 2% if the commumcatlop overhead is significant with respect to

CPU workload. Besides, the performances of asynchronous
18 36 69,841 25 79,494 27 . . L

iterations suffer from less variation than the synchronous

one.

Table 8 Mean efficiency per relaxation for the solution of 3D Table 7 shows that the number of linearisation iterations
G-heat equation (300 x 300 > 300) on five time steps, is also higher in Grid5000. This behaviour is the same as in
with Grid5000

Table 4.
node core Synchronous Asynchronous we show in the present section .that the efﬁ01§nc1es obtained
were better than those obtained in Section 3.2.2. We
I 2 1.02 1.03 will analyse in the next subsection the reasons of
2 4 0.95 1.00 different performances obtained in HPC@LR and Grid5000
4 8 0.90 0.99 environments.
6 12 0.76 1.03
8 16 0.70 1.01 3.2.4 Comparison of performance between the
10 20 057 1.02 HPC@LR and Grid5ooo environments
12 24 0.76 1.01 In the present subsection we will discuss the difference of
14 28 0.74 1.01 performances obtained between the two considered
16 3 073 101 execution environments. Indeed, regarding the two
architectures, HPC@LR is a classical HPC cluster
18 36 0.60 0.99

(i.e., SMP nodes connected with Infiniband network),



whereas Grid5000 is a distributed architecture deployed in
geographically distant sites connected with internet
network. For our experiments on Grid5000, we have
performed the computations on a site where Infiniband
network is not available and processors are different than
the ones of HPC@LR. For the numerical aspects, the two
testbeds make no difference, i.e., the used codes and the
experiments are identical. What we want to show with the
comparison of performance on these two testbeds, is the
good behaviour of asynchronous iterations. Thus, it is
classical that the performances of the parallel experiments
change when the architecture of the multiprocessor changes.
It is the case when we used HPC@LR and Grid5000
machines. A global comparison of elapsed times obtained
with HPC@LR and Grid5000, for both synchronous and
asynchronous algorithms, is given in Figure 2.

Figure 2 Comparison of elapsed times between HPC@LR and
Grid5000 for both synchronous and asynchronous
algorithms (see online version for colours)

T T T
60000}! HPC@LR synchronous
: — - HPC@LR asynchronous
[ — - Grid5000 synchronous
SOOOOJ - - Grid5000 asynchronous ||
|
\
'
40000},
[}
£ h
= [N
3 i
(I
§30000 "
@ A
"
1
200001 |l|
'
ALS
AR\
10000F Y\
SO
S¥EaL L
[} . - e e o
0 20 40 60 80 100 120

num. core

For the sake of readability, Figure 3 focuses on the results
for which elapsed times are lower than 10,000 seconds.
Note that the same data is used in these two figures; the
only difference is the range of the ordinate axis.

Figure 3 Comparison of elapsed times between HPC@LR and
Grid5000 for both synchronous and asynchronous
algorithms; focus on elapsed times lower than
10,000 seconds (see online version for colours)
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The raw data plotted in Figure 2 shows that despite
different CPU and network, regarding the number of cores
the elapsed times of parallel runs in Grid5000 are slightly
better than the ones obtained in HPC@LR.; for example for
24 cores the elapsed time obtained by using Grid5000, i.e.,
3,502 seconds in synchronous mode and 2,988 seconds in
asynchronous mode, respectively, is less than the one
obtained with HPC@LR, i.e., 4,778 seconds and 4,153
seconds respectively. The explanation of this behaviour is
the difference in the usage of the nodes. In HPC@LR, all
the cores of each node are used in parallel experiments,
whereas in Grid5000, only the half of the cores of each node
are used. Consequently, the cache memory is better
exploited in the latter context. Otherwise, without this
tuning, there is absolutely no parallel efficiency on
Grid5000. Nevertheless, we can notice that globally
regarding the number of nodes, but not with the same
number of cores, in the HPC@LR the elapsed times
computation are short while in Grid5000 the efficiencies are
better. Besides, the efficiencies presented in Table 8 are
better than the one presented in Table 5 in HPC@LR even if
the elapsed times presented in Table 6 are less good than the
one presented in Table 3. In the asynchronous case the drop
of convergence rate is compensated by more efficient
parallel relaxations.

Furthermore, Figure 4 plots the ratio between
synchronous and asynchronous elapsed times (#,/%,), in order
to highlight the gain or the loss of performance provided by
the asynchronous relaxations. This plot shows that a
computing cluster with no Infiniband can benefit better
from the asynchronous methods.

Figure 4 Comparison of the ratio between synchronous and
asynchronous elapsed times on HPC@LR and
Grid5000 (see online version for colours)
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Besides, we can remark also that under ten nodes, the
synchronous implementation gives better results, compared
to the asynchronous one. Note that, when the number of
subdomains varies, the input data that changes on an MPI
process is the size of the subdomain, not the shape. Note
that in our experiments we have not sought to minimise the
number of boundary values to exchange with MPIL.



Moreover, with our cutting procedure, the number of
neighbours of each subdomain is either two or four, which
is not a significant variation range. Moreover, the spatial
discretisation steps along all directions remain the same as
the ones we have in the sequential configuration. Besides,
there is no specific discretisation technique for the
boundaries of a subdomain that are adjacent to another
subdomain. So putting more boundaries does not change the
discretisation matrix. Furthermore, the parameters of the
G-heat equation do not depend on the size of a subdomain,
or its shape. So the numerical parameters that have an
influence on the matrix entries remain unchanged in all
possible cuttings of the domain. Our parallelisation is
equivalent to a block decomposition of a large sparse
matrix. In our case, the only influence of subdomain
decomposition on numerical results is the number of
relaxations, due to some classical ordering issues during
parallel relaxations.

In our opinion and experience when the number of
subdomains increases, the convergence slows down and
when we use fewer than ten nodes, fewer relaxations are
done. Thus the synchronisations are less penalising which
perhaps is an explanation of the parallel performances in
such case. It is also related to input data, particularly the
size of the global system; finally, in this case, when fewer
than ten nodes are used, the convergence is faster and the
weight of synchronisations is low.

More precisely, for the reasons above, we can analyse
the parallel efficiency with some simple HPC arguments.
When the number of subdomains is small, on the one hand,
we have more interior points per subdomain, which means
more workload for the CPUs, and on the other hand, the
total number of all boundary discretisation points of all
processors is smaller, which leads to less traffic on the
network. On the contrary, when the number of subdomains
is large, there are more components to be exchanged, which
leads to more traffic on the network and a larger weight of
synchronisations, in addition to a slower convergence of the
relaxation method. In the asynchronous mode idle times for
the CPU are minimised.

One can remark sometimes a slower convergence, but
not necessarily a longer elapsed time, as long as additional
relaxations are cheap enough compared to the synchronous
communications. Then, according to the former analysis
of the parallel efficiency, we can state that the fewer
subdomains, the higher efficiency for synchronous
relaxations. So with few subdomains, it is difficult to ensure
that the asynchronous relaxations can perform better than
the synchronous ones.

4 Conclusions and perspectives

The study and the solution of the G-heat equation is a
current challenge. In the presented study, we have solved
this equation by a numerical way; such solution has been
possible when Dirichlet conditions are considered. The
proposed method uses an original linearisation process
naturally based on an adaptation of the Howard process.

This linearisation process leads to the solution of a large
scale linear system; due to the fact that the resulting linear
system is built with an M-matrix allows to study in a unified
way the behaviour of the sequential and parallel relaxation
methods used for the solution of the discretised and the
linearised problem by various subdomains methods. Parallel
experiments show the efficiency of the studied method.

As perspectives we can envisage easily in future works,
by using a similar method, a situation where Dirichlet-
Neumann boundary condition, or Robin (or Fourier)
boundary condition and also Neumann boundary condition
are considered, the situation is perhaps more complex from
a theoretical point of view. We think that in this case, the
considered study can be extended. Moreover, in the present
study, the behaviour of the parallel algorithm has been
studied by contraction techniques. We have good reason to
believe that such analysis can be achieved also using
perhaps different theoretical mathematical notions such that
partial ordering techniques. Finally, since the G-heat
equation is derived from the Hamilton Jacobi Bellman
equation, which models applications in image processing, it
will be also interesting to study other applications different
to those arising in market finance.
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Notes

1 TDMA means tridiagonal matrix algorithm, also known as
the Thomas algorithm, is a simplified form of Gaussian
elimination, that can be used to solve tridiagonal systems of
equation.
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